Articles | Volume 18, issue 3
https://doi.org/10.5194/os-18-797-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-797-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coastal high-frequency radars in the Mediterranean – Part 2: Applications in support of science priorities and societal needs
SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, 07122, Spain
Eva Aguiar
SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, 07122, Spain
Michele Bendoni
Consorzio LaMMA, Sesto Fiorentino, 50019, Italy
Maristella Berta
Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze
Marine (ISMAR), Lerici, 19032, Italy
Carlo Brandini
Consorzio LaMMA, Sesto Fiorentino, 50019, Italy
Consiglio Nazionale delle Ricerche (CNR), Istituto per la
Bioeconomia (IBE), Sesto Fiorentino, 50019, Italy
Alejandro Cáceres-Euse
Mediterranean Institute of Oceanography, Université de
Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
Fulvio Capodici
Università degli Studi di Palermo, Dipartimento di Ingegneria, 90128, Palermo, Italy
Vanessa Cardin
Instituto Nazionale di Oceanografia e di Geofisica Sperimentale
(OGS), Sgonico, 34010, Italy
Daniela Cianelli
Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
Consorzio Nazionale Interuniversitario per le Scienze del Mare
(CoNISMa), Rome, 00196, Italy
Giuseppe Ciraolo
Università degli Studi di Palermo, Dipartimento di Ingegneria, 90128, Palermo, Italy
Lorenzo Corgnati
Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze
Marine (ISMAR), Lerici, 19032, Italy
Vlado Dadić
Institute of Oceanography and Fisheries, Split, 21000, Croatia
Bartolomeo Doronzo
Consorzio LaMMA, Sesto Fiorentino, 50019, Italy
Consiglio Nazionale delle Ricerche (CNR), Istituto per la
Bioeconomia (IBE), Sesto Fiorentino, 50019, Italy
Aldo Drago
Physical Oceanography Research Group, University of Malta, Msida,
MSD 2080, Malta
Dylan Dumas
Mediterranean Institute of Oceanography, Université de
Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
Pierpaolo Falco
Consorzio Nazionale Interuniversitario per le Scienze del Mare
(CoNISMa), Rome, 00196, Italy
Universita' Politecnica delle Marche, DISVA, Ancona, 60121, Italy
Maria Fattorini
Consorzio LaMMA, Sesto Fiorentino, 50019, Italy
Consiglio Nazionale delle Ricerche (CNR), Istituto per la
Bioeconomia (IBE), Sesto Fiorentino, 50019, Italy
Maria J. Fernandes
Qualitas Instruments Lda., Caparica, 2825-182, Portugal
Adam Gauci
Physical Oceanography Research Group, University of Malta, Msida,
MSD 2080, Malta
Roberto Gómez
Helzel Messtechnik GmbH, 24568 Kaltenkirchen, Germany
Annalisa Griffa
Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze
Marine (ISMAR), Lerici, 19032, Italy
Charles-Antoine Guérin
Mediterranean Institute of Oceanography, Université de
Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
Ismael Hernández-Carrasco
Mediterranean Institute for Advanced Studies – IMEDEA-
(CSIC-UIB), Esporles, 07190, Spain
Jaime Hernández-Lasheras
SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, 07122, Spain
Matjaž Ličer
National Institute of Biology, Marine Biology Station, Piran,
6330, Slovenia
Slovenian Environment Agency, Ljubljana, 1000, Slovenia
Pablo Lorente
NOLOGIN CONSULTING SL, Zaragoza, 50018, Spain
Puertos del Estado, Área de Medio Físico, Madrid, 28042, Spain
Marcello G. Magaldi
Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze
Marine (ISMAR), Lerici, 19032, Italy
Carlo Mantovani
Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze
Marine (ISMAR), Lerici, 19032, Italy
Hrvoje Mihanović
Institute of Oceanography and Fisheries, Split, 21000, Croatia
Anne Molcard
Mediterranean Institute of Oceanography, Université de
Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
Baptiste Mourre
SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, 07122, Spain
Adèle Révelard
SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, 07122, Spain
Catalina Reyes-Suárez
Instituto Nazionale di Oceanografia e di Geofisica Sperimentale
(OGS), Sgonico, 34010, Italy
Simona Saviano
Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
Consorzio Nazionale Interuniversitario per le Scienze del Mare
(CoNISMa), Rome, 00196, Italy
Roberta Sciascia
Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze
Marine (ISMAR), Lerici, 19032, Italy
Stefano Taddei
Consorzio LaMMA, Sesto Fiorentino, 50019, Italy
Joaquín Tintoré
SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, 07122, Spain
Mediterranean Institute for Advanced Studies – IMEDEA-
(CSIC-UIB), Esporles, 07190, Spain
Yaron Toledo
School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv,
6905904, Israel
Marco Uttieri
Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
Consorzio Nazionale Interuniversitario per le Scienze del Mare
(CoNISMa), Rome, 00196, Italy
Ivica Vilibić
Institute of Oceanography and Fisheries, Split, 21000, Croatia
Ruđer Bošković Institute, Division for Marine and
Environmental Research, Zagreb, 10000, Croatia
Enrico Zambianchi
Consorzio Nazionale Interuniversitario per le Scienze del Mare
(CoNISMa), Rome, 00196, Italy
Dipartimento di Scienze e Tecnologie (DiST), Parthenope University
of Naples, Naples, 80133, Italy
Alejandro Orfila
Mediterranean Institute for Advanced Studies – IMEDEA-
(CSIC-UIB), Esporles, 07190, Spain
Related authors
Pablo Lorente, Anna Rubio, Emma Reyes, Lohitzune Solabarrieta, Silvia Piedracoba, Joaquín Tintoré, and Julien Mader
State Planet, 1-osr7, 8, https://doi.org/10.5194/sp-1-osr7-8-2023, https://doi.org/10.5194/sp-1-osr7-8-2023, 2023
Short summary
Short summary
Upwelling is an important process that impacts water quality and aquaculture production in coastal areas. In this work we present a new methodology to monitor this phenomenon in two different regions by using surface current estimations provided by remote sensing technology called high-frequency radar.
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Jaime Hernandez-Lasheras, Baptiste Mourre, Alejandro Orfila, Alex Santana, Emma Reyes, and Joaquín Tintoré
Ocean Sci., 17, 1157–1175, https://doi.org/10.5194/os-17-1157-2021, https://doi.org/10.5194/os-17-1157-2021, 2021
Short summary
Short summary
Correct surface ocean circulation forecasts are highly relevant to search and rescue, oil spills, and ecological processes, among other things. High-frequency radar (HFR) is a remote sensing technology that measures surface currents in coastal areas with high temporal and spatial resolution. We performed a series of experiments in which we use HFR observations from the Ibiza Channel to improve the forecasts provided by a regional ocean model in the western Mediterranean.
Ismael Hernández-Carrasco, Lohitzune Solabarrieta, Anna Rubio, Ganix Esnaola, Emma Reyes, and Alejandro Orfila
Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, https://doi.org/10.5194/os-14-827-2018, 2018
Short summary
Short summary
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed. Its performance is compared with other methods focusing on the propagation of errors introduced in the reconstruction of the velocity fields through the trajectories, Lagrangian flow structures and residence times. We find that even when a large number of measurements in the HFR velocity field is missing, the Lagrangian techniques still give an accurate description of oceanic transport properties.
Pablo Lorente, Marta de Alfonso, Pilar Gil, Fernando Manzano, Anna Magdalena Matulka, Begoña Pérez-Gómez, Susana Pérez-Rubio, and M. Isabel Ruiz
State Planet, 4-osr8, 19, https://doi.org/10.5194/sp-4-osr8-19-2024, https://doi.org/10.5194/sp-4-osr8-19-2024, 2024
Short summary
Short summary
Over recent decades, extreme weather events have attracted growing public concern due to their widespread impact on the environment and human well-being. Their comprehensive monitoring is crucial to adopt prevention strategies and reduce coastal vulnerability. In this work, the record-breaking wave event that hit Melilla harbour (SW Mediterranean Sea) during early April 2022 was investigated to elucidate the meteorological drivers and evaluate the energetic response of Melilla harbour basins.
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2068, https://doi.org/10.5194/egusphere-2024-2068, 2024
Short summary
Short summary
HIDRA3 is a novel deep-learning model for predicting sea levels and storm surges, offering significant improvements over previous models and numerical simulations. It utilizes data from multiple tide gauges, enhancing predictions even with limited historical data and during sensor outages. With its advanced architecture, HIDRA3 outperforms the current state-of-the-art models by achieving up to 15 % lower mean absolute error, proving effective for coastal flood forecasting in diverse conditions.
Peter Mlakar, Antonio Ricchi, Sandro Carniel, Davide Bonaldo, and Matjaž Ličer
Geosci. Model Dev., 17, 4705–4725, https://doi.org/10.5194/gmd-17-4705-2024, https://doi.org/10.5194/gmd-17-4705-2024, 2024
Short summary
Short summary
We propose a new point-prediction model, the DEep Learning WAVe Emulating model (DELWAVE), which successfully emulates the Simulating WAves Nearshore model (SWAN) over synoptic to climate timescales. Compared to control climatology over all wind directions, the mismatch between DELWAVE and SWAN is generally small compared to the difference between scenario and control conditions, suggesting that the noise introduced by surrogate modelling is substantially weaker than the climate change signal.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranic, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibic, and Maria Letizia Vitelletti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1468, https://doi.org/10.5194/egusphere-2024-1468, 2024
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (viz., use a of multiple simulations) allowing to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a ground for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Felipe L. L. Amorim, Julien Le Meur, Achim Wirth, and Vanessa Cardin
Ocean Sci., 20, 463–474, https://doi.org/10.5194/os-20-463-2024, https://doi.org/10.5194/os-20-463-2024, 2024
Short summary
Short summary
Analysis of a high-frequency time series of thermohaline data measured at the EMSO-E2M3A regional facility in the southern Adriatic Pit (SAP) reveals a significant change in the double-diffusive regime in 2017 associated with the intrusion of extremely salty waters into the area, suggesting salt fingering as the dominant regime. The strong heat loss at the surface during this winter allowed deep convection to transport this high-salinity water from the intermediate to deep layers of the pit.
Alfio Marco Borzì, Vittorio Minio, Raphael De Plaen, Thomas Lecocq, Salvatore Alparone, Salvatore Aronica, Flavio Cannavò, Fulvio Capodici, Giuseppe Ciraolo, Sebastiano D'Amico, Danilo Contrafatto, Giuseppe Di Grazia, Ignazio Fontana, Giovanni Giacalone, Graziano Larocca, Carlo Lo Re, Giorgio Manno, Gabriele Nardone, Arianna Orasi, Marco Picone, Giovanni Scicchitano, and Andrea Cannata
Ocean Sci., 20, 1–20, https://doi.org/10.5194/os-20-1-2024, https://doi.org/10.5194/os-20-1-2024, 2024
Short summary
Short summary
In this work, we study a Mediterranean cyclone that occurred in February 2023 and its relationship with a particular seismic signal called microseism. By integrating the data recorded by seismic stations, satellites, HF radar and wavemeter buoy we are able to obtain information about this event. We show how an innovative monitoring system of the Mediterranean cyclones can be designed by integrating microseism information with other techniques routinely used to study meteorological phenomena.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Poulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, and Ingunn Skjelvan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-457, https://doi.org/10.5194/essd-2023-457, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
The ATL2MED experiment was a collaborative project involving European academic institutions and Saildrone Inc. These ASVs embarked on a nine-month mission that ranged from the tropical eastern North Atlantic to the Adriatic Sea, covering a region characterised by a transition zone between temperate and tropical climate belts. Nevertheless, challenges exist, with biofouling being one of the major problems affecting the measurement such as conductivity, dissolved oxygen and chlorophyll-a.
Pierre-Marie Poulain, Luca Centurioni, Carlo Brandini, Stefano Taddei, Maristella Berta, and Milena Menna
Ocean Sci., 19, 1617–1631, https://doi.org/10.5194/os-19-1617-2023, https://doi.org/10.5194/os-19-1617-2023, 2023
Short summary
Short summary
Drifters and a profiling float were deployed in the coastal waters of the southeastern Ligurian Sea to characterize the near-surface circulation at a scale of ~10 km. The drifters were trapped in an offshore-flowing filament and a cyclonic eddy that developed at the southwestern extremity of the filament. Drifter velocities are used to estimate differential kinematic properties and relative dispersion statistics of the surface currents.
Pablo Lorente, Anna Rubio, Emma Reyes, Lohitzune Solabarrieta, Silvia Piedracoba, Joaquín Tintoré, and Julien Mader
State Planet, 1-osr7, 8, https://doi.org/10.5194/sp-1-osr7-8-2023, https://doi.org/10.5194/sp-1-osr7-8-2023, 2023
Short summary
Short summary
Upwelling is an important process that impacts water quality and aquaculture production in coastal areas. In this work we present a new methodology to monitor this phenomenon in two different regions by using surface current estimations provided by remote sensing technology called high-frequency radar.
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Gotzon Basterretxea, Joan S. Font-Muñoz, Ismael Hernández-Carrasco, and Sergio A. Sañudo-Wilhelmy
Ocean Sci., 19, 973–990, https://doi.org/10.5194/os-19-973-2023, https://doi.org/10.5194/os-19-973-2023, 2023
Short summary
Short summary
We examine global ocean color data and modeling outputs of nutrients using SOM analysis to identify characteristic spatial and temporal patterns of HNLC regions and their association with different climate modes. HNLC regions in polar and subpolar areas have experienced an increase in phytoplankton biomass over the last decades, particularly in the Southern Ocean. Our study finds that chlorophyll variations in HNLC regions respond to major climate variability signals.
Rafael R. Torres, Estefanía Giraldo, Cristian Muñoz, Ana Caicedo, Ismael Hernández-Carrasco, and Alejandro Orfila
Ocean Sci., 19, 685–701, https://doi.org/10.5194/os-19-685-2023, https://doi.org/10.5194/os-19-685-2023, 2023
Short summary
Short summary
A reverse seasonal ocean circulation in the Panama Bight has been assessed using 27 years of absolute dynamical topography. The mean circulation in the eastern tropical Pacific (east of 100° W) is analyzed from the mean dynamic topography (MDT) and a self-organizing-map analysis. Small differences are observed west of ~82° W. In the Panama Bight, MDT shows the cyclonic circulation when the Panama surface wind jet dominates the region. We assess ENSO effects on seasonal circulation.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Tiziana Ciuffardi, Zoi Kokkini, Maristella Berta, Marina Locritani, Andrea Bordone, Ivana Delbono, Mireno Borghini, Maurizio Demarte, Roberta Ivaldi, Federica Pannacciulli, Anna Vetrano, Davide Marini, and Giovanni Caprino
Earth Syst. Sci. Data, 15, 1933–1946, https://doi.org/10.5194/essd-15-1933-2023, https://doi.org/10.5194/essd-15-1933-2023, 2023
Short summary
Short summary
This paper presents the results of the first 2 years of the Levante Canyon Mooring, a mooring line placed since 2020 in the eastern Ligurian Sea, to study a canyon area at about 600 m depth characterized by the presence of cold-water living corals. It provides hydrodynamic and thermohaline measurements along the water column, describing a water-mass distribution coherent with previous evidence in the Ligurian Sea. The data also show a Northern Current episodic and local reversal during summer.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Marko Rus, Anja Fettich, Matej Kristan, and Matjaž Ličer
Geosci. Model Dev., 16, 271–288, https://doi.org/10.5194/gmd-16-271-2023, https://doi.org/10.5194/gmd-16-271-2023, 2023
Short summary
Short summary
We propose a new fast and reliable deep-learning architecture HIDRA2 for sea level and storm surge modeling. HIDRA2 features new feature encoders and a fusion-regression block. We test HIDRA2 on Adriatic storm surges, which depend on an interaction between tides and seiches. We demonstrate that HIDRA2 learns to effectively mimic the timing and amplitude of Adriatic seiches. This is essential for reliable HIDRA2 predictions of total storm surge sea levels.
