Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global submesoscale diagnosis using along-track satellite altimetry
Ocean and Climate Department, CLS Space
Oceanography, Ramonville Saint-Agne, France
Université de
Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse,
France
Rosemary Morrow
Université de
Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse,
France
Marie-Isabelle Pujol
Ocean and Climate Department, CLS Space
Oceanography, Ramonville Saint-Agne, France
Gérald Dibarboure
CNES, Toulouse,
France
Clément Ubelmann
Datlas, Grenoble,
France
Related authors
Elisa Carli, Rosemary Morrow, Oscar Vergara, Robin Chevrier, and Lionel Renault
Ocean Sci., 19, 1413–1435, https://doi.org/10.5194/os-19-1413-2023, https://doi.org/10.5194/os-19-1413-2023, 2023
Short summary
Short summary
Oceanic eddies are the structures carrying most of the energy in our oceans. They are key to climate regulation and nutrient transport. We prepare for the Surface Water and Ocean Topography mission, studying eddy dynamics in the region south of Africa, where the Indian and Atlantic oceans meet, using models and simulated satellite data. SWOT will provide insights into the structures smaller than what is currently observable, which appear to greatly contribute to eddy kinetic energy and strain.
Marie-Isabelle Pujol, Stéphanie Dupuy, Oscar Vergara, Antonio Sánchez-Román, Yannice Faugère, Pierre Prandi, Mei-Ling Dabat, Quentin Dagneaux, Marine Lievin, Emeline Cadier, Gérald Dibarboure, and Nicolas Picot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-292, https://doi.org/10.5194/essd-2022-292, 2022
Manuscript not accepted for further review
Short summary
Short summary
An altimeter sea level along-track level-3 product with a 5 Hz (~1.2 km) sampling is proposed. It takes advantage of recent advances in radar altimeter processing, and improvements made to different stages of the processing chain. Compared to the conventional 1 Hz (~7 km) product, it significantly improves the observability of the short wavelength signal in open ocean and near coast areas (> 5 km). It also contributes to improving high resolution numerical model outputs via data assimilation.
Marine Bretagnon, Aurélien Paulmier, Véronique Garçon, Boris Dewitte, Séréna Illig, Nathalie Leblond, Laurent Coppola, Fernando Campos, Federico Velazco, Christos Panagiotopoulos, Andreas Oschlies, J. Martin Hernandez-Ayon, Helmut Maske, Oscar Vergara, Ivonne Montes, Philippe Martinez, Edgardo Carrasco, Jacques Grelet, Olivier Desprez-De-Gesincourt, Christophe Maes, and Lionel Scouarnec
Biogeosciences, 15, 5093–5111, https://doi.org/10.5194/bg-15-5093-2018, https://doi.org/10.5194/bg-15-5093-2018, 2018
Short summary
Short summary
In oxygen minimum zone, the fate of the organic matter is a key question as the low oxygen condition would preserve the OM and thus enhance the biological carbon pump while the high microbial activity would foster the remineralisation and the greenhouse gases emission. To investigate this paradigm, sediment traps were deployed off Peru. We pointed out the influence of the oxygenation as well as the organic matter quantity and quality on the carbon transfer efficiency in the oxygen minimum zone.
Oscar Vergara, Boris Dewitte, Ivonne Montes, Veronique Garçon, Marcel Ramos, Aurélien Paulmier, and Oscar Pizarro
Biogeosciences, 13, 4389–4410, https://doi.org/10.5194/bg-13-4389-2016, https://doi.org/10.5194/bg-13-4389-2016, 2016
Short summary
Short summary
The Southeast Pacific hosts one of the most extensive oxygen minimum zone (OMZ), yet the dynamics behind it remain unveiled. We use a high-resolution coupled physical–biogeochemical model to document the seasonal cycle of dissolved oxygen within the OMZ in both the coastal zone and the offshore ocean. The OMZ seasonal variability is driven by the seasonal fluctuations of the dissolved oxygen eddy flux, with a peak in Austral winter (fall) at the northern (southern) boundary and near the coast.
