

Supplement of

Application of the HIDRA2 deep-learning model for sea level forecasting along the Estonian coast of the Baltic Sea

Amirhossein Barzandeh et al.

Correspondence to: Amirhossein Barzandeh (amirhossein.barzandeh@taltech.ee)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Material – Figure S1

Figure S1 presents the predictions of HIDRA2 with a 24-hour lead time, alongside those of NEMO_{BAL}, for the entire study period at each station. For clarity, the performance of NEMO_{EST}—which demonstrated the lowest overall accuracy—is not included here (see Table 2 in the main manuscript for further details). Both HIDRA2 and NEMO_{BAL} show consistent tracking of the observed SSH patterns, particularly during extreme SSH events throughout the comparison period.

Figure S1. Observed SSH (black line) versus NEMO_BAL (blue line) and HIDRA2 ensemble mean (red line) forecasts with a 24-hour lead time at various stations between April 2023 and April 2024.