Nydia Catalina Reyes Suárez, Valentina Tirelli, Laura Ursella, Matjaž Ličer, Massimo Celio, and Vanessa Cardin
Ocean Sci., 18, 1321–1337, https://doi.org/10.5194/os-18-1321-2022, https://doi.org/10.5194/os-18-1321-2022, 2022
Short summary
Short summary
Explaining the dynamics of jellyfish blooms is a challenge for scientists. Biological and meteo-oceanographic data were combined on different timescales to explain the exceptional bloom of the jellyfish Rhizostoma pulmo in the Gulf of Trieste (Adriatic Sea) in April 2021. The bloom was associated with anomalously warm seasonal sea conditions. Then, a strong bora wind event enhanced upwelling and mixing of the water column, causing jellyfish to rise to the surface and accumulate along the coast.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Jaime Hernandez-Lasheras, Baptiste Mourre, Alejandro Orfila, Alex Santana, Emma Reyes, and Joaquín Tintoré
Ocean Sci., 17, 1157–1175, https://doi.org/10.5194/os-17-1157-2021, https://doi.org/10.5194/os-17-1157-2021, 2021
Short summary
Short summary
Correct surface ocean circulation forecasts are highly relevant to search and rescue, oil spills, and ecological processes, among other things. High-frequency radar (HFR) is a remote sensing technology that measures surface currents in coastal areas with high temporal and spatial resolution. We performed a series of experiments in which we use HFR observations from the Ibiza Channel to improve the forecasts provided by a regional ocean model in the western Mediterranean.
Petra Zemunik, Jadranka Šepić, Havu Pellikka, Leon Ćatipović, and Ivica Vilibić
Earth Syst. Sci. Data, 13, 4121–4132, https://doi.org/10.5194/essd-13-4121-2021, https://doi.org/10.5194/essd-13-4121-2021, 2021
Short summary
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
Lojze Žust, Anja Fettich, Matej Kristan, and Matjaž Ličer
Geosci. Model Dev., 14, 2057–2074, https://doi.org/10.5194/gmd-14-2057-2021, https://doi.org/10.5194/gmd-14-2057-2021, 2021
Short summary
Short summary
Adriatic basin sea level modelling is a challenging problem due to the interplay between terrain, weather, tides and seiches. Current state-of-the-art numerical models (e.g. NEMO) require large computational resources to produce reliable forecasts. In this study we propose HIDRA, a novel deep learning approach for sea level modeling, which drastically reduces the numerical cost while demonstrating predictive capabilities comparable to that of the NEMO model, outperforming it in many instances.
Dagmar Hainbucher, Marta Álvarez, Blanca Astray Uceda, Giancarlo Bachi, Vanessa Cardin, Paolo Celentano, Spyros Chaikalis, Maria del Mar Chaves Montero, Giuseppe Civitarese, Noelia M. Fajar, Francois Fripiat, Lennart Gerke, Alexandra Gogou, Elisa F. Guallart, Birte Gülk, Abed El Rahman Hassoun, Nico Lange, Andrea Rochner, Chiara Santinelli, Tobias Steinhoff, Toste Tanhua, Lidia Urbini, Dimitrios Velaoras, Fabian Wolf, and Andreas Welsch
Earth Syst. Sci. Data, 12, 2747–2763, https://doi.org/10.5194/essd-12-2747-2020, https://doi.org/10.5194/essd-12-2747-2020, 2020
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean Sea (MSM72, March 2018). The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake, and further assess the hydrographical situation after the Eastern and Western Mediterranean Transients. Multidisciplinary measurements were conducted on a predominantly
zonal section throughout the Mediterranean Sea.
Verónica Morales-Márquez, Alejandro Orfila, Gonzalo Simarro, and Marta Marcos
Ocean Sci., 16, 1385–1398, https://doi.org/10.5194/os-16-1385-2020, https://doi.org/10.5194/os-16-1385-2020, 2020
Short summary
Short summary
This is a study of long-term changes in extreme waves and in the synoptic patterns related to them on European coasts. The interannual variability of extreme waves in the North Atlantic Ocean is controlled by the atmospheric patterns of the North Atlantic Oscillation and Scandinavian indices. In the Mediterranean Sea, it is governed by the East Atlantic and East Atlantic/Western Russia modes acting strongly during their negative phases.
Matjaž Ličer, Solène Estival, Catalina Reyes-Suarez, Davide Deponte, and Anja Fettich
Nat. Hazards Earth Syst. Sci., 20, 2335–2349, https://doi.org/10.5194/nhess-20-2335-2020, https://doi.org/10.5194/nhess-20-2335-2020, 2020
Short summary
Short summary
In 2018 windsurfer’s mast broke about 1 km offshore during a scirocco storm in the northern Adriatic. He was drifting in severe conditions until he eventually beached alive and well in Sistiana (Italy) 24 h later. We conducted an interview with the survivor to reconstruct his trajectory. We simulate his trajectory in several ways and estimate the optimal search-and-rescue area for a civil rescue response. Properly calibrated virtual drifter properties are key to reliable rescue area forecasting.
Ivan Manso-Narvarte, Erick Fredj, Gabriel Jordà, Maristella Berta, Annalisa Griffa, Ainhoa Caballero, and Anna Rubio
Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, https://doi.org/10.5194/os-16-575-2020, 2020
Short summary
Short summary
Our main aim is to study the feasibility of reconstructing oceanic currents by extending the data obtained from coastal multiplatform observatories to nearby areas in 3D in the SE Bay of Biscay. To that end, two different data-reconstruction methods with different approaches were tested, providing satisfactory results. This work is a first step towards the real applicability of these methods in this study area, and it shows the capabilities of the methods for a wide range of applications.
Alexander Barth, Aida Alvera-Azcárate, Matjaz Licer, and Jean-Marie Beckers
Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020, https://doi.org/10.5194/gmd-13-1609-2020, 2020
Short summary
Short summary
DINCAE is a method for reconstructing missing data in satellite datasets using a neural network. Satellite observations working in the optical and infrared bands are affected by clouds, which obscure part of the ocean underneath. In this paper, a neural network with the structure of a convolutional auto-encoder is developed to reconstruct the missing data based on the available cloud-free pixels in satellite images.
Christian Ferrarin, Andrea Valentini, Martin Vodopivec, Dijana Klaric, Giovanni Massaro, Marco Bajo, Francesca De Pascalis, Amedeo Fadini, Michol Ghezzo, Stefano Menegon, Lidia Bressan, Silvia Unguendoli, Anja Fettich, Jure Jerman, Matjaz̆ Ličer, Lidija Fustar, Alvise Papa, and Enrico Carraro
Nat. Hazards Earth Syst. Sci., 20, 73–93, https://doi.org/10.5194/nhess-20-73-2020, https://doi.org/10.5194/nhess-20-73-2020, 2020
Short summary
Short summary
Here we present a shared and interoperable system to allow a better exchange of and elaboration on information related to sea storms among countries. The proposed integrated web system (IWS) is a combination of a common data system for sharing ocean observations and forecasts, a multi-model ensemble system, a geoportal, and interactive geo-visualization tools. This study describes the application of the developed system to the exceptional storm event of 29 October 2018.
John Lodise, Tamay Özgökmen, Annalisa Griffa, and Maristella Berta
Ocean Sci., 15, 1627–1651, https://doi.org/10.5194/os-15-1627-2019, https://doi.org/10.5194/os-15-1627-2019, 2019
Short summary
Short summary
Observations of ocean currents within the first meter of the surface are made using a large number of ocean drifters of two different draft depths (0–5 and 0–60 cm). We deconstruct the total drifter velocities using an estimate of the regional circulation and a modeled Stokes drift velocity to calculate the purely wind-driven component of each drifter type. We reveal that the wind-driven velocities rotate to the right of the wind, while also decreasing, with depth.
Ivica Vilibić, Petra Zemunik, Jadranka Šepić, Natalija Dunić, Oussama Marzouk, Hrvoje Mihanović, Clea Denamiel, Robert Precali, and Tamara Djakovac
Ocean Sci., 15, 1351–1362, https://doi.org/10.5194/os-15-1351-2019, https://doi.org/10.5194/os-15-1351-2019, 2019
Pablo Lorente, Marcos García-Sotillo, Arancha Amo-Baladrón, Roland Aznar, Bruno Levier, José C. Sánchez-Garrido, Simone Sammartino, Álvaro de Pascual-Collar, Guillaume Reffray, Cristina Toledano, and Enrique Álvarez-Fanjul
Ocean Sci., 15, 967–996, https://doi.org/10.5194/os-15-967-2019, https://doi.org/10.5194/os-15-967-2019, 2019
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane LawChune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-165, https://doi.org/10.5194/os-2018-165, 2019
Publication in OS not foreseen
Short summary
Short summary
This paper highlight the adjustment of the wave physics in order to improve the surface stress and thus the ocean/wave coupling dedicated to Iberian Biscay and Ireland domain. The validation with altimeters wave data during the year 2014 has shown a slight improvement of the significant wave height. Statistical analysis of the results of the new and old versions of the wave model MFWAM is examined for the three main ocean regions of the IBI domain.
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane Law-Chune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-167, https://doi.org/10.5194/os-2018-167, 2019
Publication in OS not foreseen
Short summary
Short summary
This work highlights the relevance of coupling wave model with ocean model in order to improve key surface ocean parameters and in general to better describe the ocean circulation at small and large scale.
The results focus on the Iberian Biscay and Ireland ocean region with fine grid resolution of 2.5 km for the ocean model. The main conclusion is the improvement of wave physics induces a better ocean mixing at the upper layer and a positive impact for sea surface height in storm events.
Yuri Cotroneo, Giuseppe Aulicino, Simon Ruiz, Antonio Sánchez Román, Marc Torner Tomàs, Ananda Pascual, Giannetta Fusco, Emma Heslop, Joaquín Tintoré, and Giorgio Budillon
Earth Syst. Sci. Data, 11, 147–161, https://doi.org/10.5194/essd-11-147-2019, https://doi.org/10.5194/essd-11-147-2019, 2019
Short summary
Short summary
We present data collected from the first three glider surveys in the Algerian Basin conducted during the ABACUS project. After collection, data passed a quality control procedure and were then made available through an unrestricted repository. The main objective of our project is monitoring the basin circulation of the Mediterranean Sea. Temperature and salinity data collected in the first 975 m of the water column allowed us to identify the main water masses and describe their characteristics.
Charles Troupin, Ananda Pascual, Simon Ruiz, Antonio Olita, Benjamin Casas, Félix Margirier, Pierre-Marie Poulain, Giulio Notarstefano, Marc Torner, Juan Gabriel Fernández, Miquel Àngel Rújula, Cristian Muñoz, Eva Alou, Inmaculada Ruiz, Antonio Tovar-Sánchez, John T. Allen, Amala Mahadevan, and Joaquín Tintoré
Earth Syst. Sci. Data, 11, 129–145, https://doi.org/10.5194/essd-11-129-2019, https://doi.org/10.5194/essd-11-129-2019, 2019
Short summary
Short summary
The AlborEX (the Alboran Sea Experiment) consisted of an experiment in the Alboran Sea (western Mediterranean Sea) that took place between 25 and 31 May 2014, and use a wide range of oceanographic sensors. The dataset provides information on mesoscale and sub-mesoscale processes taking place in a frontal area. This paper presents the measurements obtained from these sensors and describes their particularities: scale, spatial and temporal resolutions, measured variables, etc.
Verónica Morales-Márquez, Alejandro Orfila, Gonzalo Simarro, Lluís Gómez-Pujol, Amaya Álvarez-Ellacuría, Daniel Conti, Álvaro Galán, Andrés F. Osorio, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 18, 3211–3223, https://doi.org/10.5194/nhess-18-3211-2018, https://doi.org/10.5194/nhess-18-3211-2018, 2018
Short summary
Short summary
This work analyzes the response of a beach under a series of storms using a numerical model, in situ measurements and video imaging.
Time recovery after storms is a key issue for local beach managers, who are pressed by tourism stakeholders to nourish the beach
after energetic processes in order to reach the quality standards required by beach users.
Roberta Sciascia, Maristella Berta, Daniel F. Carlson, Annalisa Griffa, Monica Panfili, Mario La Mesa, Lorenzo Corgnati, Carlo Mantovani, Elisa Domenella, Erick Fredj, Marcello G. Magaldi, Raffaele D'Adamo, Gianfranco Pazienza, Enrico Zambianchi, and Pierre-Marie Poulain
Ocean Sci., 14, 1461–1482, https://doi.org/10.5194/os-14-1461-2018, https://doi.org/10.5194/os-14-1461-2018, 2018
Short summary
Short summary
Understanding the role of ocean currents in the recruitment of commercially important fish is an important step toward developing sustainable resource management guidelines. Here, we attempt to elucidate the role of surface ocean transport in supplying recruits of European sardines to the Gulf of Manfredonia, a known recruitment area in the Adriatic Sea. We find that transport to the Gulf of Manfredonia from remote spawing areas in the Adriatic is more likely than local spawning and retention.
Jaime Hernandez-Lasheras and Baptiste Mourre
Ocean Sci., 14, 1069–1084, https://doi.org/10.5194/os-14-1069-2018, https://doi.org/10.5194/os-14-1069-2018, 2018
Short summary
Short summary
Different sampling strategies have been assessed in order to evaluate the most efficient configuration for the assimilation of high resolution measurements into a regional ocean model. The results show the capability of the model to ingest both large scale and high resolution observations and the improvement of the forecast fields. In particular, the configurations using eight gliders and the one assimilating CTDs show similar results and the give the best performance among all the simulations
Ismael Hernández-Carrasco, Lohitzune Solabarrieta, Anna Rubio, Ganix Esnaola, Emma Reyes, and Alejandro Orfila
Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, https://doi.org/10.5194/os-14-827-2018, 2018
Short summary
Short summary
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed. Its performance is compared with other methods focusing on the propagation of errors introduced in the reconstruction of the velocity fields through the trajectories, Lagrangian flow structures and residence times. We find that even when a large number of measurements in the HFR velocity field is missing, the Lagrangian techniques still give an accurate description of oceanic transport properties.
Maristella Berta, Lucio Bellomo, Annalisa Griffa, Marcello G. Magaldi, Anne Molcard, Carlo Mantovani, Gian Pietro Gasparini, Julien Marmain, Anna Vetrano, Laurent Béguery, Mireno Borghini, Yves Barbin, Joel Gaggelli, and Céline Quentin
Ocean Sci., 14, 689–710, https://doi.org/10.5194/os-14-689-2018, https://doi.org/10.5194/os-14-689-2018, 2018
Short summary
Short summary
The Northern Current (NC) in the NW Mediterranean Sea is studied by HF radar, glider, vessel survey, wind station, and model. NC variability is dominated by synoptic response to wind events, studied decomposing geostrophic and ageostrophic surface components. The combination of autonomous observing platforms with classical marine surveys provides high-resolution datasets for scientific purposes and practical applications such as the management of marine resources in the Mediterranean Sea.
Reiner Onken, Heinz-Volker Fiekas, Laurent Beguery, Ines Borrione, Andreas Funk, Michael Hemming, Jaime Hernandez-Lasheras, Karen J. Heywood, Jan Kaiser, Michaela Knoll, Baptiste Mourre, Paolo Oddo, Pierre-Marie Poulain, Bastien Y. Queste, Aniello Russo, Kiminori Shitashima, Martin Siderius, and Elizabeth Thorp Küsel
Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, https://doi.org/10.5194/os-14-321-2018, 2018
Short summary
Short summary
In June 2014, high-resolution oceanographic data were collected in the
western Mediterranean Sea by two research vessels, 11 gliders, moored
instruments, drifters, and one profiling float. The objective
of this article is to provide an overview of the data set which
is utilised by various ongoing studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads
for gliders.
Maria Fattorini and Carlo Brandini
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-22, https://doi.org/10.5194/npg-2018-22, 2018
Revised manuscript not accepted
Short summary
Short summary
This study looks for sampling criteria to improve forecasts reliability. Key factors for designing in situ observation networks are identified through the study of error growth and correlation analysis. This choice has an important impact on operational applications, as it affects the cost of ocean observing and forecasting systems by minimizing the need for additional observations. The proposed method is easily extendable to realistic problems.
Ivica Vilibić, Hrvoje Mihanović, Ivica Janeković, Cléa Denamiel, Pierre-Marie Poulain, Mirko Orlić, Natalija Dunić, Vlado Dadić, Mira Pasarić, Stipe Muslim, Riccardo Gerin, Frano Matić, Jadranka Šepić, Elena Mauri, Zoi Kokkini, Martina Tudor, Žarko Kovač, and Tomislav Džoić
Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, https://doi.org/10.5194/os-14-237-2018, 2018
Giorgio Manno, Carlo Lo Re, and Giuseppe Ciraolo
Ocean Sci., 13, 661–671, https://doi.org/10.5194/os-13-661-2017, https://doi.org/10.5194/os-13-661-2017, 2017
Short summary
Short summary
Beach evolution analysis can be conducted using GIS methodologies, such as the well-known Digital Shoreline Analysis System (DSAS), in which error assessment based on shoreline positioning plays a significant role. In this study, a new approach is proposed to estimate the positioning errors due to tide and wave run-up influence.