Antonio Sánchez-Román, Flora Gues, Romain Bourdalle-Badie, Marie-Isabelle Pujol, Ananda Pascual, and Marie Drévillon
State Planet, 4-osr8, 4, https://doi.org/10.5194/sp-4-osr8-4-2024, https://doi.org/10.5194/sp-4-osr8-4-2024, 2024
Short summary
Short summary
This study investigates the changing pattern of the Gulf Stream over the last 3 decades as observed in the altimetric record (1993–2022). Changes in the Gulf Stream path have an effect on its speed (and associated energy) and also on waters transported towards the subpolar North Atlantic, impacting Europe's climate. The observed shifts in the paths seem to be linked to variability in the North Atlantic Ocean during winter that may play an important role.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Maxime Ballarotta, Clément Ubelmann, Valentin Bellemin-Laponnaz, Florian Le Guillou, Guillaume Meda, Cécile Anadon, Alice Laloue, Antoine Delepoulle, Yannice Faugère, Marie-Isabelle Pujol, Ronan Fablet, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2024-2345, https://doi.org/10.5194/egusphere-2024-2345, 2024
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented swath altimetry data. This study examines SWOT's impact on mapping systems, showing a moderate effect with the current nadir altimetry constellation and a stronger impact with a reduced one. Integrating SWOT with dynamic mapping techniques improves the resolution of satellite-derived products, offering promising solutions for studying and monitoring sea-level variability at finer scales.
Florence Birol, François Bignalet-Cazalet, Mathilde Cancet, Jean-Alexis Daguze, Wassim Fkaier, Ergane Fouchet, Fabien Léger, Claire Maraldi, Fernando Niño, Marie-Isabelle Pujol, and Ngan Tran
EGUsphere, https://doi.org/10.5194/egusphere-2024-2449, https://doi.org/10.5194/egusphere-2024-2449, 2024
Short summary
Short summary
We take advantage of the availability of several algorithms for most of the terms/corrections used to calculate altimetry sea level data to analyze the sources of uncertainties associated when approaching the coast. The results highlight the hierarchy of sources of uncertainties. Tidal corrections and mean sea surface contribute to coastal sea level data uncertainties. But, improving the retracking algorithm is today the main factor to bring accurate altimetry sea level data closer to the shore.
Michel Tchilibou, Loren Carrere, Florent Lyard, Clément Ubelmann, Gérald Dibarboure, Edward D. Zaron, and Brian K. Arbic
EGUsphere, https://doi.org/10.5194/egusphere-2024-1857, https://doi.org/10.5194/egusphere-2024-1857, 2024
Short summary
Short summary
This study is based on sea level observations along the swaths of the new SWOT altimetry mission during its Calibration / Validation period. Internal tides are characterised off the Amazon shelf in the tropical Atlantic. SWOT observes internal tides over a wide range of spatial scales and highlights structures between 50–2 km, which are very intense and difficult to predict. Compared to the reference used to correct the altimetry data, the internal tide derived from SWOT performs very well.
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig James Donlon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1802, https://doi.org/10.5194/egusphere-2024-1802, 2024
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ±0.1 mm/yr (16–84 % confidence level) on a global scale, for time intervals between the tandem phases of four years or more.
Gerald Dibarboure, Cécile Anadon, Frédéric Briol, Emeline Cadier, Robin Chevrier, Antoine Delepoulle, Yannice Faugère, Alice Laloue, Rosemary Morrow, Nicolas Picot, Pierre Prandi, Marie-Isabelle Pujol, Matthias Raynal, Anaelle Treboutte, and Clément Ubelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1501, https://doi.org/10.5194/egusphere-2024-1501, 2024
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath altimetry products. In this paper, we describe how we extended the Level-3 algorithms to handle SWOT’s unique swath-altimeter data. We also illustrate and discuss the benefits, relevance, and limitations of Level-3 swath-altimeter products for various research domains.
Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, and Marie-Helène Rio
Ocean Sci., 19, 1517–1527, https://doi.org/10.5194/os-19-1517-2023, https://doi.org/10.5194/os-19-1517-2023, 2023
Short summary
Short summary
Altimetry provides sea surface height (SSH) data along one-dimensional tracks. For many applications, the tracks are interpolated in space and time to provide gridded SSH maps. The operational SSH gridded products filter out the small-scale signals measured on the tracks. This paper evaluates the performances of a recently implemented dynamical method to retrieve the small-scale signals from real SSH data. We show a net improvement in the quality of SSH maps when compared to independent data.
Elisa Carli, Rosemary Morrow, Oscar Vergara, Robin Chevrier, and Lionel Renault
Ocean Sci., 19, 1413–1435, https://doi.org/10.5194/os-19-1413-2023, https://doi.org/10.5194/os-19-1413-2023, 2023
Short summary
Short summary
Oceanic eddies are the structures carrying most of the energy in our oceans. They are key to climate regulation and nutrient transport. We prepare for the Surface Water and Ocean Topography mission, studying eddy dynamics in the region south of Africa, where the Indian and Atlantic oceans meet, using models and simulated satellite data. SWOT will provide insights into the structures smaller than what is currently observable, which appear to greatly contribute to eddy kinetic energy and strain.
Antonio Sánchez-Román, M. Isabelle Pujol, Yannice Faugère, and Ananda Pascual
Ocean Sci., 19, 793–809, https://doi.org/10.5194/os-19-793-2023, https://doi.org/10.5194/os-19-793-2023, 2023
Short summary
Short summary
This paper assesses the performance of the latest version (DT2021) of global gridded altimetry products distributed through the CMEMS and C3S Copernicus programs on the retrieval of sea level in the coastal zone of the European seas with respect to the previous DT2018 version. This comparison is made using an external independent dataset. DT2021 sea level products better solve the signal in the coastal band.
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
Michel Tchilibou, Ariane Koch-Larrouy, Simon Barbot, Florent Lyard, Yves Morel, Julien Jouanno, and Rosemary Morrow
Ocean Sci., 18, 1591–1618, https://doi.org/10.5194/os-18-1591-2022, https://doi.org/10.5194/os-18-1591-2022, 2022
Short summary
Short summary
This high-resolution model-based study investigates the variability in the generation, propagation, and sea height signature (SSH) of the internal tide off the Amazon shelf during two contrasted seasons. ITs propagate further north during the season characterized by weak currents and mesoscale eddies and a shallow and strong pycnocline. IT imprints on SSH dominate those of the geostrophic motion for horizontal scales below 200 km; moreover, the SSH is mainly incoherent below 70 km.
Marie-Isabelle Pujol, Stéphanie Dupuy, Oscar Vergara, Antonio Sánchez-Román, Yannice Faugère, Pierre Prandi, Mei-Ling Dabat, Quentin Dagneaux, Marine Lievin, Emeline Cadier, Gérald Dibarboure, and Nicolas Picot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-292, https://doi.org/10.5194/essd-2022-292, 2022
Manuscript not accepted for further review
Short summary
Short summary
An altimeter sea level along-track level-3 product with a 5 Hz (~1.2 km) sampling is proposed. It takes advantage of recent advances in radar altimeter processing, and improvements made to different stages of the processing chain. Compared to the conventional 1 Hz (~7 km) product, it significantly improves the observability of the short wavelength signal in open ocean and near coast areas (> 5 km). It also contributes to improving high resolution numerical model outputs via data assimilation.
