Articles | Volume 18, issue 3
https://doi.org/10.5194/os-18-761-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-761-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coastal high-frequency radars in the Mediterranean – Part 1: Status of operations and a framework for future development
Pablo Lorente
CORRESPONDING AUTHOR
Puertos del Estado, Área de Medio Físico, Madrid, 28042, Spain
NOLOGIN CONSULTING SL, Zaragoza, 50018, Spain
Eva Aguiar
SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, 07122, Spain
Michele Bendoni
Consorzio LaMMA, Sesto Fiorentino, 50019, Italy
Maristella Berta
Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine
(ISMAR), Lerici, 19032, Italy
Carlo Brandini
Consorzio LaMMA, Sesto Fiorentino, 50019, Italy
Consiglio Nazionale delle Ricerche (CNR), Istituto per la Bioeconomia
(IBE), Sesto Fiorentino, 50019, Italy
Alejandro Cáceres-Euse
Mediterranean Institute of Oceanography, Université de Toulon, Aix
Marseille Univ, CNRS, IRD, MIO, Toulon, France
Fulvio Capodici
Università degli Studi di Palermo, Dipartimento di Ingegneria, 90128, Palermo, Italy
Daniela Cianelli
Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
Consorzio Nazionale Interuniversitario per le Scienze del Mare
(CoNISMa), Rome, 00196, Italy
Giuseppe Ciraolo
Università degli Studi di Palermo, Dipartimento di Ingegneria, 90128, Palermo, Italy
Lorenzo Corgnati
Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine
(ISMAR), Lerici, 19032, Italy
Vlado Dadić
Institute of Oceanography and Fisheries, Split, 21000, Croatia
Bartolomeo Doronzo
Consorzio LaMMA, Sesto Fiorentino, 50019, Italy
Consiglio Nazionale delle Ricerche (CNR), Istituto per la Bioeconomia
(IBE), Sesto Fiorentino, 50019, Italy
Aldo Drago
Physical Oceanography Research Group, University of Malta, Msida, MSD
2080, Malta
Dylan Dumas
Mediterranean Institute of Oceanography, Université de Toulon, Aix
Marseille Univ, CNRS, IRD, MIO, Toulon, France
Pierpaolo Falco
Universita' Politecnica delle Marche, DISVA, Ancona, 60121, Italy
Maria Fattorini
Consorzio LaMMA, Sesto Fiorentino, 50019, Italy
Consiglio Nazionale delle Ricerche (CNR), Istituto per la Bioeconomia
(IBE), Sesto Fiorentino, 50019, Italy
Adam Gauci
Physical Oceanography Research Group, University of Malta, Msida, MSD
2080, Malta
Roberto Gómez
Helzel Messtechnik GmbH, 24568 Kaltenkirchen, Germany
Annalisa Griffa
Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine
(ISMAR), Lerici, 19032, Italy
Charles-Antoine Guérin
Mediterranean Institute of Oceanography, Université de Toulon, Aix
Marseille Univ, CNRS, IRD, MIO, Toulon, France
Ismael Hernández-Carrasco
Mediterranean Institute for Advanced Studies – IMEDEA – (CSIC-UIB),
Esporles, 07190, Spain
Jaime Hernández-Lasheras
SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, 07122, Spain
Matjaž Ličer
National Institute of Biology, Marine Biology Station, Piran, 6330,
Slovenia
Slovenian Environment Agency, Ljubljana, 1000, Slovenia
Marcello G. Magaldi
Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine
(ISMAR), Lerici, 19032, Italy
Carlo Mantovani
Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine
(ISMAR), Lerici, 19032, Italy
Hrvoje Mihanović
Institute of Oceanography and Fisheries, Split, 21000, Croatia
Anne Molcard
Mediterranean Institute of Oceanography, Université de Toulon, Aix
Marseille Univ, CNRS, IRD, MIO, Toulon, France
Baptiste Mourre
SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, 07122, Spain
Alejandro Orfila
Mediterranean Institute for Advanced Studies – IMEDEA – (CSIC-UIB),
Esporles, 07190, Spain
Adèle Révelard
SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, 07122, Spain
Emma Reyes
SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, 07122, Spain
Jorge Sánchez
Qualitas Instruments S.A., Madrid, 28043, Spain
Simona Saviano
Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
Consorzio Nazionale Interuniversitario per le Scienze del Mare
(CoNISMa), Rome, 00196, Italy
Roberta Sciascia
Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine
(ISMAR), Lerici, 19032, Italy
Stefano Taddei
Consorzio LaMMA, Sesto Fiorentino, 50019, Italy
Joaquín Tintoré
SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, 07122, Spain
Mediterranean Institute for Advanced Studies – IMEDEA – (CSIC-UIB),
Esporles, 07190, Spain
Yaron Toledo
School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv,
6905904, Israel
Laura Ursella
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGS,
Sgonico TS, 34010, Italy
Marco Uttieri
Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
Consorzio Nazionale Interuniversitario per le Scienze del Mare
(CoNISMa), Rome, 00196, Italy
Ivica Vilibić
Institute of Oceanography and Fisheries, Split, 21000, Croatia
Ruđer Bošković Institute, Division for Marine and
Environmental Research, Zagreb, 10000, Croatia
Enrico Zambianchi
Consorzio Nazionale Interuniversitario per le Scienze del Mare
(CoNISMa), Rome, 00196, Italy
Dipartimento di Scienze e Tecnologie (DiST), Parthenope University of
Naples, Naples, 80143, Italy
Vanessa Cardin
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGS,
Sgonico TS, 34010, Italy
Related authors
Pablo Lorente, Marta de Alfonso, Pilar Gil, Fernando Manzano, Anna Magdalena Matulka, Begoña Pérez-Gómez, Susana Pérez-Rubio, and M. Isabel Ruiz
State Planet, 4-osr8, 19, https://doi.org/10.5194/sp-4-osr8-19-2024, https://doi.org/10.5194/sp-4-osr8-19-2024, 2024
Short summary
Short summary
Over recent decades, extreme weather events have attracted growing public concern due to their widespread impact on the environment and human well-being. Their comprehensive monitoring is crucial to adopt prevention strategies and reduce coastal vulnerability. In this work, the record-breaking wave event that hit Melilla harbour (SW Mediterranean Sea) during early April 2022 was investigated to elucidate the meteorological drivers and evaluate the energetic response of Melilla harbour basins.
Pablo Lorente, Anna Rubio, Emma Reyes, Lohitzune Solabarrieta, Silvia Piedracoba, Joaquín Tintoré, and Julien Mader
State Planet, 1-osr7, 8, https://doi.org/10.5194/sp-1-osr7-8-2023, https://doi.org/10.5194/sp-1-osr7-8-2023, 2023
Short summary
Short summary
Upwelling is an important process that impacts water quality and aquaculture production in coastal areas. In this work we present a new methodology to monitor this phenomenon in two different regions by using surface current estimations provided by remote sensing technology called high-frequency radar.
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Marcos García-Sotillo, Arancha Amo-Baladrón, Roland Aznar, Bruno Levier, José C. Sánchez-Garrido, Simone Sammartino, Álvaro de Pascual-Collar, Guillaume Reffray, Cristina Toledano, and Enrique Álvarez-Fanjul
Ocean Sci., 15, 967–996, https://doi.org/10.5194/os-15-967-2019, https://doi.org/10.5194/os-15-967-2019, 2019
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane LawChune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-165, https://doi.org/10.5194/os-2018-165, 2019
Publication in OS not foreseen
Short summary
Short summary
This paper highlight the adjustment of the wave physics in order to improve the surface stress and thus the ocean/wave coupling dedicated to Iberian Biscay and Ireland domain. The validation with altimeters wave data during the year 2014 has shown a slight improvement of the significant wave height. Statistical analysis of the results of the new and old versions of the wave model MFWAM is examined for the three main ocean regions of the IBI domain.
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane Law-Chune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-167, https://doi.org/10.5194/os-2018-167, 2019
Publication in OS not foreseen
Short summary
Short summary
This work highlights the relevance of coupling wave model with ocean model in order to improve key surface ocean parameters and in general to better describe the ocean circulation at small and large scale.
The results focus on the Iberian Biscay and Ireland ocean region with fine grid resolution of 2.5 km for the ocean model. The main conclusion is the improvement of wave physics induces a better ocean mixing at the upper layer and a positive impact for sea surface height in storm events.
P. Lorente, S. Piedracoba, J. Soto-Navarro, and E. Alvarez-Fanjul
Ocean Sci., 11, 921–935, https://doi.org/10.5194/os-11-921-2015, https://doi.org/10.5194/os-11-921-2015, 2015
Short summary
Short summary
In this paper, we provide a detailed description of basic sea surface circulation features in the Ebro River delta (NW Mediterranean) as derived from reliable high-frequency radar surface current measurements. An integrated quality control approach has been applied to ensure the acquisition of accurate radar data, which remains a priority for the research community. This work should be of interest to readers in the areas of operational oceanography and also to a broad community of end-users.
Amirhossein Barzandeh, Marko Rus, Matjaž Ličer, Ilja Maljutenko, Jüri Elken, Priidik Lagemaa, and Rivo Uiboupin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3691, https://doi.org/10.5194/egusphere-2024-3691, 2024
Short summary
Short summary
We evaluated a deep-learning model, HIDRA2, for predicting sea levels along the Estonian coast and compared it to traditional numerical models. HIDRA2 performed better overall, offering faster forecasts and valuable uncertainty estimates using ensemble predictions.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Giuseppe Aulicino, Antonino Ian Ferola, Laura Fortunato, Giorgio Budillon, Pasquale Castagno, Pierpaolo Falco, Giannetta Fusco, Naomi Krauzig, Giancarlo Spezie, Enrico Zambianchi, and Yuri Cotroneo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-417, https://doi.org/10.5194/essd-2024-417, 2024
Preprint under review for ESSD
Short summary
Short summary
This study gathered water temperature data in the last 30 years from several research cruises using XBT probes between New Zealand and the Ross Sea (Antarctica). These observations, collected in the framework of Italian National Antarctic Research Program, were rigorously checked for accuracy and corrected for depth and temperature bias. The public dataset offers valuable information to get insights into the Southern Ocean's climate and improve satellite observations and oceanographic models.
Pablo Lorente, Marta de Alfonso, Pilar Gil, Fernando Manzano, Anna Magdalena Matulka, Begoña Pérez-Gómez, Susana Pérez-Rubio, and M. Isabel Ruiz
State Planet, 4-osr8, 19, https://doi.org/10.5194/sp-4-osr8-19-2024, https://doi.org/10.5194/sp-4-osr8-19-2024, 2024
Short summary
Short summary
Over recent decades, extreme weather events have attracted growing public concern due to their widespread impact on the environment and human well-being. Their comprehensive monitoring is crucial to adopt prevention strategies and reduce coastal vulnerability. In this work, the record-breaking wave event that hit Melilla harbour (SW Mediterranean Sea) during early April 2022 was investigated to elucidate the meteorological drivers and evaluate the energetic response of Melilla harbour basins.
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2068, https://doi.org/10.5194/egusphere-2024-2068, 2024
Short summary
Short summary
HIDRA3 is a novel deep-learning model for predicting sea levels and storm surges, offering significant improvements over previous models and numerical simulations. It utilizes data from multiple tide gauges, enhancing predictions even with limited historical data and during sensor outages. With its advanced architecture, HIDRA3 outperforms the current state-of-the-art models by achieving up to 15 % lower mean absolute error, proving effective for coastal flood forecasting in diverse conditions.
Peter Mlakar, Antonio Ricchi, Sandro Carniel, Davide Bonaldo, and Matjaž Ličer
Geosci. Model Dev., 17, 4705–4725, https://doi.org/10.5194/gmd-17-4705-2024, https://doi.org/10.5194/gmd-17-4705-2024, 2024
Short summary
Short summary
We propose a new point-prediction model, the DEep Learning WAVe Emulating model (DELWAVE), which successfully emulates the Simulating WAves Nearshore model (SWAN) over synoptic to climate timescales. Compared to control climatology over all wind directions, the mismatch between DELWAVE and SWAN is generally small compared to the difference between scenario and control conditions, suggesting that the noise introduced by surrogate modelling is substantially weaker than the climate change signal.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranic, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibic, and Maria Letizia Vitelletti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1468, https://doi.org/10.5194/egusphere-2024-1468, 2024
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (viz., use a of multiple simulations) allowing to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a ground for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Felipe L. L. Amorim, Julien Le Meur, Achim Wirth, and Vanessa Cardin
Ocean Sci., 20, 463–474, https://doi.org/10.5194/os-20-463-2024, https://doi.org/10.5194/os-20-463-2024, 2024
Short summary
Short summary
Analysis of a high-frequency time series of thermohaline data measured at the EMSO-E2M3A regional facility in the southern Adriatic Pit (SAP) reveals a significant change in the double-diffusive regime in 2017 associated with the intrusion of extremely salty waters into the area, suggesting salt fingering as the dominant regime. The strong heat loss at the surface during this winter allowed deep convection to transport this high-salinity water from the intermediate to deep layers of the pit.