Antonio Sánchez-Román, Simón Ruiz, Ananda Pascual, Baptiste Mourre, and Stéphanie Guinehut
Ocean Sci., 13, 223–234, https://doi.org/10.5194/os-13-223-2017, https://doi.org/10.5194/os-13-223-2017, 2017
Short summary
Short summary
In this work we investigate the capability of the Argo array in the Mediterranean Sea to capture mesoscale circulation structures (diameter of around 150 km). To do that we conduct several experiments to simulate different spatial sampling configurations of the Argo array in the basin. Results show that the actual Argo array in the Mediterranean (2° × 2°) might be enlarged until a spatial resolution of nearly 75 × 75 km (450 floats) in order to capture the mesoscale signal.
Marcos García Sotillo, Emilio Garcia-Ladona, Alejandro Orfila, Pablo Rodríguez-Rubio, José Cristobal Maraver, Daniel Conti, Elena Padorno, José Antonio Jiménez, Este Capó, Fernando Pérez, Juan Manuel Sayol, Francisco Javier de los Santos, Arancha Amo, Ana Rietz, Charles Troupin, Joaquín Tintore, and Enrique Álvarez-Fanjul
Earth Syst. Sci. Data, 8, 141–149, https://doi.org/10.5194/essd-8-141-2016, https://doi.org/10.5194/essd-8-141-2016, 2016
Short summary
Short summary
An intensive drifter deployment was carried out in the Strait of Gibraltar: 35 satellite tracked drifters were released, coordinating to this aim 4 boats, covering an area of about 680 NM2 in 6 hours. This MEDESS-GIB Experiment is the most important exercise in the Mediterranean in terms of number of drifters released. The MEDESS-GIB dataset provides a complete Lagrangian view of the surface inflow of Atlantic waters through the Strait of Gibraltar and its later evolution along the Alboran Sea.
M. Ličer, P. Smerkol, A. Fettich, M. Ravdas, A. Papapostolou, A. Mantziafou, B. Strajnar, J. Cedilnik, M. Jeromel, J. Jerman, S. Petan, V. Malačič, and S. Sofianos
Ocean Sci., 12, 71–86, https://doi.org/10.5194/os-12-71-2016, https://doi.org/10.5194/os-12-71-2016, 2016
Short summary
Short summary
We compare the northern Adriatic response to an extreme bora event, as simulated by one-way and two-way (i.e. with ocean feedback to the atmosphere) atmosphere-ocean coupling. We show that two-way coupling yields significantly better estimates of heat fluxes, most notably sensible heat flux, across the air-sea interface. When compared to observations in the northern Adriatic, two-way coupled system consequently leads to a better representation of ocean temperatures throughout the event.
P. Lorente, S. Piedracoba, J. Soto-Navarro, and E. Alvarez-Fanjul
Ocean Sci., 11, 921–935, https://doi.org/10.5194/os-11-921-2015, https://doi.org/10.5194/os-11-921-2015, 2015
Short summary
Short summary
In this paper, we provide a detailed description of basic sea surface circulation features in the Ebro River delta (NW Mediterranean) as derived from reliable high-frequency radar surface current measurements. An integrated quality control approach has been applied to ensure the acquisition of accurate radar data, which remains a priority for the research community. This work should be of interest to readers in the areas of operational oceanography and also to a broad community of end-users.
I. Hernández-Carrasco, J. Sudre, V. Garçon, H. Yahia, C. Garbe, A. Paulmier, B. Dewitte, S. Illig, I. Dadou, M. González-Dávila, and J. M. Santana-Casiano
Biogeosciences, 12, 5229–5245, https://doi.org/10.5194/bg-12-5229-2015, https://doi.org/10.5194/bg-12-5229-2015, 2015
Short summary
Short summary
We have reconstructed maps of air-sea CO2 fluxes at high resolution (4 km) in the offshore Benguela region using sea surface temperature and ocean colour data and CarbonTracker CO2 fluxes data at low resolution (110 km).
The inferred representation of pCO2 improves the description provided by CarbonTracker, enhancing small-scale variability.
We find that the resolution, as well as the inferred pCO2 data itself, is closer to in situ measurements of pCO2.
D. Hainbucher, V. Cardin, G. Siena, U. Hübner, M. Moritz, U. Drübbisch, and F. Basan
Earth Syst. Sci. Data, 7, 231–237, https://doi.org/10.5194/essd-7-231-2015, https://doi.org/10.5194/essd-7-231-2015, 2015
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean in April 2014. Data were taken on a west-east section starting at the Strait of Gibraltar and ending south-east of Crete, as well on sections in the Ionian and Adriatic Sea. The measurements include salinity, temperature, oxygen and currents. We study the mesoscale eddy field and support long-term investigations of the hydrography in the Mediterranean Sea.
V. Cardin, G. Civitarese, D. Hainbucher, M. Bensi, and A. Rubino
Ocean Sci., 11, 53–66, https://doi.org/10.5194/os-11-53-2015, https://doi.org/10.5194/os-11-53-2015, 2015
Short summary
Short summary
The results of this study reveal that the thermohaline properties in the study area in 2011 lie between the thermohaline characteristics of the EMT and those of the pre-EMT phase, indicating a possible slow return towards the latter. It highlights the relationship between the hydrological property distribution of the upper layer in the Levantine basin and the alternate circulation regimes in the Ionian, which modulates the salinity distribution in the Eastern Mediterranean Sea.
M.-H. Rio, A. Pascual, P.-M. Poulain, M. Menna, B. Barceló, and J. Tintoré
Ocean Sci., 10, 731–744, https://doi.org/10.5194/os-10-731-2014, https://doi.org/10.5194/os-10-731-2014, 2014
D. Hainbucher, A. Rubino, V. Cardin, T. Tanhua, K. Schroeder, and M. Bensi
Ocean Sci., 10, 669–682, https://doi.org/10.5194/os-10-669-2014, https://doi.org/10.5194/os-10-669-2014, 2014
A. Olita, S. Sparnocchia, S. Cusí, L. Fazioli, R. Sorgente, J. Tintoré, and A. Ribotti
Ocean Sci., 10, 657–666, https://doi.org/10.5194/os-10-657-2014, https://doi.org/10.5194/os-10-657-2014, 2014
M. Gačić, G. Civitarese, V. Kovačević, L. Ursella, M. Bensi, M. Menna, V. Cardin, P.-M. Poulain, S. Cosoli, G. Notarstefano, and C. Pizzi
Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, https://doi.org/10.5194/os-10-513-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
I. Hernández-Carrasco, C. López, A. Orfila, and E. Hernández-García
Nonlin. Processes Geophys., 20, 921–933, https://doi.org/10.5194/npg-20-921-2013, https://doi.org/10.5194/npg-20-921-2013, 2013
T. Tanhua, D. Hainbucher, K. Schroeder, V. Cardin, M. Álvarez, and G. Civitarese
Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, https://doi.org/10.5194/os-9-789-2013, 2013
T. Tanhua, D. Hainbucher, V. Cardin, M. Álvarez, G. Civitarese, A. P. McNichol, and R. M. Key
Earth Syst. Sci. Data, 5, 289–294, https://doi.org/10.5194/essd-5-289-2013, https://doi.org/10.5194/essd-5-289-2013, 2013
H. Mihanović, I. Vilibić, S. Carniel, M. Tudor, A. Russo, A. Bergamasco, N. Bubić, Z. Ljubešić, D. Viličić, A. Boldrin, V. Malačič, M. Celio, C. Comici, and F. Raicich
Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, https://doi.org/10.5194/os-9-561-2013, 2013
S. Pasquet, I. Vilibić, and J. Šepić
Nat. Hazards Earth Syst. Sci., 13, 473–482, https://doi.org/10.5194/nhess-13-473-2013, https://doi.org/10.5194/nhess-13-473-2013, 2013
Cited articles
Abascal, A. J., Castanedo, S., Medina, R., Losada, I. J., and
Álvarez-Fanjul, E.: Application of HF radar currents to oil spill
modelling, Mar. Pollut. Bull., 58, 238–248,
https://doi.org/10.1016/j.marpolbul.2008.09.020, 2009.
Abascal, A. J., Castanedo, S., Fernández, V., and Medina, R.:
Backtracking drifting objects using surface currents from high-frequency
(HF) radar technology, Ocean Dynam., 62, 1073–1089,
https://doi.org/10.1007/s10236-012-0546-4, 2012.
Abascal, A. J., Sánchez, J., Chiri, H., Ferrer, M. I., Cárdenas, M.,
Gallego, A., Castanedo, S., Medina, R., Alonso-Martirena, A., Berx, B.,
Turrell, W. R., and Hughes, S. L.: Operational oil spill trajectory modelling
using HF radar currents: A northwest European continental shelf case study,
Mar. Pollut. Bull., 119, 336–350, https://doi.org/10.1016/j.marpolbul.2017.04.010,
2017.
Aguiar, E., Mourre, B., Juza, M., Reyes, E., Hernández-Lasheras, J.,
Cutolo, E., Mason, E., and Tintoré, J.: Multi-platform model assessment
in the Western Mediterranean Sea: impact of downscaling on the surface
circulation and mesoscale activity, Ocean Dynam., 70, 273–288,
https://doi.org/10.1007/s10236-019-01317-8, 2020.
Allou, A., Forget, P., and Devenon, J.-L.: Submesoscale vortex structures at
the entrance of the Gulf of Lions in the Northwestern Mediterranean Sea,
Cont. Shelf Res., 30, 724–732, https://doi.org/10.1016/j.csr.2010.01.006, 2010.
Álvarez-Fanjul, E., Gómez, B. P., and Arevalo, I. R. S.: Nivmar: a
storm surge forecasting system for Spanish waters, Sci. Mar., 65, 145–154,
2001.
Alvera-Azcárate, A., Barth, A., Rixen, M., and Beckers, J.-M.:
Reconstruction of incomplete oceanographic data sets using Empirical
Orthogonal Functions, Application to the Adriatic Sea, Ocean Model., 9,
325–346, 2005
Amores, A., Marcos, M., Carrió, D. S., and Gómez-Pujol, L.: Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean, Nat. Hazards Earth Syst. Sci., 20, 1955–1968, https://doi.org/10.5194/nhess-20-1955-2020, 2020.
Archer, M. R., Roughan, M., Keating, S. R., and Schaeffer, A.: On the
Variability of the East Australian Current: Jet Structure, Meandering, and
Influence on Shelf Circulation, J. Geophys. Res.-Oceans, 122,
8464–8481, https://doi.org/10.1002/2017JC013097, 2017.
Arunraj, K. S., Jena, B. K., Suseentharan, V., and Rajkumar, J.: Variability
in Eddy Distribution Associated With East India Coastal Current From
High-Frequency Radar Observations Along Southeast Coast of India, J. Geophys. Res.-Oceans, 123, 9101–9118,
https://doi.org/10.1029/2018JC014041, 2018.
Astraldi, M. and Gasparini, G. P.: The seasonal characteristics of the
circulation in the north Mediterranean basin and their relationship with the
atmospheric-climatic conditions, J. Geophys. Res.-Oceans, 97,
9531–9540, https://doi.org/10.1029/92JC00114, 1992.
Bagaglini, L., Falco, P., and Zambianchi, E.: Eddy Detection in HF
Radar-Derived Surface Currents in the Gulf of Naples, Remote Sens., 12, 97,
https://doi.org/10.3390/rs12010097, 2020.
Barrick, D. E.: A coastal radar system for tsunami warning, Remote Sens.
Environ., 8, 353–358, https://doi.org/10.1016/0034-4257(79)90034-8,
1979.
Barrick, D. and Lipa, B.: Correcting for distorted antenna patterns in CODAR
ocean surface measurements, IEEE J. Ocean. Eng., 11, 304–309,
https://doi.org/10.1109/JOE.1986.1145158, 1986.
Barrick, D., Fernandez, V., Ferrer, M. I., Whelan, C., and Breivik, Ø.: A
short-term predictive system for surface currents from a rapidly deployed
coastal HF radar network, Ocean Dynam., 62, 725–740,
https://doi.org/10.1007/s10236-012-0521-0, 2012.
Barth, A., Alvera-Azcárate, A., and Weisberg, R. H.: Assimilation of
high-frequency radar currents in a nested model of the West Florida Shelf,
J. Geophys. Res.-Oceans, 113, 1–15, https://doi.org/10.1029/2007JC004585, 2008.
Barth, A., Troupin, C., Reyes, E., Alvera-Azcárate, A., Beckers, J.-M.,
and Tintoré, J.: Variational interpolation of high-frequency radar
surface currents using DIVAnd, Ocean Dynam., 71, 293–308, https://doi.org/10.1007/s10236-020-01432-x,
2021.
Basañez, A., Lorente, P., Montero, P., Álvarez-Fanjul, E., and
Pérez-Muñuzuri, V.: Quality assessment and practical interpretation
of the wave parameters estimated by HF radars in NW Spain, Remote Sens.,
12, 1–24, https://doi.org/10.3390/rs12040598, 2020.
Basañez, A. and Pérez-Muñuzuri, V.: HF Radars for Wave Energy
Resource Assessment Offshore NW Spain, Remote Sens., 13,
https://doi.org/10.3390/rs13112070, 2021.
Beckers, J. M. and Rixen, M.: EOF Calculations and Data Filling from
Incomplete Oceanographic Datasets, J. Atmos. Ocean. Technol., 20,
1839–1856, https://doi.org/10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2, 2003.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R.,
Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G.,
Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean
productivity, Nature, 444, 752–755, https://doi.org/10.1038/nature05317, 2006.
Benaïchouche, S., Legoff, C., Guichoux, Y., Rousseau, F. and Fablet,
R.: Unsupervised Reconstruction of Sea Surface Currents from AIS Maritime
Traffic Data Using Trainable Variational Models, Remote Sens., 13,
https://doi.org/10.3390/rs13163162, 2021.
Berta, M., Bellomo, L., Magaldi, M. G., Griffa, A., Molcard, A., Marmain,
J., Borghini, M., and Taillandier, V.: Estimating Lagrangian transport
blending drifters with HF radar data and models: Results from the TOSCA
experiment in the Ligurian Current (North Western Mediterranean Sea), Prog.
Oceanogr., 128, 15–29, https://doi.org/10.1016/j.pocean.2014.08.004, 2014a.
Berta, M., Ursella, L., Nencioli, F., Doglioli, A. M., Petrenko, A. A., and
Cosoli, S.: Surface transport in the Northeastern Adriatic Sea from FSLE
analysis of HF radar measurements, Cont. Shelf Res., 77, 14–23,
https://doi.org/10.1016/j.csr.2014.01.016, 2014b.
Berta, M., Bellomo, L., Griffa, A., Magaldi, M. G., Molcard, A., Mantovani, C., Gasparini, G. P., Marmain, J., Vetrano, A., Béguery, L., Borghini, M., Barbin, Y., Gaggelli, J., and Quentin, C.: Wind-induced variability in the Northern Current (northwestern Mediterranean Sea) as depicted by a multi-platform observing system, Ocean Sci., 14, 689–710, https://doi.org/10.5194/os-14-689-2018, 2018.
Berta, M., Corgnati, L., Magaldi, M. G., Griffa, A., Mantovani, C., Rubio,
A., Reyes, E., and Mader, J.: Small scale ocean weather during an extreme wind
event in the Ligurian Sea, in: Copernicus Marine Service Ocean State Report,
Issue 4, J. Oper. Oceanogr., 13, 149–155,
https://doi.org/10.1080/1755876X.2020.1785097, 2020.
Bettencourt, J., López, C., Hernández-García, E., Montes, I.,
Sudre, J., Dewitte, B., Paulmier, A., and Garçon, V.: Boundaries of the
Peruvianoxygen minimum zone shaped by coherent mesoscale dynamics, Nat.
Geosci., 8, 937–940, https://doi.org/10.1038/ngeo2570, 2015.
Bjorkstedt, E. and Roughgarden, J.: Larval transport and coastal upwelling:
An application of HF radar in ecological research, Oceanography,
10, 64–67, https://doi.org/10.5670/oceanog.1997.25, 1997.