Mounir Benkiran, Pierre-Yves Le Traon, and Gérald Dibarboure
Ocean Sci., 18, 609–625, https://doi.org/10.5194/os-18-609-2022, https://doi.org/10.5194/os-18-609-2022, 2022
Short summary
Short summary
The SSH analysis and 7 d forecast error will be globally reduced by almost 50 %. Surface current forecast errors should be equivalent to today’s surface current analysis errors or alternatively will be improved (variance error reduction) by 30 % at the surface and 50 % for 300 m depth.
The resolution capabilities will be drastically improved and will be closer to 100 km wavelength as opposed to today where they are above 250 km (on average).
Clément Ubelmann, Loren Carrere, Chloé Durand, Gérald Dibarboure, Yannice Faugère, Maxime Ballarotta, Frédéric Briol, and Florent Lyard
Ocean Sci., 18, 469–481, https://doi.org/10.5194/os-18-469-2022, https://doi.org/10.5194/os-18-469-2022, 2022
Short summary
Short summary
The signature of internal tides has become an important component for high-resolution altimetry over oceans. Several studies have proposed some solutions to resolve part of these internal tides based on the altimetry record. Following these studies, we propose here a new inversion approach aimed to mitigate aliasing with other dynamics. After a description of the methodology, the solution for the main tidal components has been successfully validated against independent observations.
Cori Pegliasco, Antoine Delepoulle, Evan Mason, Rosemary Morrow, Yannice Faugère, and Gérald Dibarboure
Earth Syst. Sci. Data, 14, 1087–1107, https://doi.org/10.5194/essd-14-1087-2022, https://doi.org/10.5194/essd-14-1087-2022, 2022
Short summary
Short summary
The new global Mesoscale Eddy Trajectory Atlases (META3.1exp) provide eddy identification and trajectories from altimetry maps. These atlases comprise an improvement to and continuation of the historical META2.0 product. Changes in the detection parameters and tracking were tested by comparing the eddies from the different datasets. In particular, the eddy contours available in META3.1exp are an asset for multi-disciplinary studies.
Pierre Prandi, Jean-Christophe Poisson, Yannice Faugère, Amandine Guillot, and Gérald Dibarboure
Earth Syst. Sci. Data, 13, 5469–5482, https://doi.org/10.5194/essd-13-5469-2021, https://doi.org/10.5194/essd-13-5469-2021, 2021
Short summary
Short summary
We investigate how mapping sea level in the Arctic Ocean can benefit from combining data from three satellite radar altimeters: CryoSat-2, Sentinel-3A and SARAL/AltiKa. A dedicated processing for SARAL/AltiKa provides a baseline for the cross-referencing of CryoSat-2 and Sentinel-3A before mapping. We show that by combining measurements coming from three missions, we are able to increase the resolution of gridded sea level fields in the ice-covered Arctic Ocean.
Sandrine Mulet, Marie-Hélène Rio, Hélène Etienne, Camilia Artana, Mathilde Cancet, Gérald Dibarboure, Hui Feng, Romain Husson, Nicolas Picot, Christine Provost, and P. Ted Strub
Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, https://doi.org/10.5194/os-17-789-2021, 2021
Short summary
Short summary
Satellite altimetry has revolutionized ocean observation by allowing the sea level to be monitored with very good spatiotemporal coverage. However, only the sea level anomalies are retrieved; to monitor the whole oceanic signal a temporal mean (called mean dynamic topography, MDT) must be added to these anomalies. In this study we present the newly updated CNES-CLS18 MDT. An evaluation of this new solution shows significant improvements in both strong currents and coastal areas.
Loren Carrere, Brian K. Arbic, Brian Dushaw, Gary Egbert, Svetlana Erofeeva, Florent Lyard, Richard D. Ray, Clément Ubelmann, Edward Zaron, Zhongxiang Zhao, Jay F. Shriver, Maarten Cornelis Buijsman, and Nicolas Picot
Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021, https://doi.org/10.5194/os-17-147-2021, 2021
Short summary
Short summary
Internal tides can have a signature of several centimeters at the ocean surface and need to be corrected from altimeter measurements. We present a detailed validation of several internal-tide models using existing satellite altimeter databases. The analysis focuses on the main diurnal and semidiurnal tidal constituents. Results show the interest of the methodology proposed, the quality of the internal-tide models tested and their positive contribution for estimating an accurate sea level.