Alfio Marco Borzì, Vittorio Minio, Raphael De Plaen, Thomas Lecocq, Salvatore Alparone, Salvatore Aronica, Flavio Cannavò, Fulvio Capodici, Giuseppe Ciraolo, Sebastiano D'Amico, Danilo Contrafatto, Giuseppe Di Grazia, Ignazio Fontana, Giovanni Giacalone, Graziano Larocca, Carlo Lo Re, Giorgio Manno, Gabriele Nardone, Arianna Orasi, Marco Picone, Giovanni Scicchitano, and Andrea Cannata
Ocean Sci., 20, 1–20, https://doi.org/10.5194/os-20-1-2024, https://doi.org/10.5194/os-20-1-2024, 2024
Short summary
Short summary
In this work, we study a Mediterranean cyclone that occurred in February 2023 and its relationship with a particular seismic signal called microseism. By integrating the data recorded by seismic stations, satellites, HF radar and wavemeter buoy we are able to obtain information about this event. We show how an innovative monitoring system of the Mediterranean cyclones can be designed by integrating microseism information with other techniques routinely used to study meteorological phenomena.
Pierre-Marie Poulain, Luca Centurioni, Carlo Brandini, Stefano Taddei, Maristella Berta, and Milena Menna
Ocean Sci., 19, 1617–1631, https://doi.org/10.5194/os-19-1617-2023, https://doi.org/10.5194/os-19-1617-2023, 2023
Short summary
Short summary
Drifters and a profiling float were deployed in the coastal waters of the southeastern Ligurian Sea to characterize the near-surface circulation at a scale of ~10 km. The drifters were trapped in an offshore-flowing filament and a cyclonic eddy that developed at the southwestern extremity of the filament. Drifter velocities are used to estimate differential kinematic properties and relative dispersion statistics of the surface currents.
Sofia Flora, Laura Ursella, and Achim Wirth
Nonlin. Processes Geophys., 30, 515–525, https://doi.org/10.5194/npg-30-515-2023, https://doi.org/10.5194/npg-30-515-2023, 2023
Short summary
Short summary
An increasing amount of data allows us to move from low-order moments of fluctuating observations to their PDFs. We found the analytical fat-tailed PDF form (a combination of Gaussian and two-exponential convolutions) for 2 years of sea surface current increments in the Gulf of Trieste, using superstatistics and the maximum-entropy principle twice: on short and longer timescales. The data from different wind regimes follow the same analytical PDF, pointing towards a universal behaviour.
Pablo Lorente, Anna Rubio, Emma Reyes, Lohitzune Solabarrieta, Silvia Piedracoba, Joaquín Tintoré, and Julien Mader
State Planet, 1-osr7, 8, https://doi.org/10.5194/sp-1-osr7-8-2023, https://doi.org/10.5194/sp-1-osr7-8-2023, 2023
Short summary
Short summary
Upwelling is an important process that impacts water quality and aquaculture production in coastal areas. In this work we present a new methodology to monitor this phenomenon in two different regions by using surface current estimations provided by remote sensing technology called high-frequency radar.
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Gotzon Basterretxea, Joan S. Font-Muñoz, Ismael Hernández-Carrasco, and Sergio A. Sañudo-Wilhelmy
Ocean Sci., 19, 973–990, https://doi.org/10.5194/os-19-973-2023, https://doi.org/10.5194/os-19-973-2023, 2023
Short summary
Short summary
We examine global ocean color data and modeling outputs of nutrients using SOM analysis to identify characteristic spatial and temporal patterns of HNLC regions and their association with different climate modes. HNLC regions in polar and subpolar areas have experienced an increase in phytoplankton biomass over the last decades, particularly in the Southern Ocean. Our study finds that chlorophyll variations in HNLC regions respond to major climate variability signals.
Rafael R. Torres, Estefanía Giraldo, Cristian Muñoz, Ana Caicedo, Ismael Hernández-Carrasco, and Alejandro Orfila
Ocean Sci., 19, 685–701, https://doi.org/10.5194/os-19-685-2023, https://doi.org/10.5194/os-19-685-2023, 2023
Short summary
Short summary
A reverse seasonal ocean circulation in the Panama Bight has been assessed using 27 years of absolute dynamical topography. The mean circulation in the eastern tropical Pacific (east of 100° W) is analyzed from the mean dynamic topography (MDT) and a self-organizing-map analysis. Small differences are observed west of ~82° W. In the Panama Bight, MDT shows the cyclonic circulation when the Panama surface wind jet dominates the region. We assess ENSO effects on seasonal circulation.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Tiziana Ciuffardi, Zoi Kokkini, Maristella Berta, Marina Locritani, Andrea Bordone, Ivana Delbono, Mireno Borghini, Maurizio Demarte, Roberta Ivaldi, Federica Pannacciulli, Anna Vetrano, Davide Marini, and Giovanni Caprino
Earth Syst. Sci. Data, 15, 1933–1946, https://doi.org/10.5194/essd-15-1933-2023, https://doi.org/10.5194/essd-15-1933-2023, 2023
Short summary
Short summary
This paper presents the results of the first 2 years of the Levante Canyon Mooring, a mooring line placed since 2020 in the eastern Ligurian Sea, to study a canyon area at about 600 m depth characterized by the presence of cold-water living corals. It provides hydrodynamic and thermohaline measurements along the water column, describing a water-mass distribution coherent with previous evidence in the Ligurian Sea. The data also show a Northern Current episodic and local reversal during summer.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Marko Rus, Anja Fettich, Matej Kristan, and Matjaž Ličer
Geosci. Model Dev., 16, 271–288, https://doi.org/10.5194/gmd-16-271-2023, https://doi.org/10.5194/gmd-16-271-2023, 2023
Short summary
Short summary
We propose a new fast and reliable deep-learning architecture HIDRA2 for sea level and storm surge modeling. HIDRA2 features new feature encoders and a fusion-regression block. We test HIDRA2 on Adriatic storm surges, which depend on an interaction between tides and seiches. We demonstrate that HIDRA2 learns to effectively mimic the timing and amplitude of Adriatic seiches. This is essential for reliable HIDRA2 predictions of total storm surge sea levels.
Nydia Catalina Reyes Suárez, Valentina Tirelli, Laura Ursella, Matjaž Ličer, Massimo Celio, and Vanessa Cardin
Ocean Sci., 18, 1321–1337, https://doi.org/10.5194/os-18-1321-2022, https://doi.org/10.5194/os-18-1321-2022, 2022
Short summary
Short summary
Explaining the dynamics of jellyfish blooms is a challenge for scientists. Biological and meteo-oceanographic data were combined on different timescales to explain the exceptional bloom of the jellyfish Rhizostoma pulmo in the Gulf of Trieste (Adriatic Sea) in April 2021. The bloom was associated with anomalously warm seasonal sea conditions. Then, a strong bora wind event enhanced upwelling and mixing of the water column, causing jellyfish to rise to the surface and accumulate along the coast.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Jaime Hernandez-Lasheras, Baptiste Mourre, Alejandro Orfila, Alex Santana, Emma Reyes, and Joaquín Tintoré
Ocean Sci., 17, 1157–1175, https://doi.org/10.5194/os-17-1157-2021, https://doi.org/10.5194/os-17-1157-2021, 2021
Short summary
Short summary
Correct surface ocean circulation forecasts are highly relevant to search and rescue, oil spills, and ecological processes, among other things. High-frequency radar (HFR) is a remote sensing technology that measures surface currents in coastal areas with high temporal and spatial resolution. We performed a series of experiments in which we use HFR observations from the Ibiza Channel to improve the forecasts provided by a regional ocean model in the western Mediterranean.
Petra Zemunik, Jadranka Šepić, Havu Pellikka, Leon Ćatipović, and Ivica Vilibić
Earth Syst. Sci. Data, 13, 4121–4132, https://doi.org/10.5194/essd-13-4121-2021, https://doi.org/10.5194/essd-13-4121-2021, 2021
Short summary
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
Lojze Žust, Anja Fettich, Matej Kristan, and Matjaž Ličer
Geosci. Model Dev., 14, 2057–2074, https://doi.org/10.5194/gmd-14-2057-2021, https://doi.org/10.5194/gmd-14-2057-2021, 2021
Short summary
Short summary
Adriatic basin sea level modelling is a challenging problem due to the interplay between terrain, weather, tides and seiches. Current state-of-the-art numerical models (e.g. NEMO) require large computational resources to produce reliable forecasts. In this study we propose HIDRA, a novel deep learning approach for sea level modeling, which drastically reduces the numerical cost while demonstrating predictive capabilities comparable to that of the NEMO model, outperforming it in many instances.
Dagmar Hainbucher, Marta Álvarez, Blanca Astray Uceda, Giancarlo Bachi, Vanessa Cardin, Paolo Celentano, Spyros Chaikalis, Maria del Mar Chaves Montero, Giuseppe Civitarese, Noelia M. Fajar, Francois Fripiat, Lennart Gerke, Alexandra Gogou, Elisa F. Guallart, Birte Gülk, Abed El Rahman Hassoun, Nico Lange, Andrea Rochner, Chiara Santinelli, Tobias Steinhoff, Toste Tanhua, Lidia Urbini, Dimitrios Velaoras, Fabian Wolf, and Andreas Welsch
Earth Syst. Sci. Data, 12, 2747–2763, https://doi.org/10.5194/essd-12-2747-2020, https://doi.org/10.5194/essd-12-2747-2020, 2020
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean Sea (MSM72, March 2018). The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake, and further assess the hydrographical situation after the Eastern and Western Mediterranean Transients. Multidisciplinary measurements were conducted on a predominantly
zonal section throughout the Mediterranean Sea.
Verónica Morales-Márquez, Alejandro Orfila, Gonzalo Simarro, and Marta Marcos
Ocean Sci., 16, 1385–1398, https://doi.org/10.5194/os-16-1385-2020, https://doi.org/10.5194/os-16-1385-2020, 2020
Short summary
Short summary
This is a study of long-term changes in extreme waves and in the synoptic patterns related to them on European coasts. The interannual variability of extreme waves in the North Atlantic Ocean is controlled by the atmospheric patterns of the North Atlantic Oscillation and Scandinavian indices. In the Mediterranean Sea, it is governed by the East Atlantic and East Atlantic/Western Russia modes acting strongly during their negative phases.
Matjaž Ličer, Solène Estival, Catalina Reyes-Suarez, Davide Deponte, and Anja Fettich
Nat. Hazards Earth Syst. Sci., 20, 2335–2349, https://doi.org/10.5194/nhess-20-2335-2020, https://doi.org/10.5194/nhess-20-2335-2020, 2020
Short summary
Short summary
In 2018 windsurfer’s mast broke about 1 km offshore during a scirocco storm in the northern Adriatic. He was drifting in severe conditions until he eventually beached alive and well in Sistiana (Italy) 24 h later. We conducted an interview with the survivor to reconstruct his trajectory. We simulate his trajectory in several ways and estimate the optimal search-and-rescue area for a civil rescue response. Properly calibrated virtual drifter properties are key to reliable rescue area forecasting.
Ivan Manso-Narvarte, Erick Fredj, Gabriel Jordà, Maristella Berta, Annalisa Griffa, Ainhoa Caballero, and Anna Rubio
Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, https://doi.org/10.5194/os-16-575-2020, 2020
Short summary
Short summary
Our main aim is to study the feasibility of reconstructing oceanic currents by extending the data obtained from coastal multiplatform observatories to nearby areas in 3D in the SE Bay of Biscay. To that end, two different data-reconstruction methods with different approaches were tested, providing satisfactory results. This work is a first step towards the real applicability of these methods in this study area, and it shows the capabilities of the methods for a wide range of applications.
Alexander Barth, Aida Alvera-Azcárate, Matjaz Licer, and Jean-Marie Beckers
Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020, https://doi.org/10.5194/gmd-13-1609-2020, 2020
Short summary
Short summary
DINCAE is a method for reconstructing missing data in satellite datasets using a neural network. Satellite observations working in the optical and infrared bands are affected by clouds, which obscure part of the ocean underneath. In this paper, a neural network with the structure of a convolutional auto-encoder is developed to reconstruct the missing data based on the available cloud-free pixels in satellite images.