Bolado-Penagos, M., Sala, I., Gomiz-Pascual, J. J., Romero-Cózar, J.,
González-Fernández, D., Reyes-Pérez, J., Vázquez, A., and
Bruno, M.: Revising the effects of local and remote atmospheric forcing on
the Atlantic Jet and Western Alboran Gyre dynamics, J. Geophys. Res.-Oceans,
126, e2020JC016173, https://doi.org/10.1029/2020JC016173, 2021.
Bourg, N. and Molcard, A.: Northern boundary current variability and
mesoscale dynamics: a long-term HF RADAR monitoring in the North-Western
Mediterranean Sea, Ocean Dynam., 71, 851–870, https://doi.org/10.1007/s10236-021-01466-9, 2021.
Breivik, Ø. and Satra, Ø.: Real time assimilation of HF radar currents
into a coastal ocean model, J. Mar. Syst., 28, 161–182,
https://doi.org/10.1016/S0924-7963(01)00002-1, 2001.
Breivik, Ø., Allen, A. A., Maisondieu, C., and Olagnon, M.: Advances in
search and rescue at sea Topical Collection on Advances in Search and Rescue
at Sea, Ocean Dynam., 63, 83–88, https://doi.org/10.1007/s10236-012-0581-1, 2013.
Brzezinski, M. A. and Washburn, L.: Phytoplankton primary productivity in
the Santa Barbara Channel: Effects of wind-driven upwelling and mesoscale
eddies, J. Geophys. Res.-Oceans, 116, C12013,
https://doi.org/10.1029/2011JC007397, 2011.
Bué, I., Semedo, Á., and Catalão, J.: Evaluation of HF Radar Wave
Measurements in Iberian Peninsula by Comparison with Satellite Altimetry and
in Situ Wave Buoy Observations, Remote Sens., 12, 3623,
https://doi.org/10.3390/rs12213623, 2020.
Caballero, A., Mulet, S., Ayoub, N., Manso-Narvarte, I., Davila, X., Boone,
C., Toublanc, F., and Rubio, A.: Integration of HF Radar Observations for an
Enhanced Coastal Mean Dynamic Topography, Front. Mar. Sci., 7, 588713,
https://doi.org/10.3389/fmars.2020.588713, 2020.
Caldeira, R. M. A., Couvelard, X., Casella, E., and Vetrano, A.: Assymmetric eddy populations in adjacent basins – a high resolution numerical study of the Tyrrhenian and Ligurian Seas, Ocean Sci. Discuss., 9, 3521–3566, https://doi.org/10.5194/osd-9-3521-2012, 2012.
Candela, J., Mazzola, S., Sammari, C., Limeburner, R., Lozano, C. J., Patti,
B., and Bonanno, A.: The “Mad Sea” Phenomenon in the Strait of Sicily, J.
Phys. Oceanogr., 29, 2210–2231, https://doi.org/10.1175/1520-0485(1999)029<2210:TMSPIT>2.0.CO;2, 1999.
Capet, A., Fernández, V., She, J., Dabrowski, T., Umgiesser, G.,
Staneva, J., Mészáros, L., Campuzano, F., Ursella, L., Nolan, G., and
El Serafy, G.: Operational Modeling Capacity in European Seas – An EuroGOOS
Perspective and Recommendations for Improvement, Front. Mar. Sci., 7, 129, https://doi.org/10.3389/fmars.2020.00129, 2020.
Capodici, F., Ciraolo, G., Cosoli, S., Maltese, A., Mangano, M. C., and
Sarà, G.: Downscaling hydrodynamics features to depict causes of major
productivity of Sicilian-Maltese area and implications for resource
management, Sci. Total Environ., 628, 815–825,
https://doi.org/10.1016/j.scitotenv.2018.02.106, 2018.
Charney, J. G.: Geostrophic Turbulence, J. Atmos. Sci., 28, 1087–1095,
https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2, 1971.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of
nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216,
https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
Cianelli, D., Uttieri, M., Guida, R., Menna, M., Buonocore, B., Falco, P.,
Zambardino, G., and Zambianchi, E.: Land-based remote sensing of coastal
basins: Use of an HF radar to investigate surface dynamics and transport
processes in the Gulf of Naples, in: Remote Sensing: Techniques, Appl. Tech., 1–30, 2013.
Cianelli, D., D'Alelio, D., Uttieri, M., Sarno, D., Zingone, A., Zambianchi,
E., and D'Alcalà, M. R.: Disentangling physical and biological drivers of
phytoplankton dynamics in a coastal system, Sci. Rep., 7, 1–15,
https://doi.org/10.1038/s41598-017-15880-x, 2017.
Ciuffardi, T., Napolitano, E., Iacono, R., Reseghetti, F., Raiteri, G., and
Bordone, A.: Analysis of surface circulation structures along a frequently
repeated XBT transect crossing the Ligurian and Tyrrhenian Seas, Ocean Dynam.,
66, 767–783, https://doi.org/10.1007/s10236-016-0954-y, 2016.
Cohuet, J. B., Romero, R., Homar, V., Ducrocq, V., and Ramis, C.: Initiation
of a severe thunderstorm over the Mediterranean Sea, Atmos. Res., 100,
603–620, https://doi.org/10.1016/j.atmosres.2010.11.002, 2011.
Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F.,
Aguzzi, J., Ballesteros, E., Bianchi, C. N., Corbera, J., Dailianis, T.,
Danovaro, R., Estrada, M., Froglia, C., Galil, B. S., Gasol, J. M.,
Gertwagen, R., Gil, J., Guilhaumon, F., Kesner-Reyes, K., Kitsos, M.-S.,
Koukouras, A., Lampadariou, N., Laxamana, E., López-Fé de la Cuadra,
C. M., Lotze, H. K., Martin, D., Mouillot, D., Oro, D., Raicevich, S.,
Rius-Barile, J., Saiz-Salinas, J. I., San Vicente, C., Somot, S., Templado,
J., Turon, X., Vafidis, D., Villanueva, R., and Voultsiadou, E.: The
Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats,
PLoS One, 5, e11842,
https://doi.org/10.1371/journal.pone.0011842, 2010.
Conti, D., Orfila, A., Mason, E., Sayol, J. M., Simarro, G., and Balle, S.:
An eddy tracking algorithm based on dynamical systems theory, Ocean Dynam.,
66, 1415–1427, https://doi.org/10.1007/s10236-016-0990-7, 2016.
Corgnati, L.: LorenzoCorgnati/HFR_Node_Historical_Data_Processing:
EU_HFR_NODE_Historical_Data_Processing (Version v2.1.1.6).
Zenodo [code], https://doi.org/10.5281/zenodo.3569519, last access: 10 December 2019.
Corgnati, L.: LorenzoCorgnati/HFR_Node_tools: EU_HFR_NODE_Tools (Version v2.1.2), Zenodo [code],
https://doi.org/10.5281/zenodo.3855461, last access: 26 May 2020.
Corgnati, L., Mantovani, C., Novellino, A., Rubio, A., and Mader, J.:
Recommendation Report 2 on improved common procedures for HFR QC analysis.
JERICO-NEXT WP5-Data Management, Deliverable 5.14, Version 1.0, Brest,
France, IFREMER, 82 pp., (JERICO-NEXT-WP5-D5.14-V1.),
https://doi.org/10.25607/OBP-944, 2018.
Corgnati, L., Mantovani, C., Griffa, A., Berta, M., Penna, P., Celentano,
P., Bellomo, L., Carlson, D. F., and D'Adamo, R.: Implementation and
Validation of the ISMAR High-Frequency Coastal Radar Network in the Gulf of
Manfredonia (Mediterranean Sea), IEEE J. Ocean. Eng., 44, 424–445,
https://doi.org/10.1109/JOE.2018.2822518, 2019a.
Corgnati, L., Mantovani, C., Novellino, A., Jousset, S., Cramer, R. N., and
Thijsse, P.: SeaDataNet data management protocols for HF Radar data, WP9 –
Deliverable D9.12. Version 1.6. SeaDataNet, 83 pp.,
https://doi.org/10.25607/OBP-1011, 2019b.
Corgnati, L., Mantovani, C., Rubio, A., Reyes, E., Rotllan, P., Novellino,
A., Gorringe, P., Solabarrieta, L., Griffa, A., and Mader, J.: The Eurogoos
High Frequency radar task team: a success story of collaboration to be kept
alive and made growing, in 9th EuroGOOS International conference,
467–474, Brest, France,
https://hal.archives-ouvertes.fr/hal-03328829 (last access: 16 May 2022), 2021.
Coulliette, C., Lekien, F., Paduan, J. D., Haller, G., and Marsden, J. E.:
Optimal Pollution Mitigation in Monterey Bay Based on Coastal Radar Data and
Nonlinear Dynamics, Environ. Sci. Technol., 41, 6562–6572,
https://doi.org/10.1021/es0630691, 2007.
Cózar, A., Sanz-Martín, M., Martí, E., González-Gordillo,
J. I., Ubeda, B., Gálvez, J. Á., Irigoien, X., and Duarte, C. M.:
Plastic Accumulation in the Mediterranean Sea, PLoS One, 10, e0121762,
https://doi.org/10.1371/journal.pone.0121762, 2015.
Davidson, F., Alvera-Azcárate, A., Barth, A., Brassington, G. B.,
Chassignet, E. P., Clementi, E., De Mey-Frémaux, P., Divakaran, P.,
Harris, C., Hernandez, F., Hogan, P., Hole, L. R., Holt, J., Liu, G., Lu,
Y., Lorente, P., Maksymczuk, J., Martin, M., Mehra, A., Melsom, A., Mo, H.,
Moore, A., Oddo, P., Pascual, A., Pequignet, A.-C., Kourafalou, V., Ryan,
A., Siddorn, J., Smith, G., Spindler, D., Spindler, T., Stanev, E. V,
Staneva, J., Storto, A., Tanajura, C., Vinayachandran, P. N., Wan, L., Wang,
H., Zhang, Y., Zhu, X., and Zu, Z.: Synergies in Operational Oceanography:
The Intrinsic Need for Sustained Ocean Observations, Front. Mar. Sci., 6,
450, https://doi.org/10.3389/fmars.2019.00450, 2019.
Davila, X., Rubio, A., Artigas, L. F., Puillat, I., Manso-Narvarte, I., Lazure, P., and Caballero, A.: Coastal submesoscale processes and their effect on phytoplankton distribution in the southeastern Bay of Biscay, Ocean Sci., 17, 849–870, https://doi.org/10.5194/os-17-849-2021, 2021.
De Alfonso, M., Lin-Ye, J., García-Valdecasas, J. M., Pérez-Rubio,
S., Luna, M. Y., Santos-Muñoz, D., Ruiz, M. I., Pérez-Gómez, B.,
and Álvarez-Fanjul, E.: Storm Gloria: Sea State Evolution Based on in
situ Measurements and Modeled Data and Its Impact on Extreme Values, Front.
Mar. Sci., 8, 270, https://doi.org/10.3389/fmars.2021.646873, 2021.
De Dominicis, M., Pinardi, N., Zodiatis, G., and Lardner, R.: MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 1: Theory, Geosci. Model Dev., 6, 1851–1869, https://doi.org/10.5194/gmd-6-1851-2013, 2013a.
De Dominicis, M., Pinardi, N., Zodiatis, G., and Archetti, R.: MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 2: Numerical simulations and validations, Geosci. Model Dev., 6, 1871–1888, https://doi.org/10.5194/gmd-6-1871-2013, 2013b.
De Mey-Frémaux, P., Ayoub, N., Barth, A., Brewin, R., Charria, G.,
Campuzano, F., Ciavatta, S., Cirano, M., Edwards, C. A., Federico, I., Gao,
S., Garcia Hermosa, I., Garcia Sotillo, M., Hewitt, H., Hole, L. R., Holt,
J., King, R., Kourafalou, V., Lu, Y., Mourre, B., Pascual, A., Staneva, J.,
Stanev, E. V, Wang, H., and Zhu, X.: Model-Observations Synergy in the
Coastal Ocean, Front. Mar. Sci., 6, 436, https://doi.org/10.3389/fmars.2019.00436, 2019.
Declerck, A., Delpey, M., Rubio, A., Ferrer, L., Basurko, O. C., Mader, J.,
and Louzao, M.: Transport of floating marine litter in the coastal area of
the south-eastern Bay of Biscay: A Lagrangian approach using modelling and
observations, J. Oper. Oceanogr., 12, 111–125,
https://doi.org/10.1080/1755876X.2019.1611708, 2019.
Denamiel, C., Šepić, J., Ivanković, D., and Vilibić, I.: The
Adriatic Sea and Coast modelling suite: Evaluation of the meteotsunami
forecast component, Ocean Model., 135, 71–93,
https://doi.org/10.1016/j.ocemod.2019.02.003, 2019.
Di Muccio, S., Rak, G., Giordano, P., Mannozzi, M., Sammarini, V., Alcaro,
L., de la Fuente Origlia, A., Amato, E., and Renzi, P.: Quaderni delle
Emergenze Ambientali in Mare. 05-Modalità di campionamento degli
idrocarburi in mare e lungo la costa, La valutazione della contaminazione
del litorale a seguito di oil spill, ISBN 978-88-448-0579-1, 2020.
Domps, B., Marmain, J. and Guèrin, C.-A.: A Reanalysis of the October
2016 “Meteotsunami” in British Columbia With Help of High-Frequency Radars
and Autoregressive Modeling, arXiv Atmos. Ocean. Phys.,
https://doi.org/10.48550/arXiv.2011.07237,
2020.
Dong, C., McWilliams, J. C., Liu, Y., and Chen, D.: Global heat and salt
transports by eddy movement, Nat. Commun., 5, 3294,
https://doi.org/10.1038/ncomms4294, 2014.
Drago, A.: Numerical modelling of coastal seiches in Malta, Phys. Chem.
Earth, 33, 260–275,
https://doi.org/10.1016/j.pce.2007.02.001, 2008.
Dumas, D. and Guérin, C.-A.: Self-calibration and antenna grouping for bistatic oceanographic High-Frequency Radars, Electr.
Eng. Sys. Sci., https://doi.org/10.48550/arXiv.2005.10528, 2020.
Dumas, D., Guérin, C.-A., Quentin, C., and Molcard, A.: MIO's HFRToulon data, Mediterranean Institute of Oceanography,
[data set], http://hfradar.univ-tln.fr/HFRADAR/squel.php?content=accueil, last access: 5 May 2022a.
Dumas, D., Quentin, C., and Guérin, C.-A.: Real time total currents foe 2020 and 2021, Mediterranean Institute of Oceanography,
[data set], https://erddap.osupytheas.fr/erddap/files/cmems_nc_cf0e_c84a_8ead/, last access: 5 May 2022b.
Dzvonkovskaya, A.: Ocean surface current measurements using HF radar during
the 2011 Japan tsunami hitting Chilean coast, 2012 IEEE Int. Geosci. Remote
Sens. Symp., 7605–7608, 2012.
Dzvonkovskaya, A. L. and Rohling, H.: HF radar ship detection and tracking
using WERA system, in 2007 IET International Conference on Radar Systems,
1–5, https://doi.org/10.1049/cp:20070478, 2007.
Dzvonkovskaya, A., Petersen, L., and Insua, T. L.: Real-time capability of
meteotsunami detection by WERA ocean radar system, in 2017 IEEE18th
International Radar Symposium (IRS), 1–10,
https://doi.org/10.23919/IRS.2017.8008096, 2017.
Ebling, J. and Scheuermann, G.: Clifford convolution and pattern matching on
vector fields, in: IEEE Visualization, 2003, VIS 2003, 193–200, https://doi.org/10.1109/VISUAL.2003.1250372, 2003.
European Commission: The EU Blue Economy Report 2020. Publications Office of
the European Union, Luxembourg, https://op.europa.eu/s/u0bL (last access: 9 May 2022), 2020.
Falco, P., Buonocore, B., Cianelli, D., De Luca, L., Giordano, A., Iermano,
I., Kalampokis, A., Saviano, S., Uttieri, M., Zambardino, G., and Zambianchi,
E.: Dynamics and sea state in the Gulf of Naples: potential use of
high-frequency radar data in an operational oceanographic context, J. Oper.
Oceanogr., 9, 33–45, https://doi.org/10.1080/1755876X.2015.1115633, 2016.
Fang, F. and Morrow, R.: Evolution, movement and decay of warm-core Leeuwin
Current eddies, Deep Sea Res. Pt. II, 50,
2245–2261, https://doi.org/10.1016/S0967-0645(03)00055-9, 2003.