Guillaume Sérazin, Frédéric Marin, Lionel Gourdeau, Sophie Cravatte, Rosemary Morrow, and Mei-Ling Dabat
Ocean Sci., 16, 907–925, https://doi.org/10.5194/os-16-907-2020, https://doi.org/10.5194/os-16-907-2020, 2020
Michel Tchilibou, Lionel Gourdeau, Florent Lyard, Rosemary Morrow, Ariane Koch Larrouy, Damien Allain, and Bughsin Djath
Ocean Sci., 16, 615–635, https://doi.org/10.5194/os-16-615-2020, https://doi.org/10.5194/os-16-615-2020, 2020
Short summary
Short summary
This paper focuses on internal tides in the marginal Solomon Sea where LLWBCs transit. The objective is to characterize such internal tides and to give some insights into their impacts on water mass transformation in this area of interest for the global circulation. Results are discussed for two contrasted ENSO conditions with different mesoscale activity and stratification. Such study is motivated by the next altimetric SWOT mission that will be able to observe such phenomena.
Guillaume Taburet, Antonio Sanchez-Roman, Maxime Ballarotta, Marie-Isabelle Pujol, Jean-François Legeais, Florent Fournier, Yannice Faugere, and Gerald Dibarboure
Ocean Sci., 15, 1207–1224, https://doi.org/10.5194/os-15-1207-2019, https://doi.org/10.5194/os-15-1207-2019, 2019
Short summary
Short summary
This paper deals with sea level altimetery products. These geophysical data are distributed as along-track and gridded data through Copernicus programs CMEMS and C3S. We present in detail a new reprocessing of the data (DT2018) from 1993 to 2017. The main changes and their impacts since the last version (DT2014) are carefully discussed. This comparison is made using an independent dataset. DT2018 sea level products are improved at the global and regional scale, especially in coastal areas.
Maxime Ballarotta, Clément Ubelmann, Marie-Isabelle Pujol, Guillaume Taburet, Florent Fournier, Jean-François Legeais, Yannice Faugère, Antoine Delepoulle, Dudley Chelton, Gérald Dibarboure, and Nicolas Picot
Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, https://doi.org/10.5194/os-15-1091-2019, 2019
Short summary
Short summary
This study investigates the resolving capabilities of the DUACS gridded products delivered through the CMEMS catalogue. Our method is based on the noise-to-signal ratio approach. While altimeter along-track data resolve scales on the order of a few tens of kilometers, we found that the merging of these along-track data into continuous maps in time and space leads to effective resolution ranging from ~ 800 km wavelength at the Equator to 100 km wavelength at high latitude.
Michel Tchilibou, Lionel Gourdeau, Rosemary Morrow, Guillaume Serazin, Bughsin Djath, and Florent Lyard
Ocean Sci., 14, 1283–1301, https://doi.org/10.5194/os-14-1283-2018, https://doi.org/10.5194/os-14-1283-2018, 2018
Short summary
Short summary
This paper is motivated by the next SWOT altimetric mission dedicated to the observation of mesoscale and submesoscale oceanic features. It focuses on tropical areas with a strong discrepancy in the spectral signature between altimetry and models. The paper reviews the spectral signature of tropical turbulence which presents a rich variety of phenomena depending on the latitudinal dependence of the Coriolis force. Internal tides observed by altimetry explain the discrepancy with the model.