Christian Ferrarin, Andrea Valentini, Martin Vodopivec, Dijana Klaric, Giovanni Massaro, Marco Bajo, Francesca De Pascalis, Amedeo Fadini, Michol Ghezzo, Stefano Menegon, Lidia Bressan, Silvia Unguendoli, Anja Fettich, Jure Jerman, Matjaz̆ Ličer, Lidija Fustar, Alvise Papa, and Enrico Carraro
Nat. Hazards Earth Syst. Sci., 20, 73–93, https://doi.org/10.5194/nhess-20-73-2020, https://doi.org/10.5194/nhess-20-73-2020, 2020
Short summary
Short summary
Here we present a shared and interoperable system to allow a better exchange of and elaboration on information related to sea storms among countries. The proposed integrated web system (IWS) is a combination of a common data system for sharing ocean observations and forecasts, a multi-model ensemble system, a geoportal, and interactive geo-visualization tools. This study describes the application of the developed system to the exceptional storm event of 29 October 2018.
John Lodise, Tamay Özgökmen, Annalisa Griffa, and Maristella Berta
Ocean Sci., 15, 1627–1651, https://doi.org/10.5194/os-15-1627-2019, https://doi.org/10.5194/os-15-1627-2019, 2019
Short summary
Short summary
Observations of ocean currents within the first meter of the surface are made using a large number of ocean drifters of two different draft depths (0–5 and 0–60 cm). We deconstruct the total drifter velocities using an estimate of the regional circulation and a modeled Stokes drift velocity to calculate the purely wind-driven component of each drifter type. We reveal that the wind-driven velocities rotate to the right of the wind, while also decreasing, with depth.
Ivica Vilibić, Petra Zemunik, Jadranka Šepić, Natalija Dunić, Oussama Marzouk, Hrvoje Mihanović, Clea Denamiel, Robert Precali, and Tamara Djakovac
Ocean Sci., 15, 1351–1362, https://doi.org/10.5194/os-15-1351-2019, https://doi.org/10.5194/os-15-1351-2019, 2019
Pablo Lorente, Marcos García-Sotillo, Arancha Amo-Baladrón, Roland Aznar, Bruno Levier, José C. Sánchez-Garrido, Simone Sammartino, Álvaro de Pascual-Collar, Guillaume Reffray, Cristina Toledano, and Enrique Álvarez-Fanjul
Ocean Sci., 15, 967–996, https://doi.org/10.5194/os-15-967-2019, https://doi.org/10.5194/os-15-967-2019, 2019
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane LawChune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-165, https://doi.org/10.5194/os-2018-165, 2019
Publication in OS not foreseen
Short summary
Short summary
This paper highlight the adjustment of the wave physics in order to improve the surface stress and thus the ocean/wave coupling dedicated to Iberian Biscay and Ireland domain. The validation with altimeters wave data during the year 2014 has shown a slight improvement of the significant wave height. Statistical analysis of the results of the new and old versions of the wave model MFWAM is examined for the three main ocean regions of the IBI domain.
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane Law-Chune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-167, https://doi.org/10.5194/os-2018-167, 2019
Publication in OS not foreseen
Short summary
Short summary
This work highlights the relevance of coupling wave model with ocean model in order to improve key surface ocean parameters and in general to better describe the ocean circulation at small and large scale.
The results focus on the Iberian Biscay and Ireland ocean region with fine grid resolution of 2.5 km for the ocean model. The main conclusion is the improvement of wave physics induces a better ocean mixing at the upper layer and a positive impact for sea surface height in storm events.
Yuri Cotroneo, Giuseppe Aulicino, Simon Ruiz, Antonio Sánchez Román, Marc Torner Tomàs, Ananda Pascual, Giannetta Fusco, Emma Heslop, Joaquín Tintoré, and Giorgio Budillon
Earth Syst. Sci. Data, 11, 147–161, https://doi.org/10.5194/essd-11-147-2019, https://doi.org/10.5194/essd-11-147-2019, 2019
Short summary
Short summary
We present data collected from the first three glider surveys in the Algerian Basin conducted during the ABACUS project. After collection, data passed a quality control procedure and were then made available through an unrestricted repository. The main objective of our project is monitoring the basin circulation of the Mediterranean Sea. Temperature and salinity data collected in the first 975 m of the water column allowed us to identify the main water masses and describe their characteristics.
Charles Troupin, Ananda Pascual, Simon Ruiz, Antonio Olita, Benjamin Casas, Félix Margirier, Pierre-Marie Poulain, Giulio Notarstefano, Marc Torner, Juan Gabriel Fernández, Miquel Àngel Rújula, Cristian Muñoz, Eva Alou, Inmaculada Ruiz, Antonio Tovar-Sánchez, John T. Allen, Amala Mahadevan, and Joaquín Tintoré
Earth Syst. Sci. Data, 11, 129–145, https://doi.org/10.5194/essd-11-129-2019, https://doi.org/10.5194/essd-11-129-2019, 2019
Short summary
Short summary
The AlborEX (the Alboran Sea Experiment) consisted of an experiment in the Alboran Sea (western Mediterranean Sea) that took place between 25 and 31 May 2014, and use a wide range of oceanographic sensors. The dataset provides information on mesoscale and sub-mesoscale processes taking place in a frontal area. This paper presents the measurements obtained from these sensors and describes their particularities: scale, spatial and temporal resolutions, measured variables, etc.
Verónica Morales-Márquez, Alejandro Orfila, Gonzalo Simarro, Lluís Gómez-Pujol, Amaya Álvarez-Ellacuría, Daniel Conti, Álvaro Galán, Andrés F. Osorio, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 18, 3211–3223, https://doi.org/10.5194/nhess-18-3211-2018, https://doi.org/10.5194/nhess-18-3211-2018, 2018
Short summary
Short summary
This work analyzes the response of a beach under a series of storms using a numerical model, in situ measurements and video imaging.
Time recovery after storms is a key issue for local beach managers, who are pressed by tourism stakeholders to nourish the beach
after energetic processes in order to reach the quality standards required by beach users.
Roberta Sciascia, Maristella Berta, Daniel F. Carlson, Annalisa Griffa, Monica Panfili, Mario La Mesa, Lorenzo Corgnati, Carlo Mantovani, Elisa Domenella, Erick Fredj, Marcello G. Magaldi, Raffaele D'Adamo, Gianfranco Pazienza, Enrico Zambianchi, and Pierre-Marie Poulain
Ocean Sci., 14, 1461–1482, https://doi.org/10.5194/os-14-1461-2018, https://doi.org/10.5194/os-14-1461-2018, 2018
Short summary
Short summary
Understanding the role of ocean currents in the recruitment of commercially important fish is an important step toward developing sustainable resource management guidelines. Here, we attempt to elucidate the role of surface ocean transport in supplying recruits of European sardines to the Gulf of Manfredonia, a known recruitment area in the Adriatic Sea. We find that transport to the Gulf of Manfredonia from remote spawing areas in the Adriatic is more likely than local spawning and retention.
Jaime Hernandez-Lasheras and Baptiste Mourre
Ocean Sci., 14, 1069–1084, https://doi.org/10.5194/os-14-1069-2018, https://doi.org/10.5194/os-14-1069-2018, 2018
Short summary
Short summary
Different sampling strategies have been assessed in order to evaluate the most efficient configuration for the assimilation of high resolution measurements into a regional ocean model. The results show the capability of the model to ingest both large scale and high resolution observations and the improvement of the forecast fields. In particular, the configurations using eight gliders and the one assimilating CTDs show similar results and the give the best performance among all the simulations
Ismael Hernández-Carrasco, Lohitzune Solabarrieta, Anna Rubio, Ganix Esnaola, Emma Reyes, and Alejandro Orfila
Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, https://doi.org/10.5194/os-14-827-2018, 2018
Short summary
Short summary
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed. Its performance is compared with other methods focusing on the propagation of errors introduced in the reconstruction of the velocity fields through the trajectories, Lagrangian flow structures and residence times. We find that even when a large number of measurements in the HFR velocity field is missing, the Lagrangian techniques still give an accurate description of oceanic transport properties.
Maristella Berta, Lucio Bellomo, Annalisa Griffa, Marcello G. Magaldi, Anne Molcard, Carlo Mantovani, Gian Pietro Gasparini, Julien Marmain, Anna Vetrano, Laurent Béguery, Mireno Borghini, Yves Barbin, Joel Gaggelli, and Céline Quentin
Ocean Sci., 14, 689–710, https://doi.org/10.5194/os-14-689-2018, https://doi.org/10.5194/os-14-689-2018, 2018
Short summary
Short summary
The Northern Current (NC) in the NW Mediterranean Sea is studied by HF radar, glider, vessel survey, wind station, and model. NC variability is dominated by synoptic response to wind events, studied decomposing geostrophic and ageostrophic surface components. The combination of autonomous observing platforms with classical marine surveys provides high-resolution datasets for scientific purposes and practical applications such as the management of marine resources in the Mediterranean Sea.
Reiner Onken, Heinz-Volker Fiekas, Laurent Beguery, Ines Borrione, Andreas Funk, Michael Hemming, Jaime Hernandez-Lasheras, Karen J. Heywood, Jan Kaiser, Michaela Knoll, Baptiste Mourre, Paolo Oddo, Pierre-Marie Poulain, Bastien Y. Queste, Aniello Russo, Kiminori Shitashima, Martin Siderius, and Elizabeth Thorp Küsel
Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, https://doi.org/10.5194/os-14-321-2018, 2018
Short summary
Short summary
In June 2014, high-resolution oceanographic data were collected in the
western Mediterranean Sea by two research vessels, 11 gliders, moored
instruments, drifters, and one profiling float. The objective
of this article is to provide an overview of the data set which
is utilised by various ongoing studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads
for gliders.
Maria Fattorini and Carlo Brandini
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-22, https://doi.org/10.5194/npg-2018-22, 2018
Revised manuscript not accepted
Short summary
Short summary
This study looks for sampling criteria to improve forecasts reliability. Key factors for designing in situ observation networks are identified through the study of error growth and correlation analysis. This choice has an important impact on operational applications, as it affects the cost of ocean observing and forecasting systems by minimizing the need for additional observations. The proposed method is easily extendable to realistic problems.
Ivica Vilibić, Hrvoje Mihanović, Ivica Janeković, Cléa Denamiel, Pierre-Marie Poulain, Mirko Orlić, Natalija Dunić, Vlado Dadić, Mira Pasarić, Stipe Muslim, Riccardo Gerin, Frano Matić, Jadranka Šepić, Elena Mauri, Zoi Kokkini, Martina Tudor, Žarko Kovač, and Tomislav Džoić
Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, https://doi.org/10.5194/os-14-237-2018, 2018
Giorgio Manno, Carlo Lo Re, and Giuseppe Ciraolo
Ocean Sci., 13, 661–671, https://doi.org/10.5194/os-13-661-2017, https://doi.org/10.5194/os-13-661-2017, 2017
Short summary
Short summary
Beach evolution analysis can be conducted using GIS methodologies, such as the well-known Digital Shoreline Analysis System (DSAS), in which error assessment based on shoreline positioning plays a significant role. In this study, a new approach is proposed to estimate the positioning errors due to tide and wave run-up influence.
Antonio Sánchez-Román, Simón Ruiz, Ananda Pascual, Baptiste Mourre, and Stéphanie Guinehut
Ocean Sci., 13, 223–234, https://doi.org/10.5194/os-13-223-2017, https://doi.org/10.5194/os-13-223-2017, 2017
Short summary
Short summary
In this work we investigate the capability of the Argo array in the Mediterranean Sea to capture mesoscale circulation structures (diameter of around 150 km). To do that we conduct several experiments to simulate different spatial sampling configurations of the Argo array in the basin. Results show that the actual Argo array in the Mediterranean (2° × 2°) might be enlarged until a spatial resolution of nearly 75 × 75 km (450 floats) in order to capture the mesoscale signal.
Marcos García Sotillo, Emilio Garcia-Ladona, Alejandro Orfila, Pablo Rodríguez-Rubio, José Cristobal Maraver, Daniel Conti, Elena Padorno, José Antonio Jiménez, Este Capó, Fernando Pérez, Juan Manuel Sayol, Francisco Javier de los Santos, Arancha Amo, Ana Rietz, Charles Troupin, Joaquín Tintore, and Enrique Álvarez-Fanjul
Earth Syst. Sci. Data, 8, 141–149, https://doi.org/10.5194/essd-8-141-2016, https://doi.org/10.5194/essd-8-141-2016, 2016
Short summary
Short summary
An intensive drifter deployment was carried out in the Strait of Gibraltar: 35 satellite tracked drifters were released, coordinating to this aim 4 boats, covering an area of about 680 NM2 in 6 hours. This MEDESS-GIB Experiment is the most important exercise in the Mediterranean in terms of number of drifters released. The MEDESS-GIB dataset provides a complete Lagrangian view of the surface inflow of Atlantic waters through the Strait of Gibraltar and its later evolution along the Alboran Sea.