Fossi, M. C., Romeo, T., Baini, M., Panti, C., Marsili, L., Campani, T.,
Canese, S., Galgani, F., Druon, J.-N., Airoldi, S., Taddei, S., Fattorini,
M., Brandini, C., and Lapucci, C.: Plastic Debris Occurrence, Convergence
Areas and Fin Whales Feeding Ground in the Mediterranean Marine Protected
Area Pelagos Sanctuary: A Modeling Approach, Front. Mar. Sci., 4, 167,
https://doi.org/10.3389/fmars.2017.00167, 2017.
Fox-Kemper, B., Adcroft, A., Böning, C. W., Chassignet, E. P.,
Curchitser, E., Danabasoglu, G., Eden, C., England, M. H., Gerdes, R.,
Greatbatch, R. J., Griffies, S. M., Hallberg, R. W., Hanert, E., Heimbach,
P., Hewitt, H. T., Hill, C. N., Komuro, Y., Legg, S., Le Sommer, J., Masina,
S., Marsland, S. J., Penny, S. G., Qiao, F., Ringler, T. D., Treguier, A.
M., Tsujino, H., Uotila, P., and Yeager, S. G.: Challenges and Prospects in
Ocean Circulation Models, Front. Mar. Sci., 6, 65, https://doi.org/10.3389/fmars.2019.00065, 2019.
Frolov, S., Paduan, J., Cook, M., and Bellingham, J.: Improved statistical
prediction of surface currents based on historic HF-radar observations,
Ocean Dynam., 62, 1111–1122, https://doi.org/10.1007/s10236-012-0553-5, 2012.
Fujii, S., Heron, M. L., Kim, K., Lai, J.-W., Lee, S.-H., Wu, X., Wu, X.,
Wyatt, L. R., and Yang, W.-C.: An overview of developments and applications
of oceanographic radar networks in Asia and Oceania countries, Ocean Sci.
J., 48, 69–97, https://doi.org/10.1007/s12601-013-0007-0, 2013.
Gabrié, C., Lagabrielle, E., Bissery, C., Crochelet, E., Meola, B., Webster,
C., Claudet, J., Chassanite, A., Marinesque, S., Robert, P., Goutx, M., and
Quod, C.: The Status of Marine Protected Areas in the Mediterranean Sea. MedPAN & RAC/SPA., MedPAN Collection, http://www.rac-spa.org/sites/default/files/ (last access: 13 May 2022), 2012.
Garcıa-Lafuente, J., Delgado, J., and Criado, F.: Inflow interruption by
meteorological forcing in the Strait of Gibraltar, Geophys. Res. Lett.,
29, 20–24, https://doi.org/10.1029/2002GL015446, 2002.
García-Sánchez, G., Mancho, A. M., Ramos, A. G., Coca, J., and
Wiggins, S.: Structured pathways in the turbulence organizing recent oil
spill events in the Eastern Mediterranean, Sci. Rep., 12, 3662,
https://doi.org/10.1038/s41598-022-07350-w, 2022.
Garrett, C. J. R.: Variable sea level and strait flows in the Mediterranean: a
theoretical study of the response to meteorological forcing, Ocean. Ac., 6, 79–88, 1983.
Gildor, H., Fredj, E., Steinbuck, J., and Monismith, S.: Evidence for
Submesoscale Barriers to Horizontal Mixing in the Ocean from Current
Measurements and Aerial Photographs, J. Phys. Oceanogr., 39, 1975–1983,
https://doi.org/10.1175/2009JPO4116.1, 2009.
Gómez-Navarro, L., Fablet, R., Mason, E., Pascual, A., Mourre, B.,
Cosme, E., and Le Sommer, J.: SWOT Spatial Scales in the Western
Mediterranean Sea Derived from Pseudo-Observations and an Ad Hoc Filtering,
Remote Sens., 10, 599, https://doi.org/10.3390/rs10040599, 2018.
Gómez, M., Álvarez-Fanjul, E., Carretero, J. C.,
Pérez-Gómez, B., Rodríguez, I., Serrano, O., and Sotillo, M. G.:
Oceanographic and atmospheric analysis of the 10–16 November 2001 Storm in the Western Mediterranean, in 4th EGS 85 Plinius Conference on Mediterranean Storms, p. 5, Universitat de les Illes Balears, Mallorca, Spain, http://meteorologia.uib.eu/ROMU/informal/proceedings_4th_plinius_02/PDFs/Gomez_et_al.pdf (last access: 19 May 2022), 2002.
Gommenginger, C., Martin, A. C. H., Jacob, B., and Staneva, J.: Multi-year
assessment of ocean surface currents from Copernicus Sentinel-1 and HF radar
in the German Bight, EGU General Assembly 2021, online, 19–30 April 2021,
EGU21-15280, https://doi.org/10.5194/egusphere-egu21-15280, 2021.
Griffa, A., Horstmann, J., Mader, J., Rubio, A., Berta, M., Orfila, A.,
and Lars, A.: Report on final assessment of methodological improvements and
testing, JERICO-NEXT WP3 Innovations in Technology and Methodology,
Deliverable D3.4, Version 2, Brest, France, IFREMER, 56 pp.
(JERICO-NEXT-WP3-D3.4-180719-V2), https://doi.org/10.25607/OBP-948,
2019.
Grilli, S. T., Grosdidier, S., and Guérin, C. A.: Tsunami Detection by
High-Frequency Radar Beyond the Continental Shelf, in: Global Tsunami Science: Past and
Future, edited by: Geist, E. L., Fritz, H. M., Rabinovich, A. B., and Tanioka, Y., Vol. I, Springer, 3895–3934, 2015.
Guérin, C.-A., Grilli, S., Moran, P., Grilli, A., and Insua, T.: Tsunami
detection by high-frequency radar in British Columbia: performance
assessment of the time-correlation algorithm for synthetic and real events,
Ocean Dynam., 68, 423–438, https://doi.org/10.1007/s10236-018-1139-7, 2018.
Guihou, K., Marmain, J., Ourmieres, Y., Molcard, A., Zakardjian, B., and
Forget, P.: A case study of the mesoscale dynamics in the North-Western
Mediterranean Sea: a combined data-model approach, Ocean Dynam., 63,
793–808, https://doi.org/10.1007/s10236-013-0619-z, 2013.
Gurgel, K., Essen, H., and Schlick, T.: An Empirical Method to Derive Ocean
Waves From Second-Order Bragg Scattering: Prospects and Limitations, IEEE J.
Ocean. Eng., 31, 804–811, https://doi.org/10.1109/JOE.2006.886225, 2006.
Gurgel, K.-W., Dzvonkovskaya, A., Pohlmann, T., Schlick, T., and Gill, E.:
Simulation and detection of tsunami signatures in ocean surface currents
measured by HF radar, Ocean Dynam., 61, 1495–1507,
https://doi.org/10.1007/s10236-011-0420-9, 2011.
Haller, G.: Lagrangian Coherent Structures, Annu. Rev. Fluid Mech., 47,
137–162, https://doi.org/10.1146/annurev-fluid-010313-141322, 2015.
Haza, A. C., Özgökmen, T. M., Griffa, A., Molcard, A., Poulain,
P.-M., and Peggion, G.: Transport properties in small-scale coastal flows:
relative dispersion from VHF radar measurements in the Gulf of La Spezia,
Ocean Dynam., 60, 861–882, https://doi.org/10.1007/s10236-010-0301-7, 2010.
Headrick, J. M. and Thomason, J. F.: Applications of high-frequency radar,
Radio Sci., 33, 1045–1054, https://doi.org/10.1029/98RS01013, 1998.
Heiberg, E., Ebbers, T., Wigstrom, L., and Karlsson, M.: Three-dimensional
flow characterization using vector pattern matching, IEEE Trans. Vis.
Comput. Graph., 9, 313–319, https://doi.org/10.1109/TVCG.2003.1207439, 2003.
Hernández-Carrasco, I., Rossi, V., Hernández-García, E.,
Garçon, V., and López, C.: The reduction of plankton biomass induced
by mesoscale stirring: A modeling study in the Benguela upwelling, Deep Sea
Res. Pt. I, 83, 65–80,
https://doi.org/10.1016/j.dsr.2013.09.003, 2014.
Hernández-Carrasco, I., Orfila, A., Rossi, V., and Garçon, V.: Effect
of small scale transport processes on phytoplankton distribution in coastal
seas, Sci. Rep., 8, 1–13, https://doi.org/10.1038/s41598-018-26857-9, 2018a.
Hernández-Carrasco, I., Solabarrieta, L., Rubio, A., Esnaola, G., Reyes, E., and Orfila, A.: Impact of HF radar current gap-filling methodologies on the Lagrangian assessment of coastal dynamics, Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, 2018b.
Hernández-Carrasco, I., Alou-Font, E., Dumont, P.-A., Cabornero, A.,
Allen, J., and Orfila, A.: Lagrangian flow effects on phytoplankton abundance
and composition along filament-like structures, Prog. Oceanogr., 189,
102469, https://doi.org/10.1016/j.pocean.2020.102469, 2020.
Hernández-Lasheras, J., Mourre, B., Orfila, A., Santana, A., Reyes, E.,
and Tintoré, J.: Evaluating High-Frequency radar data assimilation
impact in coastal ocean operational modelling, Ocean Sci. Discuss., 2021,
1–29, https://doi.org/10.5194/os-2021-34, 2021.
Hernandez, F., Blockley, E., Brassington, G. B., Davidson, F., Divakaran,
P., Drévillon, M., Ishizaki, S., Garcia-Sotillo, M., Hogan, P. J.,
Lagemaa, P., Levier, B., Martin, M., Mehra, A., Mooers, C., Ferry, N., Ryan,
A., Regnier, C., Sellar, A., Smith, G. C., Sofianos, S., Spindler, T.,
Volpe, G., Wilkin, J., Zaron, E. D., and Zhang, A.: Recent progress in
performance evaluations and near real-time assessment of operational ocean
products, J. Oper. Oceanogr., 8, 221–238,
https://doi.org/10.1080/1755876X.2015.1050282, 2015.
Heron, M. L.: Applying a unified directional wave spectrum to the remote
sensing of wind wave directional spreading, Can. J. Remote Sens., 28,
346–353, https://doi.org/10.5589/m02-030, 2002.
Huang, W., Gill, E., Wu, S., Wen, B., Yang, Z., and Hou, J.: Measuring
Surface Wind Direction by Monostatic HF Ground-Wave Radar at the Eastern
China Sea, Ocean. Eng. IEEE J., 29, 1032–1037, https://doi.org/10.1109/JOE.2004.834175,
2004.
Iermano, I., Moore, A. M., and Zambianchi, E.: Impacts of a 4-dimensional
variational data assimilation in a coastal ocean model of southern
Tyrrhenian Sea, J. Mar. Syst., 154, 157–171,
https://doi.org/10.1016/j.jmarsys.2015.09.006, 2016.
Isern-Fontanet, J., García-Ladona, E., and Font, J.: Identification of
Marine Eddies from Altimetric Maps, J. Atmos. Ocean. Technol., 20,
772–778, https://doi.org/10.1175/1520-0426(2003)20< 772:IOMEFA>2.0.CO;2, 2003.
Janeković, I., Mihanović, H., Vilibić, I., Grčić, B.,
Ivatek-Šahdan, S., Tudor, M., and Djakovac, T.: Using multi-platform
4D-Var data assimilation to improve modeling of Adriatic Sea dynamics, Ocean
Model., 146, 101538, https://doi.org/10.1016/j.ocemod.2019.101538, 2020.
Jansa, A., Monserrat, S., and Gomis, D.: The rissaga of 15 June 2006 in
Ciutadella (Menorca), a meteorological tsunami, Adv. Geosci., 12, 1–4,
https://doi.org/10.5194/adgeo-12-1-2007, 2007.
Jeong, J. and Hussain, F.: On the identification of a vortex, J. Fluid
Mech., 285, 69–94, https://doi.org/10.1017/S0022112095000462, 1995.
Juza, M. and Tintoré, J.: Multivariate Sub-Regional Ocean Indicators in
the Mediterranean Sea: From Event Detection to Climate Change Estimations,
Front. Mar. Sci., 8, 233, https://doi.org/10.3389/fmars.2021.610589, 2021.
Juza, M., Mourre, B., Renault, L., Gómara, S., Sebastián, K., Lora,
S., Beltran, J. P., Frontera, B., Garau, B., Troupin, C., Torner, M.,
Heslop, E., Casas, B., Escudier, R., Vizoso, G., and Tintoré, J.: SOCIB
operational ocean forecasting system and multi-platform validation in the
western mediterranean sea, J. Oper. Oceanogr., 9, 155–166,
https://doi.org/10.1080/1755876X.2015.1117764, 2016.
Kaplan, D. M. and Lekien, F.: Spatial interpolation and filtering of surface
current data based on open-boundary modal analysis, J. Geophys. Res.-Oceans,
112, 1–20, https://doi.org/10.1029/2006JC003984, 2007.
Kaplan, A., Kushnir, Y., Cane, M. A., and Blumenthal, M. B.: Reduced space
optimal analysis for historical data sets: 136 years of Atlantic sea surface
temperatures, J. Geophys. Res.-Oceans, 102, 27835–27860,
https://doi.org/10.1029/97JC01734, 1997.
Kazeminezhad, M. H., Vilibić, I., Denamiel, C., Ghafarian, P., and Negah,
S.: Weather radar and ancillary observations of the convective system
causing the northern Persian Gulf meteotsunami on 19 March 2017, Nat.
Hazards, 106, 1747–1769, https://doi.org/10.1007/s11069-020-04208-0, 2020.
Kim, S. Y., Terrill, E. J., and Cornuelle, B. D.: Mapping surface currents
from HF radar radial velocity measurements using optimal interpolation, J. Geophys. Res.-Oceans, 113, 1–16, https://doi.org/10.1029/2007JC004244, 2008.
Kirincich, A.: Remote Sensing of the Surface Wind Field over the Coastal
Ocean via Direct Calibration of HF Radar Backscatter Power, J. Atmos. Ocean.
Technol., 33, 1377–1392, https://doi.org/10.1175/JTECH-D-15-0242.1, 2016a.
Kirincich, A.: The Occurrence, Drivers, and Implications of Submesoscale
Eddies on the Martha's Vineyard Inner Shelf, J. Phys. Oceanogr., 46,
2645–2662, https://doi.org/10.1175/JPO-D-15-0191.1, 2016b.
Kohonen, T.: Self-organized formation of topologically correct feature maps,
Biol. Cybern., 43, 59–69, https://doi.org/10.1007/BF00337288, 1982.
Kohonen, T.: Self-Organizing Maps, 3rd Edition., Springer-Verlag, Berlin, Heidelberg, New York, https://doi.org/10.1007/978-3-642-56927-2, 2001.
Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paatero,
V., and Saarela, A.: Self organization of a massive document collection, IEEE
Trans. Neural Networks, 11, 574–585, 2000.
Kourafalou, V. H., De Mey, P., Staneva, J., Ayoub, N., Barth, A., Chao, Y.,
Cirano, M., Fiechter, J., Herzfeld, M., Kurapov, A., Moore, A. M., Oddo, P.,
Pullen, J., van der Westhuysen, A., and Weisberg, R. H.: Coastal Ocean
Forecasting: science foundation and user benefits, J. Oper. Oceanogr.,
8, 147–167, https://doi.org/10.1080/1755876X.2015.1022348, 2015a.
Kourafalou, V. H., De Mey, P., Staneva, J., Ayoub, N., Barth, A., Chao, Y.,
Cirano, M., Fiechter, J., Herzfeld, M., Kurapov, A., Moore, A. M., Oddo, P.,
Pullen, J., van der Westhuysen, A., and Weisberg, R. H.: Coastal Ocean
Forecasting: science foundation and user benefits, J. Oper. Oceanogr.,
8, 147–167, https://doi.org/10.1080/1755876X.2015.1022348, 2015b.
Lai, Y., Zhou, H., Yang, J., Zeng, Y., and Wen, B.: Submesoscale Eddies in
the Taiwan Strait Observed by High-Frequency Radars: Detection Algorithms
and Eddy Properties, J. Atmos. Ocean. Tech., 34, 939–953,
https://doi.org/10.1175/JTECH-D-16-0160.1, 2017.
Lana, A., Marmain, J., Fernández, V., Tintoré, J., and Orfila, A.:
Wind influence on surface current variability in the Ibiza Channel from HF
Radar, Ocean Dynam., 66, 483–497, https://doi.org/10.1007/s10236-016-0929-z, 2016.