Marine Bretagnon, Aurélien Paulmier, Véronique Garçon, Boris Dewitte, Séréna Illig, Nathalie Leblond, Laurent Coppola, Fernando Campos, Federico Velazco, Christos Panagiotopoulos, Andreas Oschlies, J. Martin Hernandez-Ayon, Helmut Maske, Oscar Vergara, Ivonne Montes, Philippe Martinez, Edgardo Carrasco, Jacques Grelet, Olivier Desprez-De-Gesincourt, Christophe Maes, and Lionel Scouarnec
Biogeosciences, 15, 5093–5111, https://doi.org/10.5194/bg-15-5093-2018, https://doi.org/10.5194/bg-15-5093-2018, 2018
Short summary
Short summary
In oxygen minimum zone, the fate of the organic matter is a key question as the low oxygen condition would preserve the OM and thus enhance the biological carbon pump while the high microbial activity would foster the remineralisation and the greenhouse gases emission. To investigate this paradigm, sediment traps were deployed off Peru. We pointed out the influence of the oxygenation as well as the organic matter quantity and quality on the carbon transfer efficiency in the oxygen minimum zone.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Rosemary Morrow, Alice Carret, Florence Birol, Fernando Nino, Guillaume Valladeau, Francois Boy, Celine Bachelier, and Bruno Zakardjian
Ocean Sci., 13, 13–29, https://doi.org/10.5194/os-13-13-2017, https://doi.org/10.5194/os-13-13-2017, 2017
Short summary
Short summary
Spectral analyses of along-track altimetric data are used to estimate noise levels and observable ocean scales in the NW Mediterranean Sea. In winter, all altimetric missions can observe wavelengths down to 40–50 km (individual feature diameters of 20–25 km). In summer, SARAL can detect scales down to 35 km, whereas Jason-2 and CryoSat-2 with higher noise can only observe scales less than 50–55 km. Along-track altimeter data are also compared with collocated glider and coastal HF radar data.
Marie-Isabelle Pujol, Yannice Faugère, Guillaume Taburet, Stéphanie Dupuy, Camille Pelloquin, Michael Ablain, and Nicolas Picot
Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, https://doi.org/10.5194/os-12-1067-2016, 2016
Oscar Vergara, Boris Dewitte, Ivonne Montes, Veronique Garçon, Marcel Ramos, Aurélien Paulmier, and Oscar Pizarro
Biogeosciences, 13, 4389–4410, https://doi.org/10.5194/bg-13-4389-2016, https://doi.org/10.5194/bg-13-4389-2016, 2016
Short summary
Short summary
The Southeast Pacific hosts one of the most extensive oxygen minimum zone (OMZ), yet the dynamics behind it remain unveiled. We use a high-resolution coupled physical–biogeochemical model to document the seasonal cycle of dissolved oxygen within the OMZ in both the coastal zone and the offshore ocean. The OMZ seasonal variability is driven by the seasonal fluctuations of the dissolved oxygen eddy flux, with a peak in Austral winter (fall) at the northern (southern) boundary and near the coast.
F. d'Ovidio, A. Della Penna, T. W. Trull, F. Nencioli, M.-I. Pujol, M.-H. Rio, Y.-H. Park, C. Cotté, M. Zhou, and S. Blain
Biogeosciences, 12, 5567–5581, https://doi.org/10.5194/bg-12-5567-2015, https://doi.org/10.5194/bg-12-5567-2015, 2015
Short summary
Short summary
Field campaigns are instrumental in providing ground truth for understanding and modeling global ocean biogeochemical budgets. A survey however can only inspect a fraction of the global oceans, typically a region hundreds of kilometers wide for a temporal window of the order of (at most) several weeks. In this spatiotemporal domain, mesoscale variability can mask climatological contrasts. Here we propose the use of multisatellite-based Lagrangian diagnostics to solve this issue.