M. Ličer, P. Smerkol, A. Fettich, M. Ravdas, A. Papapostolou, A. Mantziafou, B. Strajnar, J. Cedilnik, M. Jeromel, J. Jerman, S. Petan, V. Malačič, and S. Sofianos
Ocean Sci., 12, 71–86, https://doi.org/10.5194/os-12-71-2016, https://doi.org/10.5194/os-12-71-2016, 2016
Short summary
Short summary
We compare the northern Adriatic response to an extreme bora event, as simulated by one-way and two-way (i.e. with ocean feedback to the atmosphere) atmosphere-ocean coupling. We show that two-way coupling yields significantly better estimates of heat fluxes, most notably sensible heat flux, across the air-sea interface. When compared to observations in the northern Adriatic, two-way coupled system consequently leads to a better representation of ocean temperatures throughout the event.
P. Lorente, S. Piedracoba, J. Soto-Navarro, and E. Alvarez-Fanjul
Ocean Sci., 11, 921–935, https://doi.org/10.5194/os-11-921-2015, https://doi.org/10.5194/os-11-921-2015, 2015
Short summary
Short summary
In this paper, we provide a detailed description of basic sea surface circulation features in the Ebro River delta (NW Mediterranean) as derived from reliable high-frequency radar surface current measurements. An integrated quality control approach has been applied to ensure the acquisition of accurate radar data, which remains a priority for the research community. This work should be of interest to readers in the areas of operational oceanography and also to a broad community of end-users.
I. Hernández-Carrasco, J. Sudre, V. Garçon, H. Yahia, C. Garbe, A. Paulmier, B. Dewitte, S. Illig, I. Dadou, M. González-Dávila, and J. M. Santana-Casiano
Biogeosciences, 12, 5229–5245, https://doi.org/10.5194/bg-12-5229-2015, https://doi.org/10.5194/bg-12-5229-2015, 2015
Short summary
Short summary
We have reconstructed maps of air-sea CO2 fluxes at high resolution (4 km) in the offshore Benguela region using sea surface temperature and ocean colour data and CarbonTracker CO2 fluxes data at low resolution (110 km).
The inferred representation of pCO2 improves the description provided by CarbonTracker, enhancing small-scale variability.
We find that the resolution, as well as the inferred pCO2 data itself, is closer to in situ measurements of pCO2.
D. Hainbucher, V. Cardin, G. Siena, U. Hübner, M. Moritz, U. Drübbisch, and F. Basan
Earth Syst. Sci. Data, 7, 231–237, https://doi.org/10.5194/essd-7-231-2015, https://doi.org/10.5194/essd-7-231-2015, 2015
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean in April 2014. Data were taken on a west-east section starting at the Strait of Gibraltar and ending south-east of Crete, as well on sections in the Ionian and Adriatic Sea. The measurements include salinity, temperature, oxygen and currents. We study the mesoscale eddy field and support long-term investigations of the hydrography in the Mediterranean Sea.
V. Cardin, G. Civitarese, D. Hainbucher, M. Bensi, and A. Rubino
Ocean Sci., 11, 53–66, https://doi.org/10.5194/os-11-53-2015, https://doi.org/10.5194/os-11-53-2015, 2015
Short summary
Short summary
The results of this study reveal that the thermohaline properties in the study area in 2011 lie between the thermohaline characteristics of the EMT and those of the pre-EMT phase, indicating a possible slow return towards the latter. It highlights the relationship between the hydrological property distribution of the upper layer in the Levantine basin and the alternate circulation regimes in the Ionian, which modulates the salinity distribution in the Eastern Mediterranean Sea.
M.-H. Rio, A. Pascual, P.-M. Poulain, M. Menna, B. Barceló, and J. Tintoré
Ocean Sci., 10, 731–744, https://doi.org/10.5194/os-10-731-2014, https://doi.org/10.5194/os-10-731-2014, 2014
D. Hainbucher, A. Rubino, V. Cardin, T. Tanhua, K. Schroeder, and M. Bensi
Ocean Sci., 10, 669–682, https://doi.org/10.5194/os-10-669-2014, https://doi.org/10.5194/os-10-669-2014, 2014
A. Olita, S. Sparnocchia, S. Cusí, L. Fazioli, R. Sorgente, J. Tintoré, and A. Ribotti
Ocean Sci., 10, 657–666, https://doi.org/10.5194/os-10-657-2014, https://doi.org/10.5194/os-10-657-2014, 2014
M. Gačić, G. Civitarese, V. Kovačević, L. Ursella, M. Bensi, M. Menna, V. Cardin, P.-M. Poulain, S. Cosoli, G. Notarstefano, and C. Pizzi
Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, https://doi.org/10.5194/os-10-513-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
L. Ursella, V. Kovačević, and M. Gačić
Ocean Sci., 10, 49–67, https://doi.org/10.5194/os-10-49-2014, https://doi.org/10.5194/os-10-49-2014, 2014
I. Hernández-Carrasco, C. López, A. Orfila, and E. Hernández-García
Nonlin. Processes Geophys., 20, 921–933, https://doi.org/10.5194/npg-20-921-2013, https://doi.org/10.5194/npg-20-921-2013, 2013
T. Tanhua, D. Hainbucher, K. Schroeder, V. Cardin, M. Álvarez, and G. Civitarese
Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, https://doi.org/10.5194/os-9-789-2013, 2013
T. Tanhua, D. Hainbucher, V. Cardin, M. Álvarez, G. Civitarese, A. P. McNichol, and R. M. Key
Earth Syst. Sci. Data, 5, 289–294, https://doi.org/10.5194/essd-5-289-2013, https://doi.org/10.5194/essd-5-289-2013, 2013
H. Mihanović, I. Vilibić, S. Carniel, M. Tudor, A. Russo, A. Bergamasco, N. Bubić, Z. Ljubešić, D. Viličić, A. Boldrin, V. Malačič, M. Celio, C. Comici, and F. Raicich
Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, https://doi.org/10.5194/os-9-561-2013, 2013
S. Pasquet, I. Vilibić, and J. Šepić
Nat. Hazards Earth Syst. Sci., 13, 473–482, https://doi.org/10.5194/nhess-13-473-2013, https://doi.org/10.5194/nhess-13-473-2013, 2013
Related subject area
Approach: Remote Sensing | Properties and processes: Eddies | Depth range: Surface | Geographical range: Mediterranean Sea | Challenges: Oceans and climate
Surface circulation properties in the eastern Mediterranean emphasized using machine learning methods
Georges Baaklini, Roy El Hourany, Milad Fakhri, Julien Brajard, Leila Issa, Gina Fifani, and Laurent Mortier
Ocean Sci., 18, 1491–1505, https://doi.org/10.5194/os-18-1491-2022, https://doi.org/10.5194/os-18-1491-2022, 2022
Short summary
Short summary
We use machine learning to analyze the long-term variation of the surface currents in the Levantine Sea, located in the eastern Mediterranean Sea. We decompose the circulation into groups based on their physical characteristics and analyze their spatial and temporal variability. We show that most structures of the Levantine Sea are becoming more energetic over time, despite those of the western area remaining the most dominant due to their complex bathymetry and strong currents.
Cited articles
Aguiar, E., Mourre, B., Juza, M., Reyes, M., Hernández-Lasheras, J.,
Cutolo, E., Mason, E., and Tintoré, J.: Multi-platform model assessment
in the Western Mediterranean Sea: Impact of downscaling on the surface
circulation and mesoscale activity, Ocean Dynam., 70, 273–288,
https://doi.org/10.1007/s10236-019-01317-8, 2020.
Alattabi, Z. R., Cahl, D., and Voulgaris, G.: Swell and wind wave inversion
using a single very high frequency (VHF) radar, J. Atmos.
Ocean. Tech., 36, 987–1013, https://doi.org/10.1175/JTECH-D-18-0166.1, 2019.
Atwater, D. P. and Heron, M. L.: HF radar two-station baseline bisector
comparisons of radial components, Proceedings of IEEE Oceans 2010, Sydney,
Australia, 1–4, 2010.
Barbin, Y.: High Resolution Surface Currents Mapping using Direction Finding
Method in Bistatic Radar Configuration, in Third Conference on Remote Ocean
Sensing, La Spezia, Italy, 2011.
Barbin, Y., Broche P., and Forget, P.: High Resolution Azimutal Radial Current
Mapping with Multisource Capability, in Radio Oceanography Workshop, Split,
Croatia, 2009.
Barceló-Llull, B., Pascual, A., Ruiz, S., Escudier, R., Torner, M., and
Tintoré, J.: Temporal and spatial hydrodynamic variability in the
Mallorca channel (western Mediterranean Sea) from eight years of underwater
glider data, J. Geophys. Res.-Oceans, 124, 2769–2786,
https://doi.org/10.1029/2018JC014636, 2019.
Barrick, D. E.: First-Order Theory and Analysis of MF/HF/VHF Scatter from the
Sea, IEEE T. Ant. Prop., 20, 2–10, 1972.
Barrick, D. E.: Extraction of Wave Parameters Form Measured HF Radar Sea
Echoes Spectra, Radio Sci., 12, 415–424,
https://doi.org/10.1029/RS012i003p00415, 1977.
Barrick, D. E.: Accuracy of parameter extraction from sample averaged
sea-echo Doppler spectra, IEEE T. Ant. Prop., 28, 1–11, 1980.
Barrick, D. E., Lipa, B. J., and Crissman, R. D.: Mapping surface currents with
CODAR, Sea Technol., 43–48, 1985.
Basañez, A., Lorente, P., Montero, P., Álvarez-Fanjul, E., and
Pérez-Muñuzuri, V.: Quality assessment and practical interpretation
of the wave parameters estimated by HF Radars in NW Spain, Remote Sens., 12, 4, 598, https://doi.org/10.3390/rs12040598, 2019.
Bellomo, L., Griffa, A., Cosoli, S., Falco, P., Gerin, R., Iermano, I., Kalampokis, A., Kokkini, Z., Lana, A., Magaldi, M. G., Mamoutos, I., Mantovani, C., Marmain, J., Potiris, E., Sayol, J. M., Barbin, Y., Berta, M., Borghini, M., Bussani, A., Corgnati, L., Dagneaux, Q., Gaggelli, J., Guterman, P., Mallarino, D., Mazzoldi, A., Molcard, A., Orfila, A., Poulain, P.-M., Quentin, C., Tintoré, J., Uttieri, M., Vetrano, A., Zambianchi, E., and Zervakis, V.: Toward an integrated HF radar
network in the Mediterranean Sea to improve search and rescue and oil spill
response: the TOSCA project experience, J. Oper. Oceanogr.,
8, 95–107, 2015.
Berta, M., Bellomo, L., Magaldi, M. G., Griffa, A., Molcard, A., Marmain, J.,
Borghini, M., and Taillandier, V.: Estimating Lagrangian transport blending
drifters with HF radar data and models: Results from the TOSCA experiment in
the Ligurian Current (North Western Mediterranean Sea), Prog. Oceanogr., 128, 15–29, https://doi.org/10.1016/j.pocean.2014.08.004, 2014.
Campanale, C., Suaria, G., Bagnuolo, G., Baini, M., Galli, M., de Rysky, E.,
Ballini, M., Aliani, S., Fossi, M., and Uricchio, V.: Visual observations of
floating macro litter around Italy (Mediterranean Sea), Mediterranean Mar. Sci., 20, 271–281, https://doi.org/10.12681/mms.19054, 2019.
Capodici, F., Cosoli, S., Ciraolo, G., Nasello, C., Maltese, A., Poulain,
P.-M., Drago, A., Azzopardi, J., and Gauci, A.: Validation of HF radar sea
surface currents in the Malta-Sicily Channel, Remote Sens. Environ.,
225, 65–76, https://doi.org/10.1016/j.rse.2019.02.026, 2019.
Carrara, P., Corgnati, L., Cosoli, S., Griffa, A., Kalampokis, A., Mantovani, C., Oggioni, A., Pepe, M., Raffa, F., Serafino, F., Uttieri, M., and Zambianchi, E.: The RITMARE coastal radar
network and applications to monitor marine transport infrastructures, EGU
General Assembly, Wien (Austria), 16, EGU2014-14 149-1, 2014.