Laws, K. E., Vesecky, J. F., Lovellette, M. N., and Paduan, J. D.: Ship
tracking by HF radar in coastal waters, in OCEANS 2016 MTS/IEEE Monterey,
1–8, https://doi.org/10.1109/OCEANS.2016.7761012, 2016.
Le Vu, B., Stegner, A., and Arsouze, T.: Angular Momentum Eddy Detection and
Tracking Algorithm (AMEDA) and Its Application to Coastal Eddy Formation, J.
Atmos. Ocean. Technol., 35, 739–762, https://doi.org/10.1175/JTECH-D-17-0010.1,
2018.
Lehahn, Y., d'Ovidio, F., Lévy, M., and Heifetz, E.: Stirring of the
northeast Atlantic spring bloom: A Lagrangian analysis based on
multisatellite data, J. Geophys. Res.-Oceans, 112, C08005,
https://doi.org/10.1029/2006JC003927, 2007.
Lekien, F., Coulliette, C., Bank, R., and Marsden, J.: Open-boundary modal
analysis: Interpolation, extrapolation, and filtering, J. Geophys. Res.-Oceans, 109, 1–13, https://doi.org/10.1029/2004JC002323, 2004.
Lekien, F., Coulliette, C., Mariano, A. J., Ryan, E. H., Shay, L. K.,
Haller, G., and Marsden, J.: Pollution release tied to invariant manifolds: A
case study for the coast of Florida, Phys. D Nonlinear Phenom., 210,
1–20, https://doi.org/10.1016/j.physd.2005.06.023, 2005.
Ličer, M., Mourre, B., Troupin, C., Krietemeyer, A., Jansá, A., and
Tintoré, J.: Numerical study of Balearic meteotsunami generation and
propagation under synthetic gravity wave forcing, Ocean Model., 111, 38–45,
https://doi.org/10.1016/j.ocemod.2017.02.001, 2017.
Ličer, M., Estival, S., Reyes-Suarez, C., Deponte, D., and Fettich, A.: Lagrangian modelling of a person lost at sea during the Adriatic scirocco storm of 29 October 2018, Nat. Hazards Earth Syst. Sci., 20, 2335–2349, https://doi.org/10.5194/nhess-20-2335-2020, 2020.
Lipa, B. and Nyden, B.: Directional wave information from the SeaSonde, IEEE
J. Ocean. Eng., 30, 221–231, 2005.
Lipa, B., Barrick, D. E., and Maresca, J. W.: HF radar measurements of long
ocean waves, J. Geophys. Res., 86, 4089–4102, 1981.
Lipa, B. J., Barrick, D. E., Isaacson, J., and Lilleboe, P. M.: CODAR wave
measurements from a North Sea semisubmersible, IEEE J. Ocean. Eng., 15,
119–125, https://doi.org/10.1109/48.50697, 1990.
Lipa, B. J., Barrick, D. E., Bourg, J., and Nyden, B. B.: HF radar detection
of tsunamis, J. Oceanogr., 62, 705–716, https://doi.org/10.1007/s10872-006-0088-9,
2006.
Lipa, B., Barrick, D., Saitoh, S.-I., Ishikawa, Y., Awaji, T., Largier, J.,
and Garfield, N.: Japan Tsunami Current Flows Observed by HF Radars on Two
Continents, Remote Sens., 3, 1663–1679, https://doi.org/10.3390/rs3081663, 2011.
Lipa, B., Isaacson, J., Nyden, B., and Barrick, D.: Lipa, B. et al. Tsunami
Arrival Detection with High Frequency (HF) Radar, Remote Sens., 4,
1448–1461,
https://doi.org/10.3390/rs4113363, 2012.
Lipa, B., Barrick, D., and Isaacson, J.: Evaluating HF Coastal Radar Site
Performance for Tsunami Warning, Remote Sens., 11, 2773,
https://doi.org/10.3390/rs11232773, 2019.
Liu, Y. and Weisberg, R. H.: Evaluation of trajectory modeling in different
dynamic regions using normalized cumulative Lagrangian separation, J. Geophys. Res.-Oceans, 116, 1–13,
https://doi.org/10.1029/2010JC006837, 2011.
Liu, Y., Weisberg, R. H., and Mooers, C. N. K.: Performance evaluation of the
self-organizing map for feature extraction, J. Geophys. Res.-Oceans, 111,
1–14, https://doi.org/10.1029/2005JC003117, 2006.
Liu, Y., Dong, C., Guan, Y., Chen, D., McWilliams, J., and Nencioli, F.: Eddy
Analysis in the Subtropical Zonal Band of the North Pacific Ocean, Deep Sea
Res. Pt. I, 68, 54–67, https://doi.org/10.1016/j.dsr.2012.06.001,
2012.
Long, A. E. and Trizna, D. B.: Measurements and preliminary interpretation
of HF radar Doppler spectra from the sea echo of an Atlantic storm, Naval
Research Laboratory: Washinghton, DC, USA, p. 7456, 1972.
Long, R., Barrick, D., Largier, J. and Garfield, N.: Wave Observations from
Central California: SeaSonde Systems and In Situ Wave Buoys, J. Sensors, 2011,
1–18, https://doi.org/10.1155/2011/728936, 2011.
Lorente, P., Piedracoba, S., Soto-Navarro, J., and Alvarez-Fanjul, E.: Evaluating the surface circulation in the Ebro delta (northeastern Spain) with quality-controlled high-frequency radar measurements, Ocean Sci., 11, 921–935, https://doi.org/10.5194/os-11-921-2015, 2015.
Lorente, P., Piedracoba, S., Sotillo, M. G., Aznar, R., Amo-Balandron, A.,
Pascual, A., Soto-Navarro, J., and Álvarez-Fanjul, E.: Characterizing the
surface circulation in Ebro Delta (NW Mediterranean) with HF radar and
modeled current data, J. Mar. Syst., 163, 61–79,
https://doi.org/10.1016/j.jmarsys.2016.07.001, 2016.
Lorente, P., García-Sotillo, M., Amo-Baladrón, A., Aznar, R., Levier, B., Sánchez-Garrido, J. C., Sammartino, S., de Pascual-Collar, Á., Reffray, G., Toledano, C., and Álvarez-Fanjul, E.: Skill assessment of global, regional, and coastal circulation forecast models: evaluating the benefits of dynamical downscaling in IBI (Iberia–Biscay–Ireland) surface waters, Ocean Sci., 15, 967–996, https://doi.org/10.5194/os-15-967-2019, 2019a.
Lorente, P., Piedracoba, S., Sotillo, M. G., and álvarez-Fanjul, E.:
Long-term monitoring of the Atlantic jet through the strait of gibraltar
with HF radar observations, J. Mar. Sci. Eng., 7,
https://doi.org/10.3390/jmse7010003, 2019b.
Lorente, P., Sotillo, M. G., Amo-Baladrón, A., Aznar, R., Levier, B.,
Aouf, L., Dabrowski, T., Pascual, Á. De, Reffray, G., Dalphinet, A.,
Toledano, C., Rainaud, R., and Álvarez-Fanjul, E.: The NARVAL Software
Toolbox in Support of Ocean Models Skill Assessment at Regional and Coastal
Scales, in ICCS 2019, Lecture Notes in Computer Science, edited by: Rodrigues, J., (Cham: Springer), https://doi.org/10.1007/978-3-030-22747-0_25, 2019c.
Lorente, P., Lin-Ye, J., García-León, M., Reyes, E., Fernandes, M.,
Sotillo, M. G., Espino, M., Ruiz, M. I., Gracia, V., Perez, S., Aznar, R.,
Alonso-Martirena, A., and Álvarez-Fanjul, E.: On the Performance of High
Frequency Radar in the Western Mediterranean During the Record-Breaking
Storm Gloria, Front. Mar. Sci., 8, 205, https://doi.org/10.3389/fmars.2021.645762,
2021.
Lorente, P., Aguiar, E., Bendoni, M., Berta, M., Brandini, C., Cáceres-Euse, A., Capodici, F., Cianelli, D., Ciraolo, G., Corgnati, L., Dadić, V., Doronzo, B., Drago, A., Dumas, D., Falco, P., Fattorini, M., Gauci, A., Gómez, R., Griffa, A., Guérin, C.-A., Hernández-Carrasco, I., Hernández-Lasheras, J., Ličer, M., Magaldi, M. G., Mantovani, C., Mihanovic, H., Molcard, A., Mourre, B., Orfila, A., Révelard, A., Reyes, E., Sanchez, J., Saviano, S., Sciascia, R., Taddei, S., Tintoré, J., Toledo, Y., Ursella, L., Uttieri, M., Vilibić, I., Zambianchi, E., and Cardín, V.: Coastal high-frequency radars in the Mediterranean – Part 1: Status of operations and a framework
for future development, Ocean Sci., 18, 761–795,
https://doi.org/10.5194/os-18-761-2022, 2022.
Mandal, S., Sil, S., Pramanik, S., Arunraj, K. S., and Jena, B. K.:
Characteristics and evolution of a coastal mesoscale eddy in the Western Bay
of Bengal monitored by high-frequency radars, Dyn. Atmos. Ocean.,
88, 101107, https://doi.org/10.1016/j.dynatmoce.2019.101107, 2019.
Manso-Narvarte, I., Caballero, A., Rubio, A., Dufau, C., and Birol, F.: Joint analysis of coastal altimetry and high-frequency (HF) radar data: observability of seasonal and mesoscale ocean dynamics in the Bay of Biscay, Ocean Sci., 14, 1265–1281, https://doi.org/10.5194/os-14-1265-2018, 2018.
Manso-Narvarte, I., Fredj, E., Jordà, G., Berta, M., Griffa, A., Caballero, A., and Rubio, A.: 3D reconstruction of ocean velocity from high-frequency radar and acoustic Doppler current profiler: a model-based assessment study, Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, 2020.
Manso-Narvarte, I., Rubio, A., Jordà, G., Carpenter, J., Merckelbach, L.,
and Caballero, A.: Three-Dimensional Characterization of a Coastal
Mode-Water Eddy from Multiplatform Observations and a Data Reconstruction
Method, Remote Sens., 13, 674, https://doi.org/10.3390/rs13040674, 2021.
Mantovani, C., Corgnati, L., Horstmann, J., Rubio, A., Reyes, E., Quentin,
C., Cosoli, S., Asensio, J. L., Mader, J., and Griffa, A.: Best Practices on
High Frequency Radar Deployment and Operation for Ocean Current Measurement,
Front. Mar. Sci., 7, 210, https://doi.org/10.3389/fmars.2020.00210, 2020.
March, D., Metcalfe, K., Tintoré, J., and Godley, B. J.: Tracking the
global reduction of marine traffic during the COVID-19 pandemic, Nat.
Commun., 12, 2415, https://doi.org/10.1038/s41467-021-22423-6, 2021.
Maresca, S., Braca, P., Horstmann, J., and Grasso, R.: Maritime Surveillance
Using Multiple High-Frequency Surface-Wave Radars, IEEE Trans. Geosci.
Remote Sens., 52, 5056–5071, https://doi.org/10.1109/TGRS.2013.2286741, 2013.
Marmain, J., Molcard, A., Forget, P., Barth, A., and Ourmières, Y.: Assimilation of HF radar surface currents to optimize forcing in the northwestern Mediterranean Sea, Nonlin. Processes Geophys., 21, 659–675, https://doi.org/10.5194/npg-21-659-2014, 2014.
McWilliams, J. C.: A survey of submesoscale currents, Geosci. Lett., 6,
3, https://doi.org/10.1186/s40562-019-0133-3, 2019.
Meadows, L., Whelan, C., Barrick, D., Kroodsma, R., Ruf, C., Teague, C.,
Meadows, G., and Wang, S.: High frequency radar and its application to fresh
water, J. Great Lakes Res., 39, 183–193, https://doi.org/10.1016/j.jglr.2013.01.002,
2013.
Medail, F. and Queìzel, P.: Hot-Spots Analysis for Conservation of Plant
Biodiversity in the Mediterranean Basin, Ann. Missouri Bot. Gard., 84,
112–127, https://doi.org/10.2307/2399957, 1997.
Menemenlis, D., Fukumori, I., and Lee, T.: Atlantic to Mediterranean Sea
Level Difference Driven by Winds near Gibraltar Strait, J. Phys. Oceanogr.,
37, 359–376, https://doi.org/10.1175/JPO3015.1, 2007.
Meola, B., Webster, C., Agardi, T., Bernal, M., Borg, J. A., Calò, A.,
Cebrian, D., Cebrian, D., Claudet, J., Daméry, C., David, L., Davis, J.,
El Asmi, S., Giakoumi, S., Gomei, M., Guidetti, P., Hoyt, E., Grissac, A.,
Kizilkaya, Z., and Tunesi, L.: The 2016 status of Marine Protected Areas in the Mediterranean, MedPAN & RAC/SPA., MedPAN Collection, https://www.um.edu.mt/library/oar/handle/123456789/69286 (last access: 19 May 2022), 2019.
Miles, T., Seroka, G., and Glenn, S.: Coastal ocean circulation during
Hurricane Sandy, J. Geophys. Res.-Oceans, 122, 7095–7114,
https://doi.org/10.1002/2017JC013031, 2017.
Millot, C.: Circulation in the Western Mediterranean Sea, J. Mar. Syst.,
20, 423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999.
Mitchell, J., Lowe, J., Wood, R., and Vellinga, M.: Extreme events due to
human-induced climate change, Philos. T. Roy. Soc. A, 364,
2117–2133, https://doi.org/10.1098/rsta.2006.1816, 2006.
Mkhinini, N., Coimbra, A. L. S., Stegner, A., Arsouze, T., Taupier-Letage,
I., and Béranger, K.: Long-lived mesoscale eddies in the eastern
Mediterranean Sea: Analysis of 20 years of AVISO geostrophic velocities, J. Geophys. Res.-Oceans, 119, 8603–8626,
https://doi.org/10.1002/2014JC010176, 2014.
Molcard, A., Poulain, P. M., Forget, P., Griffa, A., Barbin, Y., Gaggelli,
J., De Maistre, J. C., and Rixen, M.: Comparison between VHF radar
observations and data from drifter clusters in the Gulf of La Spezia
(Mediterranean Sea), J. Mar. Syst., 78, 79–89,
https://doi.org/10.1016/j.jmarsys.2009.01.012, 2009.
Monserrat, S., Vilibić, I., and Rabinovich, A. B.: Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band, Nat. Hazards Earth Syst. Sci., 6, 1035–1051, https://doi.org/10.5194/nhess-6-1035-2006, 2006.
Moore, A. M., Martin, M. J., Akella, S., Arango, H. G., Balmaseda, M.,
Bertino, L., Ciavatta, S., Cornuelle, B., Cummings, J., Frolov, S.,
Lermusiaux, P., Oddo, P., Oke, P. R., Storto, A., Teruzzi, A., Vidard, A.,
and Weaver, A. T.: Synthesis of Ocean Observations Using Data Assimilation
for Operational, Real-Time and Reanalysis Systems: A More Complete Picture
of the State of the Ocean, Front. Mar. Sci., 6, 90,
https://doi.org/10.3389/fmars.2019.00090, 2019.
Morrow, R., Birol, F., Griffin, D., and Sudre, J.: Divergent pathways of
cyclonic and anti-cyclonic ocean eddies, Geophys. Res. Lett., 31,
https://doi.org/10.1029/2004GL020974, 2004.
Mourre, B., Aguiar, E., Juza, M., Hernandez-Lasheras, J., Reyes, E., Heslop, E., Escudier, R., Cutolo, E., Ruiz, S., Mason, E., Pascual, A., and Tintoré, J.: Assessment of High-Resolution Regional Ocean Prediction Systems Using Multi-Platform Observations: Illustrations in the Western Mediterranean Sea, in: New Frontiers in Operational Oceanography, edited by: Chassignet, E., Pascual, A., Tintoré, J., and Verron, J., 663–694, GODAE Ocean View, https://doi.org/10.17125/gov2018.ch24, 2018.
Mourre, B., Santana, A., Buils, A., Gautreau, L., Ličer, M., Jansà,
A., Casas, B., Amengual, B., and Tintoré, J.: On the potential of
ensemble forecasting for the prediction of meteotsunamis in the Balearic
Islands: sensitivity to atmospheric model parameterizations, Nat. Hazards,
106, 1315–1336, https://doi.org/10.1007/s11069-020-03908-x, 2020.