S. T. Gille, M. M. Carranza, R. Cambra, and R. Morrow
Biogeosciences, 11, 6389–6400, https://doi.org/10.5194/bg-11-6389-2014, https://doi.org/10.5194/bg-11-6389-2014, 2014
Short summary
Short summary
The Kerguelen Plateau supports a strong spring chlorophyll bloom, in contrast with most of the Southern Ocean. Throughout the Southern Ocean, including in the Kerguelen area, wind can determine oceanic vertical velocities that may bring nutrients to the surface and contribute to the development of blooms. The Kerguelen Island itself generates a wind shadow that locally enhances upwelling velocities to the north of the main axis of the winds, and chlorophyll is high in this upwelling region.
Related subject area
Approach: Remote Sensing | Properties and processes: Sea level | Depth range: Surface | Geographical range: All Geographic Regions | Challenges: Oceans and climate
Regionalizing the sea-level budget with machine learning techniques
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Cited articles
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet,
G., Fournier, F.,
Legeais, J.-F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure,
G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci.,
15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, 2019.
Callies, J., Ferrari, R., Klymak, J. M., and Gula, J.: Seasonality in
submesoscale turbulence, Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862,
2015.
Capet, X., McWilliams, J. C., Molemaker, M., and Shchepetkin, A.: Mesoscale
to
submesoscale transition in the California Current system. Part III: Energy
balance and flux, J. Phys. Oceanogr., 38, 2256–2269,
doi.org/10.1175/2008JPO3810.1, 2008.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of
nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216,
https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
Chereskin, T. K., Rocha, C. B., Gille, S. T., Menemenlis, D., and Passaro,
M.: Characterizing the Transition From Balanced to Unbalanced Motions in the
Southern California Current, J. Geophys. Res.-Ocean., 124, 2088–2109,
https://doi.org/10.1029/2018JC014583, 2019.
Copernicus Marine and Environment Monitoring Service (CMEMS): Global Ocean Along Track L 3 Sea Surface Heights Reprocessed 1993 Ongoing Tailored For Data Assimilation, CLS [data set], https://doi.org/10.48670/moi-00146, 2023.
Dufau, C., Orsztynowicz, M., Dibarboure, G., Morrow, R., and Le Traon,
P.-Y.: Mesoscale resolution capability of altimetry: Present and future, J.
Geophys. Res.-Ocean., 121, 4910–4927,
https://doi.org/10.1002/2015JC010904, 2016.
Eden, C.: Eddy length scales in the North Atlantic Ocean, J. Geophys. Res., 112, C06004, https://doi.org/10.1029/2006JC003901, 2007.
Ferrari, R. and Wunsch, C.: Ocean Circulation Kinetic Energy: Reservoirs,
Sources, and Sinks, Ann. Rev. Fluid Mech., 41, 253–282,
https://doi.org/10.1146/annurev.fluid.40.111406.102139, 2009.
Klein, P., Hua, B. L., Lapeyre, G., Capet, X., Le Gentil, S., and Sasaki,
H.: Upper ocean turbulence from high-resolution 3D simulations, J. Phys.
Oceanogr., 38, 1748–1763, doi.org/10.1175/2007JPO3773.1 , 2008.
Klein, P., Lapeyre, G., Siegelman, L., Qiu, B., Fu, L.-L., Torres, H., Su,
Z., Menemenlis, D., and Le Gentil, S.: Ocean-scale interactions from space,
Earth Space Sci., 6, 795–817, https://doi.org/10.1029/2018ea000492,
2019.
Lawrence, A. and Callies, J.: Seasonality and Spatial Dependence of
Mesoscale and Submesoscale Ocean Currents from Along-Track Satellite
Altimetry, J. Phys. Oceanogr.y, 52, 2069–2089,
https://doi.org/10.1175/JPO-D-22-0007.1, 2022.
Le Traon, P. Y., Klein, P., Hua, B. L., and Dibarboure, G.: Do altimeter
wavenumber spectra agree with the interior or surface quasi-geostrophic
theory?, J. Phys. Oceanogr., 38, 1137–1142, https://doi.org/10.1175/2007JPO3806.1,
2008.