Carval, T., Chalkiopoulos, A., Perivoliotis, L., De Alfonso
Alonso-Muñoyerro, M., Manzano Munoz, F., Ringheim, L. S., Hammarklint,
T., Sotiropoulou, M., Guyot C., Rottlan, P., Corgnati, L., Marinova, V., and
Jandt, S.: Copernicus Marine In Situ NetCDF format manual, Copernicus in
situ TAC, https://doi.org/10.13155/59938, 2020.
Cavaleri, L., Bertotti, L., Torrisi, L., Bitner-Gregersen, E., Serio, M., and
Onorato, M.: Rogue waves in crossing seas: The Louis Majesty accident,
J. Geophys. Res., 117, C00J10, https://doi.org/10.1029/2012JC007923,
2012.
Chapman, R. D. and Graber, H. C.: Validation of HF radar measurements,
Oceanography, 10, 76–79, 1997.
Chapman, R. D., Shay, L. K., Graber, H. C., Edson, J. B., Karachintsev, A.,
Trump, C. L., and Ross, D. B.: On the accuracy of HF radar surface current
measurements: intercomparison with ship-based sensors, J. Geophys. Res., 102, 18737–18748, 1997.
Christaki, U., Van Wambeke, F., Lefevre, D., Lagaria, A., Prieur, L., Pujo-Pay, M., Grattepanche, J.-D., Colombet, J., Psarra, S., Dolan, J. R., Sime-Ngando, T., Conan, P., Weinbauer, M. G., and Moutin, T.: Microbial food webs and metabolic state across oligotrophic waters of the Mediterranean Sea during summer, Biogeosciences, 8, 1839–1852, https://doi.org/10.5194/bg-8-1839-2011, 2011.
Chu, X., Zhang, J., Ji, Y., Wang, Y., and Yang, L.: Extraction of wind
direction from the hf hybrid sky-surface wave radar sea echoes, IEEE Aerosp.
Electron. Syst. Mag., 33, 42–47, 2018.
Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F.,
Aguzzi, J., et al.: The biodiversity of the Mediterranean Sea: estimates,
patterns, and threats, PLoS ONE, 5, e11842, https://doi.org/10.1371/journal.pone.0011842, 2010.
Corgnati, L.: LorenzoCorgnati/HFR_Node_Historical_Data_Processing:
EU_HFR_NODE_Historical_Data_Processing (Version v2.1.1.6).
Zenodo [code], https://doi.org/10.5281/zenodo.3569519, 2019.
Corgnati, L.: LorenzoCorgnati/HFR_Node_tools: EU_HFR_NODE_Tools (Version v2.1.2), Zenodo [code],
https://doi.org/10.5281/zenodo.3855461, 2020.
Corgnati, L., Mantovani, C., Griffa, A., Berta, M., Penna, P., Celentano,
P., Bellomo, L., Carlson, D.F. and D'Adamo, R.: Implementation and
Validation of the ISMAR High-Frequency Coastal Radar Network in the Gulf of
Manfredonia (Mediterranean Sea), IEEE J. Ocean. Eng., 44, 424–445, https://doi.org/10.1109/JOE.2018.2822518, 2019a.
Corgnati, L., Mantovani, C., Novellino, A., Jousset, S., Cramer, R. N., and
Thijsse, P.: SeaDataNet data management protocols for HF Radar data, WP9 –
Deliverable D9.12. Version 1.6. SeaDataNet, 83, https://doi.org/10.25607/OBP-1011,
2019b.
Corgnati, L., Carrara, P. Cosoli, S. Forneris, V. Griffa, A. Kalampokis, A.
Mantovani, C., Oggioni, M. Pepe, F. Raffa, R., Santoleri, F., Serafino,
S., Tronconi, Uttieri, M., and Zambianchi, E.: The RITMARE Italian coastal
radar network: operational system and data interoperability framework,
Proceedings of the 7th EuroGOOS Conference, Lisbon, ISBN 978-2-9601883-1-8, 2014.
Corgnati, L., Mantovani, C., Novellino, A., Rubio, A., Mader, J., Reyes, E.,
Griffa, A., Asensio, J. L.., Gorringe, P., Quentin, C., Breitbach, G., and
Widera, J.: Recommendation Report 2 on improved common procedures for HFR QC
analysis,
http://www.jerico-ri.eu/download/jerico-next-deliverables/JERICO-NEXT-Deliverable_5.14_V1.pdf (last access: 31 March 2022), 2018.
Corgnati, L., Mantovani, C., Rubio, A., Reyes, E., Rotllán, P., Novellino, A., Gorringe, P., Solabarrieta, L., Griffa, A. and and Mader, J: The
EuroGOOS High Frequency Radar Task Team: a success story of collaboration to
be kept alive and made growing, 9th EuroGOOS International conference, Shom;
Ifremer; EuroGOOS AISBL, May 2021, Brest, France, 467–474, 2021.
Cosoli, S., Mazzoldi, A., and Gacic, M.: Validation of surface current
measurements in the Northern Adriatic Sea from High Frequency radars,
J. Atmos. Ocean. Tech., 27, 908–919, 2010.
Cotroneo, Y., Aulicino, G., Ruiz, S., Sánchez Román, A., Torner Tomàs, M., Pascual, A., Fusco, G., Heslop, E., Tintoré, J., and Budillon, G.: Glider data collected during the Algerian Basin Circulation Unmanned Survey, Earth Syst. Sci. Data, 11, 147–161, https://doi.org/10.5194/essd-11-147-2019, 2019.
Crombie, D. D.: Doppler Spectrum of Sea Echo at 13.56 Mc./s., Nature, 175, 681–682, 1955.
Davis, R. E.: Drifter observations of coastal surface currents during CODE:
The method and descriptive view, J. Geophys. Res., 90, 4741–4755, https://doi.org/10.1029/JC090iC03p04741, 1985.
de Alfonso, M., Ruiz Gil-de la Serna, M. I., and Pérez, S.: Banco de datos oceanográficos, conjunto de datos REDEXT, Puertos del Estado, [data set], https://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx, last access: 21 April 2022
de Paolo, T., Terril, E., and Kirincich, A.: Improving SeaSonde radial
velocity accuracy and variance using radial metrics, IEEE Oceans, Genova,
1–9, 2015.
de Valk, C., Reniers, A., Atanga, J., Vizinho, A., and Vogelzang, J.:
Monitoring surface waves in coastal waters by integrating HF radar
measurement and modelling, Coast. Eng., 37, 431–453,
https://doi.org/10.1016/S0378-3839(99)00037-X, 1999.
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational
data assimilation scheme, Ocean Model, 22, 89–105, 2008.
Domps, B., Marmain, J. and Guérin, C.-A.: A Reanalysis of the October
2016 “Meteotsunami” in British Columbia with Help of High-Frequency Radars
and Autoregressive Modeling, IEEE T. Geosci. Remote, 19, 3505105
https://doi.org/10.1109/LGRS.2021.3066849, 2020.
Domps, B., Dumas, D. Guérin, C.-A., and Marmain, J.: High-Frequency Radar
Ocean Current Mapping at Rapid Scale with Auto-Regressive Modeling, IEEE J.
Ocean Eng., 46, 891–899, https://doi.org/10.1109/JOE.2020.3048507, 2021.
D'Ortenzio, F., Taillandier, V., Claustre, H., Prieur, L. M., Leymarie, E.,
Mignot, A., Poteau, A., Penkerc'h, C., and Schmechtig, C. M.: Biogeochemical
Argo: The Test Case of the NAOS Mediterranean Array, Front. Mar. Sci., 24,
https://doi.org/10.3389/fmars.2020.00120, 2020.
Dumas, D. and Guérin, C.-A.: Self-calibration and antenna grouping for
bistatic oceanographic High-Frequency Radars, Electr. Eng.
Sys. Sci., 1–16,
https://doi.org/10.48550/arXiv.2005.10528, 2020.
Dumas, D., Gramoullé, A., Guérin, C.-A., Molcard, A., Ourmiëres,
Y., and Zakardjian, B.: Multistatic estimation of high-frequency radar
surface currents in the region of Toulon, Ocean Dynam., 70, 1485–1503,
https://doi.org/10.1007/s10236-020-01406-z, 2020.
Dumas, D., Guérin, C.-A., Quentin, C., and Molcard, A.: MIO's HFRToulon data, Mediterranean Institute of Oceanography, [data set], http://hfradar.univ-tln.fr/HFRADAR/squel.php?content=accueil, last access: 21 April 2022a.
Dumas, D., Quentin, C., and Guérin, C.-A.: Real time total currents foe 2020 and 2021, Mediterranean Institute of Oceanography, [data set], https://erddap.osupytheas.fr/erddap/files/cmems_nc_cf0e_c84a_8ead/, last access: 21 April 2022b.
Emery, B. M.: Evaluation of alternative direction-of-arrival methods for
oceanographic HF radars, IEEE J. Ocean. Eng., 45,
990–1003, https://doi.org/10.1109/JOE.2019.2914537, 2020.
Emery, B. M., Washburn, M. L., and Harlan, J. A.: Evaluating radial current
measurements from CODAR high frequency radars with moored current meters,
J. Atmos. Ocean. Tech., 21, 1259–1271, 2004.
Esposito, G., Saviano S., Di Lemma, R., Buonocore, B., de Ruggiero, P.,
Pierini, S., and Zambianchi, E.: An analysis of the seasonal wind regime in
the Gulf of Naples using observational data and model outputs, Geophys. Res. Abstr., 18, 13421, 2018.
Falco, P., Buonocore, B., Cianelli, D., De Luca, L., Giordano, A., Iermano, I., Kalampokis, A., Saviano, S., Uttieri, M., Zambardino, G., and Zambianchi, E.: Dynamics and sea state in the
Gulf of Naples: potential use of high-frequency radar data in an operational
oceanographic context, J. Oper. Oceanogr., 9, 33–45,
https://doi.org/10.1080/1755876X.2015.1115633, 2016.
Fichaut, M. and Schaap, D.: From SeaDataNet II to SeaDataCloud, in
International conference on Marine Data and Information systems (IMDIS),
Gdansk, Poland, 57, 11–13, 2016.
Flores-Vidal, X., Flament, P., Durazo, R., Chavanne, C., and Gurgel, K.-W.:
High-frequency radars: Beamforming calibrations using ships as reflectors,
J. Atmos. Ocean. Tech., 30, 638–648, 2013.
Forney, R., Roarty, H., and Glenn, S.: Measuring Waves with a Compact HF
Radar, Paper presented at OCEANS 2015 – MTS/IEEE, Washington, 19–22
October 2015.
Fujii, S., Heron, M. L., Kim, K., Lai, J. W., Lee, S. H., Wu, X., Wyatt, L. R.,
and Yang, W. C: An overview of developments and applications of oceanographic
radar networks in Asia and oceania countries, Ocean Sci. J., 48,
69–97, 2013.
Gaiser, L. and Hribar, D.: Euro-Mediterranean Region: Resurged Geopolitical
Importance, Int. J. Euro-Mediter. Stud., 5, 57–69,
https://doi.org/10.1007/s40321-012-0002-8, 2012.
Garrabou, J., Gómez-Gras, D., Ledoux, J.-B., Linares, C., et al.:
Collaborative Database to Track Mass Mortality Events in the Mediterranean
Sea, Front. Mar. Sci., 6, 707, https://doi.org/10.3389/fmars.2019.00707, 2019.
Gómez, R., Helzel, T., Wyatt, L., López, G., Conley, D., Thomas, N.,
Smet, S., and Sicot, G.: Estimation of Wave Parameters from HF Radar Using
Different Methodologies and Compared with Wave Buoy Measurements at the Wave
Hub, Conference paper presented at OCEANS 2015 – MTS/IEEE, Genova, 18–21
May 2015.
Gómez, R., Tran, T. H., Ramdhani, A., and Triyono, R.: HF Radar Validation
and Accuracy Analysis using Baseline Comparison Approach in the Sunda
Strait, Technical Report, https://doi.org/10.13140/RG.2.2.11110.96322, 2020.
Gómez-Navarro, L., Fablet, R., Mason, E., Pascual, A., Mourre, B.,
Cosme, E., and Le Sommer, J.: SWOT Spatial Scales in the Western
Mediterranean Sea Derived from Pseudo-Observations and an Ad Hoc Filtering,
Remote Sens., 10, 599, https://doi.org/10.3390/rs10040599, 2018.
Griffa, A., Horstmann, J., Mader, J., Rubio, A., Berta, M., Orfila, A., and Axell, L.: Report on final assessment of
methodological improvements and testing, JERICO-NEXT WP3 Innovations in
Technology and Methodology, Deliverable D3.4, Version 2, Brest, France,
IFREMER, 56 pp., (JERICO-NEXT-WP3-D3.4-180719-V2),
https://doi.org/10.25607/OBP-948, 2019.