Mundaca-Moraga, V., Abarca-del-Rio, R., Figueroa, D., and Morales, J.: A
Preliminary Study of Wave Energy Resource Using an HF Marine Radar,
Application to an Eastern Southern Pacific Location: Advantages and
Opportunities, Remote Sens., 13, 203, https://doi.org/10.3390/rs13020203, 2021.
Nencioli, F., Dong, C., Dickey, T., Washburn, L., and McWilliams, J. C.: A
Vector Geometry- Based Eddy Detection Algorithm and Its Application to a
High-Resolution Numerical Model Product and High-Frequency Radar Surface
Velocities in the Southern California Bight, J. Atmos. Ocean. Technol.,
27, 564–579, https://doi.org/10.1175/2009JTECHO725.1, 2010.
Nishimoto, M. M. and Washburn, L.: Patterns of coastal eddy circulation and
abundance of pelagic juvenile fish in the Santa Barbara Channel, California,
USA, Mar. Ecol. Prog. Ser., 241, 183–199, 2002.
Oke, P. R., Allen, J. S., Miller, R. N., Egbert, G. D., and Kosro, P. M.:
Assimilation of surface velocity data into a primitive equation coastal
ocean model, J. Geophys. Res.-Oceans, 107, 5–25,
https://doi.org/10.1029/2000JC000511, 2002.
Okubo, A.: Horizontal dispersion of floatable particles in the vicinity of
velocity singularities such as convergences, Deep Sea Res.,
17, 445–454, https://doi.org/10.1016/0011-7471(70)90059-8, 1970.
Orasi, A., Picone, M., Drago, A., Capodici, F., Gauci, A., Nardone, G.,
Inghilesi, R., Azzopardi, J., Galea, A., Ciraolo, G., Sánchez Musulin,
J., and Alonso-Martirena, A.: HF radar for wind waves measurements in the
Malta-Sicily Channel, Meas. J. Int. Meas. Confed., 128, 446–454,
https://doi.org/10.1016/j.measurement.2018.06.060, 2018.
Orfila, A., Balle, S., and Simarro, G.: Topographic enhancement of long waves
generated by an idealized moving pressure system, Sci. Mar., 75,
595–603, https://doi.org/10.3989/scimar.2011.75n3595, 2011.
Orfila, A., Molcard, A., Sayol, J. M., Marmain, J., Bellomo, L., Quentin, C.,
and Barbin, Y.: Empirical forecasting of HF-radar velocity using genetic
algorithms, IEEE Trans. Geosci. Remote Sens., 53, 2875–2886,
https://doi.org/10.1109/TGRS.2014.2366294, 2015.
Orlić, M.: The first attempt at cataloguing tsunami-like waves of
meteorological origin in Croatian coastal waters, Acta Adriat. Int. J. Mar.
Sci., 56, 83–95, 2015.
Paduan, J. D. and Graber, H. C.: Introduction to high-frequency radar:
Reality and myth, Oceanography, 10, 36–39,
https://doi.org/10.5670/oceanog.1997.18, 1997.
Paduan, J. D. and Shulman, I.: HF radar data assimilation in the Monterey
Bay area, J. Geophys. Res.-Oceans, 109, 1–17,
https://doi.org/10.1029/2003JC001949, 2004.
Paduan, J. D. and Washburn, L.: High-frequency radar observations of ocean
surface currents, Ann. Rev. Mar. Sci., 5, 115–136,
https://doi.org/10.1146/annurev-marine-121211-172315, 2013.
Papadopoulos, G. A.: On some exceptional seismic (?) sea-waves inthe Greek
archipelago, Sci. Tsunami Hazards, 11, 25–34, 1993.
Péliz, Á., Teles-Machado, A., Marchesiello, P., Dubert, J., and
Lafuente, J.: Filament generation off the Strait of Gibraltar in response to
Gap winds, Dyn. Atmos. Ocean., 46, 36–45,
https://doi.org/10.1016/j.dynatmoce.2008.08.002, 2009.
Piedracoba, S., Rosón, G., and Varela, R. A.: Origin and development of
recurrent dipolar vorticity structures in the outer Ría de Vigo (NW
Spain), Cont. Shelf Res., 118, 143–153, https://doi.org/10.1016/j.csr.2016.03.001,
2016.
Ponsford, A. M., Sevgi, L., and Chan, H.: An integrated maritime surveillance
system based on high-frequency surface-wave radars, 2. Operational status
and system performance, Antennas Propag. Mag. IEEE, 43, 52–63,
https://doi.org/10.1109/74.979367, 2001.
Poulain, P.-M., Mauri, E., Gerin, R., Chiggiato, J., Schroeder, K., Griffa,
A., Borghini, M., Zambianchi, E., Falco, P., Testor, P., and Mortier, L.: On
the dynamics in the southeastern Ligurian Sea in summer 2010, Cont. Shelf
Res., 196, 104083, https://doi.org/10.1016/j.csr.2020.104083, 2020.
Preisendorfer, R. W. and Mobley, C. D.: Principal component analysis in meteorology and oceanography, Amsterdam, New York, Elsevier , New York, NY, USA, Distributors for the U.S. and Canada, Elsevier Science Pub. Co., 1988.
Ren, L., Hu, Z., and Hartnett, M.: Short-Term Forecasting of Coastal Surface
Currents Using High Frequency Radar Data and Artificial Neural Networks,
Remote Sens., 10, 850, https://doi.org/10.3390/rs10060850, 2018.
Révelard, A., Reyes, E., Mourre, B., Hernández-Carrasco, I., Rubio,
A., Lorente, P., Fernández, C. D. L., Mader, J., Álvarez-Fanjul, E.,
and Tintoré, J.: Sensitivity of Skill Score Metric to Validate
Lagrangian Simulations in Coastal Areas: Recommendations for Search and
Rescue Applications, Front. Mar. Sci., 8, 630388, https://doi.org/10.3389/fmars.2021.630388, 2021.
Reyes, E.: A high-resolution modeling study of the ocean response to wind
forcing within the Strait of Gibraltar, 27 February, PhD Thesis, 230 pp.,
https://doi.org/10.13140/RG.2.2.28881.07525, 2015.
Reyes, E., Rotllán-García, P., Rubio, A., Corgnati, L., Mader, J.,
and Mantovani, C.: Guidelines on how to sync your High Frequency (HF) radar
data with the European HF Radar node (Version 1.2), Balearic Islands Coastal
Observing and Forecasting System, SOCIB, https://doi.org/10.25704/9XPF-76G7, 2019.
Reyes, E., Hernández-Carrasco, I., Révelard, A., Mourre, B.,
Rotllán, P., Comerma, E., Bakhsh, T.T., Rubio, A., Mader, J., Ferrer,
L., De Lera Fernández, C., Álvarez-Fanjul, E., and Tintoré, J.:
IBISAR service for real-time data ranking in the IBI area for emergency
responders and SAR operators, in: Copernicus Marine Service Ocean State
Report, Issue 4, J. Oper. Oceanogr., 13, 92–99,
https://doi.org/10.1080/1755876X.2020.1785097, 2020a.
Rinaldi, E., Buongiorno Nardelli, B., Zambianchi, E., Santoleri, R., and
Poulain, P.-M.: Lagrangian and Eulerian observations of the surface
circulation in the Tyrrhenian Sea, J. Geophys. Res.-Oceans, 115, C04024,
https://doi.org/10.1029/2009JC005535, 2010.
Roarty, H., Glenn, S., Kohut, J., Gong, D., Handel, E., Rivera, E., Garner,
T., Atkinson, L., Brown, W., Jakubiak, C., Muglia, M., Haines, S., and Seim,
H.: Operation and Application of a Regional High-Frequency Radar Network in
the Mid-Atlantic Bight, Mar. Technol. Soc. J., 44, 133–145, 2010.
Roarty, H., Cook, T., Hazard, L., Harlan, J., Cosoli, S., Wyatt, L., Fanjul,
E. A., Terrill, E., Otero, M., Largier, J., Glenn, S., Ebuchi, N.,
Whitehouse, B., Bartlett, K., Mader, J., Rubio, A., Corgnati, L. P.,
Mantovani, C., Griffa, A., Reyes, E., Lorente, P., Flores-Vidal, X.,
Rogowski, P., Prukpitikul, S., Lee, S. H., Lai, J. W., Guerin, C., Sanchez,
J., Hansen, B., Grilli, S., and Matta, K. S.: The global high frequency radar
network, Front. Mar. Sci., 6, 164, https://doi.org/10.3389/fmars.2019.00164, 2019.
Robinson, A. R.: Overview and Summary of Eddy Science BT – Eddies in Marine
Science, edited by: Robinson, A. R., Springer Berlin Heidelberg,
Berlin, Heidelberg, 3–15, 1983.
Robinson, I.: Discovering the Ocean from Space, Discov. Ocean from Sp. by
Ian S. Robinson, Berlin Springer, 2010, ISBN 978-3-540-24430-1,
https://doi.org/10.1007/978-3-540-68322-3_1, 2010.
Romero, R., Vich, M.-M., and Ramis, C.: A pragmatic approach for the
numerical prediction of meteotsunamis in Ciutadella harbour (Balearic
Islands), Ocean Model., 142, 101441, https://doi.org/10.1016/j.ocemod.2019.101441, 2019.
Rubio, A., Mader, J., Corgnati, L., Mantovani, C., Griffa, A., Novellino,
A., Quentin, C., Wyatt, L., Schulz-Stellenfleth, J., Horstmann, J., Lorente,
P., Zambianchi, E., Hartnett, M., Fernandes, C., Zervakis, V., Gorringe, P.,
Melet, A., and Puillat, I.: HF Radar activity in European coastal seas: Next
steps toward a Pan-European HF Radar network, Front. Mar. Sci., 4,
1–17, https://doi.org/10.3389/fmars.2017.00008, 2017.
Rubio, A., Caballero, A., Orfila, A., Hernández-Carrasco, I., Ferrer,
L., González, M., Solabarrieta, L., and Mader, J.: Eddy-induced
cross-shelf export of high Chl a coastal waters in the SE Bay of Biscay,
Remote Sens. Environ., 205, 290–304,
https://doi.org/10.1016/j.rse.2017.10.037, 2018.
Rubio, A., Hernández-Carrasco, I., Orfila, A., González, M., Reyes, E.,
Corgnati, L., Berta, M., Griffa, A., and Mader, J.: A Lagrangian approach to
monitor local particle retention conditions in coastal areas, in: Copernicus
Marine Service Ocean State Report, Issue 4, J. Oper. Oceanogr., 13,
54–59, https://doi.org/10.1080/1755876X.2020.1785097, 2020.
Rubio, A., Reyes, E., Mantovani, C., Corgnati, L., Lorente, P.,
Solabarrieta, L., Mader, J., Fernández, V., Pouliquen, S., Novellino,
A., Karstensen, J., and Petihakis, G.: European High Frequency Radar network
governance, D3.4, EuroSea Deliverable, 41 pp.,
https://doi.org/10.3289/eurosea_d3.4, 2021.
Ruiz-Parrado, I., Genua-Olmedo, A., Reyes, E., Mourre, B., Rotllán, P., Lorente, P., García-Sotillo, M., and Tintoré, J.: Coastal ocean variability related to the most extreme Ebro River discharge over the last 15 years, in: Copernicus Marine Service Ocean State Report, Issue 4, J. Oper. Oceanogr., 13:sup1, 160–165, https://doi.org/10.1080/1755876X.2020.1785097, 2020.
Ryabinin, V., Barbière, J., Haugan, P., Kullenberg, G., Smith, N.,
McLean, C., Troisi, A., Fischer, A., Aricò, S., Aarup, T., Pissierssens,
P., Visbeck, M., Enevoldsen, H. O. and Rigaud, J.: The UN Decade of Ocean
Science for Sustainable Development, Front. Mar. Sci., 6, 460, https://doi.org/10.3389/fmars.2019.00470, 2019.
Ryan, P. G., Moore, C. J., van Franeker, J. A., and Moloney, C. L.:
Monitoring the abundance of plastic debris in the marine environment,
Philos. T. Roy. Soc. B, 364, 1999–2012,
https://doi.org/10.1098/rstb.2008.0207, 2009.
Sadarjoen, I. A., Post, F. H., Ma, B., Banks, D. C., and Pagendarm, H.-G.:
Selective visualization of vortices in hydrodynamic flows, in: Proceedings
Visualization'98 (Cat. No.98CB36276), 419–422, 1998.
Sahal, A., Roger, J., Allgeyer, S., Lemaire, B., Hébert, H., Schindelé, F., and Lavigne, F.: The tsunami triggered by the 21 May 2003 Boumerdès-Zemmouri (Algeria) earthquake: field investigations on the French Mediterranean coast and tsunami modelling, Nat. Hazards Earth Syst. Sci., 9, 1823–1834, https://doi.org/10.5194/nhess-9-1823-2009, 2009.
Sánchez-Arcilla, A., García-León, M., and Gracia, V.: Hydro-morphodynamic modelling in Mediterranean storms – errors and uncertainties under sharp gradients, Nat. Hazards Earth Syst. Sci., 14, 2993–3004, https://doi.org/10.5194/nhess-14-2993-2014, 2014.
Sánchez-Garrido, J. C., García Lafuente, J., Álvarez Fanjul,
E., Sotillo, M. G., and de los Santos, F. J.: What does cause the collapse of
the Western Alboran Gyre? Results of an operational ocean model, Prog.
Oceanogr., 116, 142–153, https://doi.org/10.1016/j.pocean.2013.07.002, 2013.
Saviano, S., Kalampokis, A., Zambianchi, E., and Uttieri, M.: A year-long
assessment of wave measurements retrieved from an HF radar network in the
Gulf of Naples (Tyrrhenian Sea, Western Mediterranean Sea), J. Oper.
Oceanogr., 12, 1–15, https://doi.org/10.1080/1755876X.2019.1565853, 2019.
Saviano, S., Cianelli, D., Zambianchi, E., Conversano, F., and Uttieri, M.:
An Integrated Reconstruction of the Multiannual Wave Pattern in the Gulf of
Naples (South-Eastern Tyrrhenian Sea, Western Mediterranean Sea), J. Mar.
Sci. Eng., 8, 372, https://doi.org/10.3390/jmse8050372, 2020.
Saviano, S., Esposito, G., Di Lemma, R., de Ruggiero, P., Zambianchi, E.,
Pierini, S., Falco, P., Buonocore, B., Cianelli, D., and Uttieri, M.: Wind
Direction Data from a Coastal HF Radar System in the Gulf of Naples (Central
Mediterranean Sea), Remote Sens., 13, 1333, https://doi.org/10.3390/rs13071333, 2021.
Saviano, S., Biancardi, A. A., Uttieri, M., Zambianchi, E., Cusati, L. A., Pedroncini, A., Contento, G., and Cianelli, D.: Sea Storm Analysis: Evaluation of Multiannual Wave Parameters Retrieved from HF Radar and Wave Model, Remote Sens., 14, 1696, https://doi.org/10.3390/rs14071696, 2022.
Sayol, J. M., Orfila, A., Simarro, G., Conti, D., Renault, L., and Molcard,
A.: A Lagrangian model for tracking surface spills and SaR operations in the
ocean, Environ. Model. Softw., 52, 74–82,
https://doi.org/10.1016/j.envsoft.2013.10.013, 2014.
Schaeffer, A., Molcard, A., Forget, P., Fraunié, P., and Garreau, P.:
Generation mechanisms for mesoscale eddies in the Gulf of Lions: radar
observation and modeling, Ocean Dynam., 61, 1587–1609,
https://doi.org/10.1007/s10236-011-0482-8, 2011.
Sciascia, R., Berta, M., Carlson, D. F., Griffa, A., Panfili, M., La Mesa, M., Corgnati, L., Mantovani, C., Domenella, E., Fredj, E., Magaldi, M. G., D'Adamo, R., Pazienza, G., Zambianchi, E., and Poulain, P.-M.: Linking sardine recruitment in coastal areas to ocean currents using surface drifters and HF radar: a case study in the Gulf of Manfredonia, Adriatic Sea, Ocean Sci., 14, 1461–1482, https://doi.org/10.5194/os-14-1461-2018, 2018.
Šepić, J., Vilibić, I., and Belušić, D.: Source of the
2007 Ist meteotsunami (Adriatic Sea), J. Geophys. Res.-Oceans, 114, C03016,
https://doi.org/10.1029/2008JC005092, 2009.
