Articles | Volume 21, issue 4
https://doi.org/10.5194/os-21-1315-2025
https://doi.org/10.5194/os-21-1315-2025
Research article
 | 
14 Jul 2025
Research article |  | 14 Jul 2025

Application of the HIDRA2 deep-learning model for sea level forecasting along the Estonian coast of the Baltic Sea

Amirhossein Barzandeh, Matjaž Ličer, Marko Rus, Matej Kristan, Ilja Maljutenko, Jüri Elken, Priidik Lagemaa, and Rivo Uiboupin

Data sets

Time series of hydrological monitoring data in JSON format Estonian Environment Agency https://keskkonnaportaal.ee/et/avaandmed/hudroloogilise-seire-andmestik

Model code and software

HIDRA2 - Deep-learning ensemble sea level and storm tide forecasting in the presence of seiches Marko Rus et al. https://doi.org/10.5281/zenodo.7307365

Baltic Sea Physics Analysis and Forecast, Marine Data Store (MDS) CMEMS - EU Copernicus Marine Service Information https://doi.org/10.48670/moi-00010

Download
Short summary
We evaluated a deep-learning model, HIDRA2, for predicting sea levels along the Estonian coast and compared it to traditional numerical models. HIDRA2 performed better overall, offering faster forecasts and valuable uncertainty estimates using ensemble predictions.
Share