Guérin, C.-A., Dumas, S., Gramoulle, A., Quentin, C., Saillard, M., and
Molcard, A.: The multistatic oceanographic HF radar network in Toulon. 2019
International Radar Conference (RADAR), Toulon, France, 2019, 1–5, https://doi.org/10.1109/RADAR41533.2019.171401, 2019.
Guérin, C.-A., Dumas, D., Molcard, A., Quentin, C., Zakardjian, B.,
Gramoullé, A., and Berta, M.: High-Frequency radar measurements with CODARs
in the region of Nice: improved calibration and performances, accepted, J. Atmos. Ocean. Tech., 38, 2003–2016,
https://doi.org/10.1175/JTECH-D-21-0058.1, 2021.
Gurgel, K. W., Antonischski, G., Essen, H. H., and Schlick, T.: Wellen radar
(WERA): A new ground wave radar for remote sensing, Coast. Eng., 37,
219–234, 1999.
Gurgel, K. W., Essen, H. H., and Schlick, T.: An empirical method to derive
ocean waves from second-order Bragg scattering: Prospects and limitations,
IEEE J. Ocean. Eng., 31, 804–811, 2006.
Gurgel, K.-W., Barbin, Y., and Schlick, T.: Radio Frequency Interference
Suppression Techniques in FMCW Modulated HF Radars, in Oceans 2007 Europe,
1–4, https://doi.org/10.1109/OCEANSE.2007.4302289, 2007.
Haller, G.: Lagrangian coherent structures, Annu. Rev. Fluid Mech,
47, 137–162, https://doi.org/10.1146/annurev-fluid-010313-141322, 2015.
Hernández-Carrasco, I., Solabarrieta, L., Rubio, A., Esnaola, G., Reyes, E., and Orfila, A.: Impact of HF radar current gap-filling methodologies on the Lagrangian assessment of coastal dynamics, Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, 2018.
Hernandez-Lasheras, J., Mourre, B., Orfila, A., Santana, A., Reyes, E., and Tintoré, J.: Evaluating high-frequency radar data assimilation impact in coastal ocean operational modelling, Ocean Sci., 17, 1157–1175, https://doi.org/10.5194/os-17-1157-2021, 2021.
Helzel, T., Petersen, L., Widera, J., Bennis, A., Benoit, L., and Barbin, Y.:
Dual frequency ocean radar concept to measure ocean currents and waves at
the Raz Blanchard, OCEANS 2017, Aberdeen, 1–4, https://doi.org/10.1109/OCEANSE.2017.8084761, 2017.
Heron, M. L., and Rose, R.: On the application of HF ocean radar to the
observation of temporal and spatial changes in wind direction, IEEE
J. Ocean. Eng., 11, 210–218, https://doi.org/10.1109/JOE.1986.1145173, 1986.
Heron, M. L.: Applying a unified directional wave spectrum to the remote
sensing of wind wave directional spreading, Can. J. Remote. Sens, 28,
346–353, 2002.
Heron, M. L., Dzvonkovskaya, A., and Helzel, T.: HF radar optimised for
tsunami monitoring, Proc. OCEANS 2015 – Genova, 1–5, 2015.
Hisaki, Y.: Nonlinear inversion of the integral equation to estimate ocean
wave spectra from HF radar, Radio Sci., 31, 25–39, https://doi.org/10.1029/95RS02439, 1996.
Hisaki, Y.: Ocean Wave Directional Spectra Estimation from an HF Ocean Radar
with a Single Antenna Array: Methodology, J. Atmos. Ocean. Tech., 23, 268–286, https://doi.org/10.1175/JTECH1836.1., 2006.
Hisaki, Y.: Sea Surface Wind Correction Using HF Ocean Radar and Its Impact
on Coastal Wave Prediction, J. Atmos. Ocean. Technol., 34, 2001–2020, 2017.
Huang, W., Gill, E., Wu, S., Wen, B., Yang, Z., and Hou, J.: Measuring surface
wind direction by monostatic HF ground-wave radar at the eastern China sea,
IEEE J. Ocean. Eng., 29, 1032–1037, 2004.
Juza, M. and Tintoré, J.: Multivariate Sub-Regional Ocean Indicators in
the Mediterranean Sea: From Event Detection to Climate Change Estimations,
Front. Mar. Sci., 8, 610589, https://doi.org/10.3389/fmars.2021.610589, 2021.
Kalampokis, A., Uttieri, M., Poulain, P., and Zambianchi, E.: Validation of HF
Radar-Derived Currents in the Gulf of Naples With Lagrangian Data, IEEE
Geosci. Remote Sens. Lett., 13, 1452–1456, https://doi.org/10.1109/LGRS.2016.2591258, 2016.
Kassis, D. and Korres, G.: Hydrography of the Eastern Mediterranean basin
derived from argo floats profile data, Deep Sea Res. Pt. II, 171, 104712,
https://doi.org/10.1016/j.dsr2.2019.104712, 2020.
Kirincich, A.: Remote Sensing of the Surface Wind Field over the Coastal
Ocean via Direct Calibration of HF radar Backscatter Power, J. Atmos. Ocean.
Technol., 33, 1377–1392, 2016.
Kirincich, A. R., de Paolo, T., and Terrill, E.: Improving HF Radar Estimates
of Surface Currents Using Signal Quality Metrics, with Application to the
MVCO High-Resolution Radar System, J. Atmos. Ocean. Tech., 29, 1377–1390, 2012.
Kohut, J. T. and Glenn, S. M.: Improving HF radar surface current measurements
with measured antenna beam patterns, J. Atmos. Ocean. Tech., 20,
1303–1316, 2003.
Kohut, J. T., Roarty, H. J., and Glenn, S.: Characterizing Observed
Environmental variability with HF Doppler radar surface mappers and Acoustic
Doppler Current Profilers: Environmental variability in the Coastal Ocean,
J. Ocean. Eng., 31, 876–884, 2006.
Lana, A., Marmain, J., Fernández, V., Tintoré, J., and Orfilia, A.:
Wind influence on surface current variability in the Ibiza Channel from HF
Radar, Ocean Dynam., 66, 483–497, 2016.
Laws, K. E., Paduan, J. D., and Fernández, D. M.: Effect of Stokes drift on
HF radar measurements, Radiowave Oceanography the First International
Workshop, University of Miami, Rosentiel School of Marine and Atmospheric
Science, 49–55, 2003.
Lejeusne, C., Chevaldonne, P., Pergent-Martini, C., Boudouresque, C. F., and
Perez, T.: Climate change effects on a miniature ocean: the highly diverse,
highly impacted Mediterranean Sea, Trends Ecol. Evol., 25,
250–260, https://doi.org/10.1016/j.tree.2009.10.009, 2010.
Le Traon, P. Y.: From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography, Ocean Sci., 9, 901–915, https://doi.org/10.5194/os-9-901-2013, 2013.
Le Traon, P.-Y., Ali, A., Álvarez Fanjul, E., Behrens, A., Stanev, E.,
Staneva, J., et al.: The Copernicus Marine Environmental Monitoring Service:
Main Scientific Achievements and Future Prospects, Special Issue Mercator
Oceìan Journal, 56, https://doi.org/10.25575/56, 2017.
Linnenluecke, M. K., Griffiths, A., and Winn, M.: Extreme Weather Events and
the Critical Importance of Anticipatory Adaptation and Organizational
Resilience in Responding to Impacts, Business Strategy and the Environment,
21, 17–32, https://doi.org/10.1002/bse.708, 2012.
Lipa, B. J. and Nyden, B.: Directional wave information from the SeaSonde,
IEEE J. Ocean. Eng., 30, 221–231, 2005.
Lipa, B. J., Nyden, B., Barrick, D., and Kohut, J.: HF Radar Sea-Echo from
Shallow Water, Sensors, 8, 4611–4635, 2008.
Lipa, B. J., Isaccson, J., Nyden, B., and Barrick, D.: Tsunami Arrival
Detection with High Frequency (HF) Radar, Remote Sens., 4, 1448–1461,
2012.
Lipa, B. J., Barrick, D., Alonso-Martirena, A., Fernandes, M., Ferrer, M. I., and
Nyden, B.: Brahan Project High Frequency Radar Ocean Measurements: Currents,
Winds, Waves and Their Interactions, Remote Sens, 6, 12094–12117,
https://doi.org/10.3390/rs61212094, 2014.
Long, A. E. and Trizna, D. B.: Measurements and preliminary interpretation of
hf radar Doppler spectra from the sea-echo of an atlantic storm, NRL Rep., 21, 680–685, 1972.
Long, R. M., Barrick, D., Largier, J. L., and Garfield, N.: Wave Observations
from Central California: SeaSonde Systems and in Situ Wave Measurements,
J. Sensors, 2011, 728936, https://doi.org/10.1155/2011/728936, 2011.
López, G., Conley, D., and Greaves, D.: Calibration, Validation and
Analysis if an Empirical Algorithm for the Retrieval of Wave Spectra from HF
Radar Sea Echo, J. Atmos. Ocean. Tech., 33, 245–261,
https://doi.org/10.1175/JTECH-D-15-0159.1, 2016.
López, G. and Conley, D. C.: Comparison of HF Radar Fields of Directional
Wave Spectra Against In Situ Measurements at Multiple Locations, J. Mar. Sci. Eng., 7, 271, https://doi.org/10.3390/jmse7080271, 2019.
Lorente, P., Piedracoba, S., Soto-Navarro, J., and Álvarez-Fanjul, E.:
Accuracy assessment of High Frequency radar current measurements in the
Strait of Gibraltar, J. Operat. Oceanogr., 7, 59–73, 2014.
Lorente, P., Piedracoba, S., Soto-Navarro, J., and Alvarez-Fanjul, E.: Evaluating the surface circulation in the Ebro delta (northeastern Spain) with quality-controlled high-frequency radar measurements, Ocean Sci., 11, 921–935, https://doi.org/10.5194/os-11-921-2015, 2015.
Lorente, P., Piedracoba, S., Soto-Navarro, J., and Álvarez-Fanjul, E.:
Characterizing the surface circulation in Ebro Delta (NW Mediterranean) with
HF radar and modeled current data, J. Mar. Syst., 163, 61–79,
2016a.
Lorente, P., Piedracoba, S., Sotillo M. G., Aznar, R., Amo-Baladrón, A.,
Pascual, A., Soto-Navarro, J., and Álvarez-Fanjul, E.: Ocean model skill
assessment in the NW Mediterranean using multi-sensor data, J. Oper. Oceanogr., 9, 75–92, https://doi.org/10.1080/1755876X.2016.1215224, 2016b.
Lorente, P., García-Sotillo, M., Amo-Baladrón, A., Aznar, R., Levier, B., Sánchez-Garrido, J. C., Sammartino, S., de Pascual-Collar, Á., Reffray, G., Toledano, C., and Álvarez-Fanjul, E.: Skill assessment of global, regional, and coastal circulation forecast models: evaluating the benefits of dynamical downscaling in IBI (Iberia–Biscay–Ireland) surface waters, Ocean Sci., 15, 967–996, https://doi.org/10.5194/os-15-967-2019, 2019.
Lorente, P., Lin-Ye, J., García-León, M., Reyes, E., Fernandes, M.,
Sotillo, M.G., Espino, M., Ruiz, M. I., Gracia, V., Pérez, S., Aznar, R.,
Alonso-Martirena, A., and Álvarez-Fanjul, E.: On the Performance of High
Frequency Radar in the Western Mediterranean During the Record-Breaking
Storm Gloria, Front. Mar. Sci., 8, 645762, https://doi.org/10.3389/fmars.2021.645762,
2021.
Mahadevan, A., D'Asaro, E., Allen, J., et al.: CALYPSO 2019 Cruise Report:
Field Campaign in the Mediterranean, Technical Report, Woods Hole
Oceanographic Institution, https://doi.org/10.1575/1912/25266, 2020.
Malanotte-Rizzoli, P., Artale, V., Borzelli-Eusebi, G. L., Brenner, S., Crise, A., Gacic, M., Kress, N., Marullo, S., Ribera d'Alcalà, M., Sofianos, S., Tanhua, T., Theocharis, A., Alvarez, M., Ashkenazy, Y., Bergamasco, A., Cardin, V., Carniel, S., Civitarese, G., D'Ortenzio, F., Font, J., Garcia-Ladona, E., Garcia-Lafuente, J. M., Gogou, A., Gregoire, M., Hainbucher, D., Kontoyannis, H., Kovacevic, V., Kraskapoulou, E., Kroskos, G., Incarbona, A., Mazzocchi, M. G., Orlic, M., Ozsoy, E., Pascual, A., Poulain, P.-M., Roether, W., Rubino, A., Schroeder, K., Siokou-Frangou, J., Souvermezoglou, E., Sprovieri, M., Tintoré, J., and Triantafyllou, G.: Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research, Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, 2014.