Šepić, J., Vilibić, I., Rabinovich, A. B., and Monserrat, S.:
Widespread tsunami-like waves of 23–27 June in the Mediterranean and Black
Seas generated by high-altitude atmospheric forcing, Sci. Rep., 5, 11682,
https://doi.org/10.1038/srep11682, 2015.
Shay, L. K., Graber, H. C., Ross, D. B., and Chapman, R. D.: Mesoscale Ocean
Surface Current Structure Detected by High-Frequency Radar, J. Atmos. Ocean.
Tech., 12, 881–900, https://doi.org/10.1175/1520-0426(1995)012<
0881:MOSCSD>2.0.CO;2, 1995.
Shay, L., Cook, T., Haus, B., Martinez-Pedraja, J., Peters, H., Mariano, A.,
VanLeer, J., An, P., Smith, S., Soloviev, A., Weisberg, R., and Luther, M.:
VHF radar detects oceanic submesoscale vortex along Florida Coast, EOS
Trans., 81, 209–213, https://doi.org/10.1029/00EO00143, 2000.
Shchepetkin, A. F. and McWilliams, J. C.: A method for computing horizontal
pressure-gradient force in an oceanic model with a nonaligned vertical
coordinate, J. Geophys. Res.-Oceans, 108, 3090,
https://doi.org/10.1029/2001JC001047, 2003.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling
system (ROMS): a split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Shen, W., Gurgel, K.-W., Voulgaris, G., Schlick, T., and Stammer, D.:
Wind-speed inversion from HF radar first-order backscatter signal, Ocean Dynam., 62, 105–121, https://doi.org/10.1007/s10236-011-0465-9, 2012.
Shen, W. and Gurgel, K. W.: Wind direction inversion from narrow-beam HF
radar backscatter signals in low and high wind conditions at different radar
frequencies, Remote Sens., 10, 1480, https://doi.org/10.3390/rs10091480, 2018.
Shrira, V. I. and Forget, P.: On the Nature of Near-Inertial Oscillations in
the Uppermost Part of the Ocean and a Possible Route toward HF Radar Probing
of Stratification, J. Phys. Oceanogr., 45, 2660–2678,
https://doi.org/10.1175/JPO-D-14-0247.1, 2015.
Sikora, A.: European Green Deal – legal and financial challenges of the
climate change, ERA Forum, 21, 681–697, https://doi.org/10.1007/s12027-020-00637-3,
2021.
Solabarrietaa, L., Frolov, S., Cook, M., Paduan, J., Rubio, A.,
González, M., Mader, J., and Charria, G.: Skill assessment of HF
radar-derived products for Lagrangian simulations in the Bay Of Biscay, J.
Atmos. Ocean. Tech., 33, 2585–2597, https://doi.org/10.1175/JTECH-D-16-0045.1,
2016.
Solabarrieta, L., Hernández-Carrasco, I., Rubio, A., Campbell, M., Esnaola, G., Mader, J., Jones, B. H., and Orfila, A.: A new Lagrangian-based short-term prediction methodology for high-frequency (HF) radar currents, Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, 2021.
Sotillo, M. G., Cailleau, S., Lorente, P., Levier, B., Aznar, R., Reffray,
G., Amo-Baladrón, A., Chanut, J., Benkiran, M., and Álvarez-Fanjul,
E.: The MyOcean IBI ocean forecast and reanalysis systems: Operational
products and roadmap to the future copernicus service, J. Oper. Oceanogr.,
8, 63–79, https://doi.org/10.1080/1755876X.2015.1014663, 2015.
Sotillo, M. G., Mourre, B., Mestres, M., Lorente, P., Aznar, R.,
García-León, M., Liste, M., Santana, A., Espino, M., and
Álvarez, E.: Evaluation of the Operational CMEMS and Coastal Downstream
Ocean Forecasting Services During the Storm Gloria (January 2020), Front.
Mar. Sci., 8, 300, https://doi.org/10.3389/fmars.2021.644525, 2021.
Soto-Navarro, J., Jordá, G., Compa, M., Alomar, C., Fossi, M. C., and
Deudero, S.: Impact of the marine litter pollution on the Mediterranean
biodiversity: A risk assessment study with focus on the marine protected
areas, Mar. Pollut. Bull., 165, 112169,
https://doi.org/10.1016/j.marpolbul.2021.112169, 2021.
Stott, P.: How climate change affects extreme weather events, Science,
352, 1517–1518, https://doi.org/10.1126/science.aaf7271, 2016.
Terrier, M., Pedreros, R., and Poisson, B.: Tsunamis: étude de cas au niveau de la côte
méditerranéenne française – Rapport de synthèse, Rapport BRGM-RP-55765-Fr, 98 p, 31 fig, 7 tabl, 6 pl. h.L. http://infoterre.brgm.fr/rapports/RP-55765-FR.pdf (last access: 19 May 2022), 2007.
Tessier, E., Garnier, C., Mullot, J. ulrich, Lenoble, V., Arnaud, M.,
Raynaud, M., and Mounier, S.: Study of the spatial and historical
distribution of sediment inorganic contamination in the Toulon Bay (France),
Mar. Pollut. Bull., 62, 2075–2086, https://doi.org/10.1016/j.marpolbul.2011.07.022,
2011.
Tew Kai, E., Rossi, V., Sudre, J., Weimerskirch, H., Lopez, C.,
Hernandez-Garcia, E., Marsac, F., and Garçon, V.: Top marine predators
track Lagrangian coherent structures, P. Natl. Acad. Sci. USA, 106, 8245–8250, https://doi.org/10.1073/pnas.0811034106, 2009.
Tintoré, J., Vizoso, G., Casas, B., Heslop, E., Pascual, A., Orfila, A.,
Ruiz, S., Martínez-Ledesma, M., Torner, M., Cusí, S., Diedrich,
A., Balaguer, P., Gómez-Pujol, L., Álvarez-Ellacuria, A.,
Gómara, S., Sebastian, K., Lora, S., Beltrán, J. P., Renault, L.,
Juzà, M., Álvarez, D., March, D., Garau, B., Castilla, C.,
Cañellas, T., Roque, D., Lizarán, I., Pitarch, S., Carrasco, M. A.,
Lana, A., Mason, E., Escudier, R., Conti, D., Sayol, J. M., Barceló, B.,
Alemany, F., Reglero, P., Massuti, E., Vélez-Belchí, P., Ruiz, J.,
Oguz, T., Gómez, M., Álvarez, E., Ansorena, L., and Manriquez, M.:
SOCIB: The Balearic islands coastal ocean observing and forecasting system
responding to science, technology and society needs, Mar. Technol. Soc. J.,
47, 101–117, https://doi.org/10.4031/MTSJ.47.1.10, 2013.
Tintoré, J., Lana, A., Marmain, J., Fernández, V., and Orfila, A.:
SOCIB EXP RADAR Sep2014 (Version 1.0) [Data set], Brussels: Balearic Islands
Coastal Observing and Forecasting System, SOCIB, https://doi.org/10.25704/MHBG-Q265,
2014.
Tintoré, J., Pinardi, N., Álvarez-Fanjul, E., Aguiar, E.,
Álvarez-Berastegui, D., Bajo, M., Balbin, R., Bozzano, R., Nardelli, B.
B., Cardin, V., Casas, B., Charcos-Llorens, M., Chiggiato, J., Clementi, E.,
Coppini, G., Coppola, L., Cossarini, G., Deidun, A., Deudero, S.,
D'Ortenzio, F., Drago, A., Drudi, M., El Serafy, G., Escudier, R., Farcy,
P., Federico, I., Fernández, J. G., Ferrarin, C., Fossi, C., Frangoulis,
C., Galgani, F., Gana, S., García Lafuente, J., Sotillo, M. G.,
Garreau, P., Gertman, I., Gómez-Pujol, L., Grandi, A., Hayes, D.,
Hernández-Lasheras, J., Herut, B., Heslop, E., Hilmi, K., Juza, M.,
Kallos, G., Korres, G., Lecci, R., Lazzari, P., Lorente, P., Liubartseva,
S., Louanchi, F., Malacic, V., Mannarini, G., March, D., Marullo, S., Mauri,
E., Meszaros, L., Mourre, B., Mortier, L., Muñoz-Mas, C., Novellino, A.,
Obaton, D., Orfila, A., Pascual, A., Pensieri, S., Pérez Gómez, B.,
Pérez Rubio, S., Perivoliotis, L., Petihakis, G., de la Villéon, L.
P., Pistoia, J., Poulain, P. M., Pouliquen, S., Prieto, L., Raimbault, P.,
Reglero, P., Reyes, E., Rotllan, P., Ruiz, S., Ruiz, J., Ruiz, I.,
Ruiz-Orejón, L. F., Salihoglu, B., Salon, S., Sammartino, S.,
Sánchez Arcilla, A., Sannino, G., Sannino, G., Santoleri, R., Sardá,
R., Schroeder, K., Simoncelli, S., Sofianos, S., Sylaios, G., Tanhua, T.,
Teruzzi, A., Testor, P., Tezcan, D., Torner, M., et al.: Challenges for
Sustained Observing and Forecasting Systems in the Mediterranean Sea, Front.
Mar. Sci., 6, 568, https://doi.org/10.3389/fmars.2019.00568, 2019.
Tintoré, J., Lana, A., Marmain, J., Fernández, V., Casas, B., and
Reyes, E.: HF Radar Ibiza data from date 2012-06-01 (Version 1.0.1) [Data
set], Balearic Islands Coastal Observing and Forecasting System, SOCIB.
https://doi.org/10.25704/17GS-2B59, 2020.
Trevisanut, S.: Search and Rescue Operations in the Mediterranean: Factor of
Cooperation or Conflict?, Int. J. Mar. Coast. Law, 25, 523–542,
https://doi.org/10.1163/157180810X526754, 2010.
Tudor, M., Ivatek-Šahdan, S., Stanešić, A., Horvath, K.,
Bajić, A.: Forecasting weather in Croatia using ALADIN numerical weather
prediction model, in: Climate Change and Regional/Local Responses, edited by: Ray, P. and Zhang, Y., InTech, Rijeka, Croatia, 59–88, 2013.
Ullman, D. S., O'Donnell, J., Kohut, J., Fake, T., and Allen, A.: Trajectory
prediction using HF radar surface currents: Monte Carlo simulations of
prediction uncertainties, J. Geophys. Res.-Oceans, 111, 1–14,
https://doi.org/10.1029/2006JC003715, 2006.
Uttieri, M., Cianelli, D., Nardelli, B. B., Buonocore, B., Falco, P.,
Colella, S., and Zambianchi, E.: Multiplatform observation of the surface
circulation in the Gulf of Naples (Southern Tyrrhenian Sea), Ocean Dynam.,
61, 779–796, https://doi.org/10.1007/s10236-011-0401-z, 2011.
Vandenbulcke, L., Beckers, J. M., and Barth, A.: Correction of inertial
oscillations by assimilation of HF radar data in a model of the Ligurian
Sea, Ocean Dynam., 67, 117–135, https://doi.org/10.1007/s10236-016-1012-5, 2017.
Vignudelli, S., Birol, F., Benveniste, J., Fu, L.L., Picot, N., Raynal, M.,
and Roinard, H.: Satellite Altimetry Measurements of Sea Level in the
Coastal Zone, Surv. Geophys., 40, 1319–1349,
https://doi.org/10.1007/s10712-019-09569-1, 2019.
Vignudelli, S., Cipollini, P., Astraldi, M., Gasparini, G. P., and Manzella,
G.: Integrated use of altimeter and in situ data for understanding the water
exchanges between the Tyrrhenian and Ligurian Seas, J. Geophys. Res.,
105, 19633–19649, 2000.
Vilibić, I. and Šepić, J.: Destructive meteotsunamis along the
eastern Adriatic coast: Overview, Phys. Chem. Earth 34,
904–917,https://doi.org/10.1016/j.pce.2009.08.004, 2009.
Vilibić, I., Šepić, J., Mihanović, H., Kalinić, H.,
Cosoli, S., Janeković, I., Žagar, N., Jesenko, B., Tudor, M.,
Dadić, V., and Ivanković, D.: Self-Organizing Maps-based ocean
currents forecasting system, Sci. Rep., 6, 22924, https://doi.org/10.1038/srep22924,
2016.
Vilibić, I., Denamiel, C., Zemunik, P., and Monserrat, S.: The
Mediterranean and Black Sea meteotsunamis: an overview, Nat. Hazards, 106, 1223–1267,
https://doi.org/10.1007/s11069-020-04306-, 2021.
Vučetić, T., Vilibić, I., Tinti, S., and Maramai, A.: The Great
Adriatic flood of 21 June 1978 revisited: An overview of the reports, Phys.
Chem. Earth, 34, 894–903,
https://doi.org/10.1016/j.pce.2009.08.005, 2009.
Wang, X. and Liu, P. L.-F.: A Numerical Investigation of Boumerdes-Zemmouri
(Algeria) Earthquake and Tsunami, Comput. Model. Eng. Sci., 10, 171–184,
https://doi.org/10.3970/cmes.2005.010.171, 2005.
Weiss, J.: The dynamics of enstrophy transfer in two-dimensional
hydrodynamics, Phys. D Nonlinear Phenom., 48, 273–294,
https://doi.org/10.1016/0167-2789(91)90088-Q, 1991.
Wilkin, J. L. and Hunter, E. J.: An assessment of the skill of real-time
models of Mid-Atlantic Bight continental shelf circulation, J. Geophys. Res.-Oceans, 118, 2919–2933, https://doi.org/10.1002/jgrc.20223, 2013.
Wyatt, L. R.: Wave mapping with HF radar, in: 2011 IEEE/OES 10th Curr. Waves
Turbul. Meas., 25–30, 2011.
Wyatt, L. R.: Use of HF radar for marine renewable applications, in 2012
Oceans – Yeosu, 1–5, https://doi.org/10.1109/OCEANS-Yeosu.2012.6263439,
2012.
Wyatt, L. R.: High frequency radar applications in coastal monitoring,
planning and engineering, Aust. J. Civ. Eng., 12, 1–15,
https://doi.org/10.7158/14488353.2014.11463992, 2014.
Wyatt, L.: Spatio-Temporal Metocean Measurements for Offshore Wind Power, J.
Energy Power Technol., 3, 15, https://doi.org/10.21926/jept.2101005, 2021.
Wyatt, L. R. and Green, J. J.: Measuring high and low waves with HF radar,
Ocean, 2009-EUROPE, 1–5,
https://eprints.whiterose.ac.uk/10590/ (last access: 9 May 2022), 2009.
Wyatt, L. R., Green, J. J., Middleditch, A., Moorhead, M. D., Howarth, J.,
Holt, M., and Keogh, S.: Operational Wave, Current, and Wind Measurements
With the Pisces HF Radar, IEEE J. Ocean. Eng., 31, 819–834,
https://doi.org/10.1109/JOE.2006.888378, 2006.
Yaremchuk, M. and Sentchev, A.: A combined EOF/variational approach for
mapping radar-derived sea surface currents, Cont. Shelf Res., 31, 758–768,
https://doi.org/10.1016/j.csr.2011.01.009, 2011.
Zelenke, B.: An Empirical Statistical Model Relating Winds and Ocean Surface Currents: Implications for Short-term Current Forecasts, MSc Thesis, Oregon State University, https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/ms35tb992 (last access: 9 May 2022), 2005.
Zemunik, P., Bonanno, A., Mazzola, S., Giacalone, G., Fontana, I., Genovese,
S., Basilone, G., Candela, J., Šepić, J., Vilibić, I., and
Aronica, S.: Observing meteotsunamis (“Marrobbio”) on the southwestern
coast of Sicily, Nat. Hazards, 106, 1337–1363,
https://doi.org/10.1007/s11069-020-04303-2, 2020.
Zeng, Y., Zhou, H., Roarty, H., and Wen, B.: Wind Speed Inversion in High
Frequency Radar Based on Neural Network, edited by: El-Darymli, K., Int. J.
Antennas Propag., 2016, 2706521, https://doi.org/10.1155/2016/2706521, 2016.
Zeng, Y., Zhou, H., Lai, Y., and Wen, B.: Wind-Direction Mapping With a
Modified Wind Spreading Function by Broad-Beam High-Frequency Radar, IEEE
Geosci. Remote Sens. Lett., 15, 679–683, 2018.
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
This work reviews the existing advanced and emerging scientific and societal applications using...