Articles | Volume 21, issue 4
https://doi.org/10.5194/os-21-1315-2025
https://doi.org/10.5194/os-21-1315-2025
Research article
 | 
14 Jul 2025
Research article |  | 14 Jul 2025

Application of the HIDRA2 deep-learning model for sea level forecasting along the Estonian coast of the Baltic Sea

Amirhossein Barzandeh, Matjaž Ličer, Marko Rus, Matej Kristan, Ilja Maljutenko, Jüri Elken, Priidik Lagemaa, and Rivo Uiboupin

Related authors

Baltic Sea freshwater content
Urmas Raudsepp, Ilja Maljutenko, Amirhossein Barzandeh, Rivo Uiboupin, and Priidik Lagemaa
State Planet, 1-osr7, 7, https://doi.org/10.5194/sp-1-osr7-7-2023,https://doi.org/10.5194/sp-1-osr7-7-2023, 2023
Short summary

Related subject area

Approach: Numerical Models | Properties and processes: Sea level, tides, tsunamis and surges
Constraining local ocean dynamic sea-level projections using observations
Dewi Le Bars, Iris Keizer, and Sybren Drijfhout
Ocean Sci., 21, 1303–1314, https://doi.org/10.5194/os-21-1303-2025,https://doi.org/10.5194/os-21-1303-2025, 2025
Short summary
Investigation of the impact of complex coastline geometry on the evolution of storm surges along the eastern coast of India: a sensitivity study using a numerical model
Pawan Tiwari, Ambarukhana D. Rao, Smita Pandey, and Vimlesh Pant
Ocean Sci., 21, 381–399, https://doi.org/10.5194/os-21-381-2025,https://doi.org/10.5194/os-21-381-2025, 2025
Short summary
Indications of improved seasonal sea level forecasts for the United States Gulf and East Coasts using ocean-dynamic persistence
Xue Feng, Matthew J. Widlansky, Tong Lee, Ou Wang, Magdalena A. Balmaseda, Hao Zuo, Gregory Dusek, William Sweet, and Malte F. Stuecker
EGUsphere, https://doi.org/10.5194/egusphere-2025-98,https://doi.org/10.5194/egusphere-2025-98, 2025
Short summary
Assessing storm surge model performance: what error indicators can measure the model's skill?
Rodrigo Campos-Caba, Jacopo Alessandri, Paula Camus, Andrea Mazzino, Francesco Ferrari, Ivan Federico, Michalis Vousdoukas, Massimo Tondello, and Lorenzo Mentaschi
Ocean Sci., 20, 1513–1526, https://doi.org/10.5194/os-20-1513-2024,https://doi.org/10.5194/os-20-1513-2024, 2024
Short summary
The characteristics of tides and their effects on the general circulation of the Mediterranean Sea
Bethany McDonagh, Emanuela Clementi, Anna Chiara Goglio, and Nadia Pinardi
Ocean Sci., 20, 1051–1066, https://doi.org/10.5194/os-20-1051-2024,https://doi.org/10.5194/os-20-1051-2024, 2024
Short summary

Cited articles

Ahmad, H.: Machine learning applications in oceanography, Aquatic Research, 2, 161–169, https://doi.org/10.3153/AR19014, 2019. a
Andersson, H.: Influence of long-term regional and large-scale atmospheric circulation on the Baltic sea level, Tellus A, 54, 76–88, https://doi.org/10.3402/tellusa.v54i1.12125, 2002. a
Bahari, N. A. A. B. S., Ahmed, A. N., Chong, K. L., Lai, V., Huang, Y. F., Koo, C. H., Ng, J. L., and El-Shafie, A.: Predicting sea level rise using artificial intelligence: a review, Arch. Comput. Method. E., 30, 4045–4062, https://doi.org/10.1007/s11831-023-09934-9, 2023. a
Bajo, M., Medugorac, I., Umgiesser, G., and Orlić, M.: Storm surge and seiche modelling in the Adriatic Sea and the impact of data assimilation, Q. J. Roy. Meteor. Soc., 145, 2070–2084, https://doi.org/10.1002/qj.3544, 2019. a
Bajo, M., Ferrarin, C., Umgiesser, G., Bonometto, A., and Coraci, E.: Modelling the barotropic sea level in the Mediterranean Sea using data assimilation, Ocean Sci., 19, 559–579, https://doi.org/10.5194/os-19-559-2023, 2023. a
Download
Short summary
We evaluated a deep-learning model, HIDRA2, for predicting sea levels along the Estonian coast and compared it to traditional numerical models. HIDRA2 performed better overall, offering faster forecasts and valuable uncertainty estimates using ensemble predictions.
Share