Mantovani, C., Corgnati, L., Horstmann, J., Rubio, A., Reyes, E., Quentin,
C., Cosoli, S., Asensio, J. L., Mader, J., and Griffa, A.: Best Practices on
High Frequency Radar Deployment and Operation for Ocean Current Measurement,
Front. Mar. Sci., 7, 210, https://doi.org/10.3389/fmars.2020.00210, 2020.
Marmain, J., Molcard, A., Forget, P., Barth, A., and Ourmières, Y.: Assimilation of HF radar surface currents to optimize forcing in the northwestern Mediterranean Sea, Nonlin. Processes Geophys., 21, 659–675, https://doi.org/10.5194/npg-21-659-2014, 2014.
Martín Miguez, B., Novelino, A., Vinci, M., Claus, S., Calewaert,
J.-B., Valius, H., et al.: The European Marine Observation and Data Network
(EMODnet): visions and roles of the gateway to marine data in Europe, Front.
Mar. Sci., 6, 313, https://doi.org/10.3389/fmars.2019.00313, 2019.
Melet, A., Teatini, P., Le Cozannet, G., Jamet, C., Conversi, A.,
Benveniste, J., and Almar, R.: Earth Observations for Monitoring Marine
Coastal Hazards and their drivers, Surv. Geophys., 41, 1489–1534,
2020.
Milglietta, M. M. and Rotunno, R.: Development mechanisms for Mediterranean
tropical-like cyclones (medicanes), Q. J. Roy. Meteorol. Soc., 145,
1444–1460, 2019.
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, edited by: Saliot, A., The Mediterranean Sea, Handbook of Environmental Chemistry,
5K, Springer, Berlin, Heidelberg, https://doi.org/10.1007/b107143, 2005.
Molcard, A., Poulain, P., Forget, P., Griffa, A., Barbin, Y., Gaggelli, J.,
Maistre, J. D., and Rixen, M.: Comparison between vhf radar observations and
data from drifter clusters in the Gulf of la Spezia (Mediterranean Sea), J.
Mar. Sys., 78, 79–89, https://doi.org/10.1016/j.jmarsys.2009.01.012, 2009.
Moltmann, T., Turton, J., Zhang, H-M., Nolan, G., Gouldman, C., Griesbauer,
L., Willis, Z., Piniella, Á.M., Barrell, S., Andersson, E., Gallage, C.,
Charpentier, E., Belbeoch, M., Poli, P., Rea, A., Burger, E.F., Legler,
D.M., Lumpkin, R., Meinig, C., O'Brien, K., Saha, K., Sutton, A., Zhang, D.,
and Zhang, Y.: A Global Ocean Observing System (GOOS), delivered through
enhanced collaboration across regions, communities, and new technologies,
Front. Mar. Sci., 6, 291, https://doi.org/10.3389/fmars.2019.00291, 2019.
Mourre, B., Aguiar, E., Juza, M., Hernández-Lasheras, J., Reyes, E.,
Heslop, E., Escudier, R., Cutolo, E., Ruiz, S., Mason, E., Pascual, A., and
Tintoré, J.: Assessment of high-resolution regional ocean prediction
systems using muli-platform observations: illustrations in the Western
Mediterranean Sea, in: “New Frontiers in Operational Oceanography”, edited by: Chassignet, E.,
Pascual, A., Tintoré, J., and Verron, J., GODAE Ocean View,
663–694, https://doi.org/10.17125/gov2018.ch24, 2018.
Nikolaidis, N. P., Bidoglio, G., Bouraoui, F., and Cardoso, A. C.: Water
Quality of the Mediterranean, Comprehensive Water Quality and Purification,
4, 230–250, https://doi.org/10.1016/B978-0-12-382182-9.00076-1, 2014.
Nolan, P. J., Serra, M., and Ross, S. D.: Finite-time Lyapunov exponents in the
instantaneous limit and material transport, Nonlinear Dyn., 100, 3825–3852,
https://doi.org/10.1007/s11071-020-05713-4, 2020.
Ohlmann, C., White, P., Washburn, L., Terril, E., Emery, B., and Otero, M.:
Interpretation of coastal HF radar-derived currents with high-resolution
drifter data, J. Atmos. Ocean. Tech., 24, 666–680,
2007.
Olmedo, E., Taupier-Letage, I., Turiel, A., and Alvera-Azcárate, A.:
Improving SMOS Sea Surface Salinity in the Western Mediterranean Sea through
Multivariate and Multifractal Analysis, Remote Sens., 10, 485, https://doi.org/10.3390/rs10030485, 2018.
Onorato, M., Proment, D., and Toffoli, A.: Triggering Rogue Waves in Opposing
Currents, Phys. Rev. Lett. 107, 184502, https://doi.org/10.1103/PhysRevLett.107.184502, 2011.
Orasi, A., Picone, M., Drago, A., Capodici, F., Gauci, A., Nardone, G.,
Inghilesi, R., Azzopardi, J., Galea, A., Ciraolo, G., and Musulin, J. S.;
Alonso-Martirena, A.: HF Radar for Wind Waves Measurements in the
Malta-Sicily Channel, Measurements, 128, 446–454, 2018.
Paduan, J. D., Kim, K. C., Cook, M. S., and Chavez, F. P.: Calibration and
validation of direction-finding High-Frequency radar ocean surface current
observations, IEEE J. Ocean. Eng., 31, 862–875, 2006.
Pinardi, N., Arneri, E., Crise, A., Ravaioli, M., and Zavatarelli, M.: The
physical, sedimentary and ecological structure and variability of shelf
areas in the Mediterranean Sea, in: The Sea, 14, edited by: Robinson, A. R. and Brink, K., Cambridge, Harvard University Press, 1243–1330, 2006.
Pinardi, N., Cessi, P., Borile, F., and Wolfe, W. C.: The Mediterranean Sea
overturning circulation, J. Phys. Oceanogr., 49, 1699–1721, https://doi.org/10.1175/JPO-D-18-0254.1, 2019.
Ràfols, L., Grifoll, M., and Espino, M.: Wave–current interactions in a wind-jet region, Ocean Sci., 15, 1–20, https://doi.org/10.5194/os-15-1-2019, 2019.
Ramos, R. J., Graber, H. C., and Haus, B. K: Observation of Wave Energy
Evolution in Coastal Areas Using HF Radar, J. Atmos.
Ocean. Tech., 26, 1891–1909, https://doi.org/10.1175/2009JTECHO631.1, 2009.
Ranalli, M., Lagona, F., Picone, M., and Zambianchi, E.: Segmentation of sea
current fields by cylindrical hidden Markov models: a composite likelihood
approach, J. Roy. Statist. Soc., 67, 575–598, 2018.
Révelard, A., Reyes, E., Mourre, B., Hernández-Carrasco, I., Rubio,
A., Lorente, P., Fernández, C. D., Mader, J., Álvarez-Fanjul, E., and
Tintoré, J.: Sensitivity of Skill Score metric to validate Lagrangian
simulations in coastal areas: recommendations for Search and Rescue
applications, Front. Mar. Sci., https://doi.org/10.3389/fmars.2021.630388,
2021.
Reyes, E., Rotllán-García, P., Rubio, A., Corgnati, L., Mader, J.,
and Mantovani, C.: Guidelines on how to sync your High Frequency (HF) radar
data with the European HF Radar node (Version 1.2), Balearic Islands Coastal
Observing and Forecasting System, SOCIB, https://doi.org/10.25704/9XPF-76G7, 2019.
Reyes, E., Hernández-Carrasco, I., Révelard, A., Mourre, B.,
Rotllán, P., Comerma, E., Bakhsh, T. T., Rubio, A., Mader, J., Ferrer,
L., De Lera Fernández, C., Álvarez-Fanjul, E., and Tintoré, J.:
IBISAR service for real-time data ranking in the IBI area for emergency
responders and SAR operators, in: Copernicus Marine Service Ocean State
Report, Issue 4, J. Oper. Oceanogr., 13, 92–99,
https://doi.org/10.1080/1755876X.2020.1785097, 2020.
Reyes, E., Aguiar, E., Bendoni, M., Berta, M., Brandini, C., Cáceres-Euse, A., Capodici, F., Cardin, V., Cianelli, D., Ciraolo, G., Corgnati, L., Dadić, V., Doronzo, B., Drago, A., Dumas, D., Falco, P., Fattorini, M., Fernández, M. J., Gauci, A., Gómez, R., Griffa, A., Guérin, C.-A., Hernández-Carrasco, I., Hernández-Lasheras, J., Ličer, M., Lorente, P., Magaldi, M. G., Mantovani, C., Mihanović, H., Molcard, A., Mourre, B., Révelard, A., Reyes-Suárez, C., Saviano, S., Sciascia, R., Taddei, S., Tintoré, J., Toledo, Y., Uttieri, M., Vilibić, I., Zambianchi, E., and Orfila, A.: Coastal high-frequency radars in the Mediterranean – Part 2:
Applications in support of science priorities and societal needs, Ocean Sci., 18, 797–837,
https://doi.org/10.5194/os-18-797-2022, 2022.
Roarty, H., Smith, M., Kerfoot, J., Kohut, J., and Glenn, S.: Automated
quality control of high frequency radar data, IEEE Oceans, 2012, 1–7, 2012.
Roarty, H., Smith, M., Glenn, S. M., Barrick, D. E., Page, E., Statscewich, H.,
and Weingartner, T.: Expanding Maritime Domain Awareness Capabilities in the
Arctic: High Frequency Radar Vessel-tracking, IEEE Radar Conference, 1–5,
2013.
Roarty, H., Cook, T., Hazard, L., Harlan, J., Cosoli, S., Wyatt, L., Fanjul, E. A., Terrill, E., Otero, M., Largier, J., Glenn, S., Ebuchi, N., Whitehouse, B., Bartlett, K., Mader, J., Rubio, A., Corgnati, L. P., Mantovani, C., Griffa, A., Reyes, E., Lorente, P., Flores-Vidal, X., Rogowski, P., Prukpitikul, S., Lee, S. H., Lai, J. W., Guerin, C., Sanchez, J., Hansen, B., Grilli, S. and Matta, K. S.: The Global High Frequency Radar Network, Front. Mar. Sci., 6, 164, https://doi.org/10.3389/fmars.2019.00164, 2019.
Rotllán-García, P.: High Frequency Radar data visualization
Copernicus Marine Service [code], https://doi.org/10.17882/80874, 2021.
Rubio, A., Mader, J., Corgnati, L., Mantovani, C., Griffa, A., Novellino, A., Quentin, C., Wyatt, L., Schulz-Stellenfleth, J., Horstmann, J., Lorente, P., Zambianchi, E., Hartnett, M., Fernandes, C., Zervakis, V., Gorringe, P., Melet, A., and Puillat, I.: HF radar activity in European coastal seas: next steps towards a
pan-European HF radar network, Front. Mar. Sci., 20, 8, https://doi.org/10.3389/fmars.2017.00008, 2017.
Rubio, A., Reyes, E., Mantovani, C., Corgnati, L., Lorente, P.,
Solabarrieta, L., Mader, J., Fernandez, V., Pouliquen, S., Novellino, A.,
Karstensen, J., and Petihakis, G.: European High Frequency Radar network
governance, EuroSea Deliverable, D3.4, EuroSea, 41 pp., https://doi.org/10.3289/eurosea_d3.4, 2021.
Ryabinin, V., Barbière, J., Haugan, P., Kullenberg, G., Smith, N.,
McLean, C., Troisi, A., Fischer, A., Aricò, S., Aarup, T., Pissierssens,
P., Visbeck, M., Oksfeldt Enevoldsen, H., and Rigaud, J.: The UN Decade of
Ocean Science for Sustainable Development, Front. Mar. Sci., 6, 470,
https://doi.org/10.3389/fmars.2019.00470, 2019.
Rypina, I. I., Kirincich, A. R., Limeburner, R., and Udovydchenkov, I. A.:
Eulerian and Lagrangian Correspondence of High-Frequency Radar and Surface
Drifter Data: Effects of Radar Resolution and Flow Components, J. Atmos. Ocean. Tech., 31, 945–966, 2014.
Sánchez-Arcilla, A., Staneva, J., Cavaleri, L., Badger, M., Bidlot, J.,
Sorensen, J. T., Hansen, L. B., Martin, A, Saulter, A., Espino, M., Miglietta,
M. M., Mestres, M., Bonaldo, D., Pezzutto, P., Schulz-Stellenfleth, J.,
Wiese, A., Larsen, X., Carniel, S., Bolaños, R., Abdalla, S., and Tiesi,
A.: CMEMS-Based Coastal Analyses: Conditioning, Coupling and Limits for
Applications, Front. Mar. Sci., 8, 604741, https://doi.org/10.3389/fmars.2021.604741,
2021.
Sánchez-Román, A., Ruiz, S., Pascual, A., Mourre, B., and Guinehut, S.: On the mesoscale monitoring capability of Argo floats in the Mediterranean Sea, Ocean Sci., 13, 223–234, https://doi.org/10.5194/os-13-223-2017, 2017.
Sarantis, S., Alvarez-Fanjul, E., and Coppini, G.: MONGOOS science and
strategy plan, Edt: Puertos del Estado, Avenida del Partenón, 10, 28042,
Madrid, Spain, ISBN 978-84-88740-08-3, 2018.
Saviano, S., Kalampokis, A., Zambianchi, E., and Uttieri, M.: A year-long
assessment of wave measurements retrieved from an HF radar network in the
Gulf of Naples (Tyrrhenian Sea, Western Mediterranean Sea), J. Oper.
Oceanogr., 12, 1–15, https://doi.org/10.1080/1755876X.2019.1565853, 2019.
Saviano, S., De Leo, F., Besio, G., Zambianchi, E., and Uttieri, M.: HF Radar
Measurements of Surface Waves in the Gulf of Naples (Southeastern Tyrrhenian
Sea): Comparison with Hindcast Results at Different Scales, Front. Mar.
Sci., 7, 492, https://doi.org/10.3389/fmars.2020.00492, 2020a.
Saviano, S., Cianelli, D., Zambianchi, E., Conversano, F., and Uttieri, M.:
An integrated reconstruction of the multiannual wave pattern in the Gulf of
Naples (South-Eastern Tyrrhenian Sea, Western Mediterranean Sea), J. Mar.
Sci. Eng., 8, 372, https://doi.org/10.3390/jmse8050372, 2020b.
Saviano, S., Esposito, G., Di Lemma, R., de Ruggiero, P., Zambianchi, E.,
Pierini, S., Falco, P., Buonocore, B., Cianelli, D., and Uttieri, M.: Wind
Direction Data from a Coastal HF Radar System in the Gulf of Naples (Central
Mediterranean Sea), Remote Sens., 13, 1333, https://doi.org/10.3390/rs13071333, 2021.
Saviano, S., Biancardi, A. A., Uttieri, M., Zambianchi, E., Cusati, L.A., Pedroncini, A., Contento, G., and Cianelli, D.: Sea Storm Analysis: Evaluation of Multiannual Wave Parameters Retrieved from HF Radar and Wave Model. Remote Sens. 2022, 14, 1696, https://doi.org/10.3390/rs14071696, 2022.
Schmidt, R.: Multiple emitter location and signal parameter estimation, IEEE
Trans. Antennas Propag., 3, 276–280, 1986.
Serra, M., Sathe, P., Rypina, I., Kirincich, A., Ross, S.H., Lermusiaux, P.,
Allen, A., Peacock, T., and Haller, G.: Search and rescue at sea aided by
hidden flow structures, Nat. Commun., 11, 2525,
https://doi.org/10.1038/s41467-020-16281-x, 2020.
Shen,W., Gurgel, K. W., Voulgaris, G., and Schlick, T., and Stammer, D.:
Wind-speed inversion from HF radar first-order backscatter signal, Ocean.
Dyn., 62, 105–121, 2012.
Shen, W. and Gurgel, K.-W.: Wind direction inversion from narrow-beam HF
Radar backscatter signals in low and high wind conditions at different radar
frequencies, Remote. Sens, 10, 1480, https://doi.org/10.3390/rs10091480, 2018.
Siddons, L. A., Wyatt, L. R., and Wolf, J.: Assimilation of HF radar data into
the SWAN wave model, J. Mar. Syst., 77, 312–324, 2009.
Sotillo, M. G., Garcia-Ladona, E., Orfila, A., Rodríguez-Rubio, P., Maraver, J. C., Conti, D., Padorno, E., Jiménez, J. A., Capó, E., Pérez, F., Sayol, J. M., de los Santos, F. J., Amo, A., Rietz, A., Troupin, C., Tintore, J., and Álvarez-Fanjul, E.: The MEDESS-GIB database: tracking the
Atlantic water inflow, Earth Syst. Sci. Data, 8, 141–149,
https://doi.org/10.5194/essd-8-141-2016, 2016.
Soussi, A., Bersani, C., Sacile, R., Bouchta, D., El Amarti, A., Seghiouer,
H., Nachite, D., and Al Miys, J.: Coastal Risk Modelling for Oil Spill in The
Mediterranean Sea, Advances in Science, Technol. Eng. Syst. J., 5, 273–286, 2020.
Spalding, M. D., Ruffo, S., Lacambra, C., Meliane, I., Hale, L. Z., Shepard,
C. C., and Beck, M. W.: The role of ecosystems in coastal protection: Adapting
to climate change and coastal hazards, Ocean Coast. Manage., 90,
50–57, 2014.
Stewart, R. H. and Joy, J. W.: HF radio measurements of surface currents, Deep
Sea Res.-Ocean., 21, 1039–1049, 1974.
Summers, J. K., Harwell, L. C., Smith, L. M., and Buck, K. D.: Measuring
Community Resilience to Natural Hazards: The Natural Hazard Resilience
Screening Index (NaHRSI)-Development and Application to the United States,
Geohealth, 2, 372–394, 2018.
Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P., Solidoro, C., and Cossarini,
G.: Assimilation of coastal and open sea biogeochemical data to improve
phytoplankton simulation in the Mediterranean Sea, Ocean Modell., 132,
46–60, https://doi.org/10.1016/j.ocemod.2018.09.007, 2018.
Tian, Z., Wen, B., Jin, L., and Tian, Y.: Radio frequency interference
suppression algorithm in spatial domain for compact high-frequency radar,
IEEE Geosci. Remote Sens. Lett., 15, 102–106, 2017.
Tintoré, J., Pinardi, N., Álvarez-Fanjul, E., et al.: Challenges for
Sustained Observing and Forecasting Systems in the Mediterranean Sea, Front.
Mar. Sci., 6, 568, https://doi.org/10.3389/fmars.2019.00568, 2019.
Trincardi, F., Cappelletto, M., Barvanti, A.,
Cadiou, J.-F., Bataille, A., Campillos Llanos, M.,
Chacón Campollo, E., and Trujillo Quintela, A.: BlueMED preliminary
implementation plan D2.9 (Core Document), European Union's Horizon 2020,
2020.
Tuel, A. and Eltahir, E. A. B.: Why Is the Mediterranean a Climate Change Hot
Spot?, J. Climate, 33, 5829–5843, https://doi.org/10.1175/JCLI-D-19-0910.1,
2020.
Turicchia, E., Cerrano, C., Ghetta, M., Abbiati, M., and Ponti, M.: MedSens
index: The bridge between marine citizen science and coastal management,
Ecol. Ind., 122, 107296, https://doi.org/10.1016/j.ecolind.2020.107296, 2021.
Updyke, T.: A study of HF Radar Outages in the Mid-Atlanti,. Galveston:
Radiowave Operators Working Group (ROWG), 2017.
Vandenbulcke, L., Beckers, J. M., and Barth, A.: Correction of inertial
oscillations by assimilation of HF radar data in a model of the Ligurian
Sea, Ocean Dynam., 67, 117–135, https://doi.org/10.1007/s10236-016-1012-5, 2017.
Vesecky, J. F., Drake, J., Teague, C. C., Ludwig, F. L., Davidson, K., and
Paduan, J.: Measurement of wind speed and direction using multifrequency HF
radar, IEEE T. Geosci. Remote, 3,
1899–1901, https://doi.org/10.1109/IGARSS.2002.1026293, 2002.
Viitak, M., Maljutenko, I., Alari, V., Suursaar, U., Rikka, S., and Lagemaa,
P.: The impact of surface currents and sea level on the wave field evolution
during St. Jude storm in the eastern Baltic Sea, Oceanologia, 58,
176–186, 2016.
Von Schuckmann, K. et al.: Copernicus Marine Service Ocean State Report,
Issue 4, J. Oper. Oceanogr., 13, 1–172,
https://doi.org/10.1080/1755876X.2020.1785097, 2020.
Wang, W., Forget, P., and Guan, C.: Inversion of swell frequency from a
1-year HF radar dataset collected in Brittany (France), Ocean Dynam., 116, 1447–1456, https://doi.org/10.1007/s10236-014-0759-9, 2014.
Waters, J., Wyatt L. R., Wolf, J., and Hines, A.: Data assimilation of
partitioned HF radar wave data into Wavewatch III, Ocean Modell., 72,
17–31, 2013.
Whelan, C., Teague, C., Barrick, D., Emery, B., and Washburn, L.: HF Radar
Calibration with Automatic Identification System Ships of Opportunity, Phase
II Final Report, NOAA SBIR, Silver Spring, MD, USA, 2013.
Wolff, C., Vafeidis, A. T., Muis, S., Lincke, D., Satta, A., Lionello, P.,
Jimenez, J. A., Conte, D., and Hinkel, J. A.: Mediterranean coastal database
for assessing the impacts of sea-level rise and associated hazards,
Sci. Data, 5, 180044, https://doi.org/10.1038/sdata.2018.44, 2018.
Wolff, C., Nikoletopoulos, T., Hinkel, J., and Vafeidis, A. T.: Future urban
development exacerbates coastal exposure in the Mediterranean, Sci. Rep., 10,
14420, https://doi.org/10.1038/s41598-020-70928-9, 2020.
Wyatt, L. R.: A Relaxation Method for Integral Inversion Applied to HF Radar
Measurement of the Ocean Wave Directional Spectrum, Int. J. Remote Sens., 11, 1481–1494, https://doi.org/10.1080/01431169008955106, 1990.
Wyatt, L. R.: An evaluation of wave parameters measured using a single HF
radar system, Can. J. Remote Sens., 28, 205–218,
https://doi.org/10.5589/m02-018, 2002.
Wyatt, L. R., Liakhovetski, G., Graber, H. C., and Haus, B. K.: Factors
Affecting the Accuracy of SHOWEX HD Radar Wave Measurements, J. Atmos. Ocean. Tech., 22, 847–859, https://doi.org/10.1175/JTECH1728.1,
2005.
Wyatt, L. R., Green, J. J., Middleditch, A., Moorhead, M. D., Howarth, J., Holt
M., and Keogh, S.: Operational Wave, Current, and Wind Measurements with the
Pisces HF Radar, J. Ocean. Eng., 31, 819–834, 2006.
Wyatt, L. R. and Green, J. J.: Measuring High and Low Waves with HF Radar, in:
Proceedings of OCEAN_EUROPE, 1–5, Bremen, Germany, 11–14 May, https://doi.org/10.1109/OCEANSE.2009.5278328, 2009.
Wyatt, L. R.: A comparison of scatterometer and HF radar wind direction
measurements, J. Oper. Oceanogr., 11, 54–63,
https://doi.org/10.1080/1755876X.2018.1443625, 2018.
Zambianchi, E., Uttieri, M., Cianelli, D., and Saviano, S.: HF radar data from the Gulf of Naples (Central Tyrrhenian Sea, Western Mediterranean Sea), Stazione Zoologica Anton Dohrn Napoli, [data set], https://meteo.uniparthenope.it/it/instruments/codar, last access: 21 April 2022.
Zeng, Y., Zhou, H., Roarty, H., and Wen, B.: Wind Speed Inversion in High
Frequency Radar Based on Neural Network, Int. J. Antenn. Propag., 2016, 8, https://doi.org/10.1155/2016/2706521, 2016.
Zeng, Y., Zhou, H., Lai, Y., and Wen, B.: Wind-direction mapping with a
modified wind spreading function by broad-beam high-frequency radar, IEEE
Geosci. Remote Sens. Lett., 15, 679–683, 2018.
Zeng, Y., Zhou, H., Huang, W., and Wen, B.: Studying wave-current interaction
by HF radar, IEEE conference paper: OCEANS 2019, Marseille, France, https://doi.org/10.1109/OCEANSE.2019.8867053, 17–20 June 2019.
Zervakis, V., Kokkini, Z., and Potiris, E.: Estimating Mixed Layer Depth with
the use of a Coastal High-Frequency Radar, Cont. Shelf Res., 149,
4–16, https://doi.org/10.1016/j.csr.2016.07.008, 2017.
Zhou, H. and Wen, B.: Wave Height Extraction from the First-Order Bragg
Peaks in High-Frequency Radars, IEEE T. Geosci. Remote,
12, 2296–2300, https://doi.org/10.1109/LGRS.2015.2472976, 2015.
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of...