McWilliams, J. C.: Submesoscale Currents in the ocean, Proc. Roy. Soc. A,
472, 20160177, https://doi.org/10.1098/rspa.2016.0117, 2016.
Moreau, T., Tran, N., Aublanc, J., Tison, C., Le Gac, S., and Boy, F.:
Impact of long ocean waves on wave height retrieval from SAR altimetry data,
Adv. Space Res., 62, 1434–1444, https://doi.org/10.1016/j.asr.2018.06.004, 2018.
Moreau, T., Cadier, E., Boy, F., Aublanc, J., Rieu, P., Raynal, M., Labroue,
S., Thibaut, P., Dibarboure, G., Picot, N., Phalippou, L., Demeestere, F.,
Borde, F., and Mavrocordatos, C.: High-performance altimeter Doppler
processing for measuring sea level height under varying sea state
conditions, Adv. Space Res., 67, 1870–1886,
https://doi.org/10.1016/j.asr.2020.12.038, 2021.
Pollmann, F.: Global Characterization of the Ocean's Internal Wave Spectrum, J. Phys. Oceanogr., 50, 1871–1891, https://doi.org/10.1175/JPO-D-19-0185.1, 2020.
Pujol, M. I., Schaeffer, P., Faugère, Y., Raynal, M., Dibarboure, G.,
and Picot, N.: Gauging the improvement of recent mean sea surface models: A
new approach for identifying and quantifying their errors, J.
Geophys. Res.-Ocean., 123, 5889–5911, https://doi.org/10.1029/2017JC013503,
2018.
Pujol, M.-I., Dupuy S., Vergara O., Sánchez Román A., Faugère
Y., Prandi P., Dabat M.-L., Dagneaux Q., Lievin M., Cadier E., Dibarboure
G., and Picot N.: Refining the Resolution of DUACS Along-Track Level-3 Sea
Level Altimetry Products, Remote Sens., 15, 793,
https://doi.org/10.3390/rs15030793, 2023.
Qiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L.-L., and Menemenlis, D.: Seasonality in transition scale from balanced to
unbalanced motions in the world ocean, J. Phys. Oceanogr., 48, 591–605, https://doi.org/10.1175/JPO-D-17-0169.1, 2018.
Qiu, B., Nakano, T., Chen, S., and Klein, P.: Submesoscale transition from geostrophic flows to internal waves in the northwestern
Pacific upper ocean, Nat. Commun., 8, 14055, https://doi.org/10.1038/ncomms14055, 2017.
Quilfen, Y. and Chapron, B.: On denoising satellite altimeter measurements for high-resolution geophysical signal analysis, Adv. Space Res., 68, 875–891, https://doi.org/10.1016/j.asr.2020.01.005, 2021.
Ray, R. D. and Zaron, E. D.: M2 internal tides and their observed wavenumber
spectra from satellite altimetry, J. Phys. Oceanogr., 46, 3–22, https://doi.org/10.1175/JPO-D-15-0065.1, 2016.
Rieu, P., Moreau, T., Cadier, E., Raynal, M., Clerc, S., Donlon, C., Borde,
F., Boy, F., and Maraldi, C.: Exploiting the Sentinel-3 tandem phase dataset
and azimuth oversampling to better characterize the sensitivity of SAR
altimeter sea surface height to long ocean waves, Adv. Space Res., 67,
253–265, https://doi.org/10.1016/j.asr.2020.09.037, 2020.
Rocha, C. B., Chereskin, T. K., Gille, S. T., and Menemenlis, D.: Mesoscale
to Submesoscale Wavenumber Spectra in Drake Passage, J. Phys. Oceanogr., 46,
601–620, https://doi.org/10.1175/JPO-D-15-0087.1, 2016a.
Rocha, C. B., Gille, S. T., Chereskin, T. K., and Menemenlis, D.: Seasonality
of submesoscale dynamics in the Kuroshio Extension, Geophys. Res. Lett.,
43, 11304–11311,
https://doi.org/10.1002/2016GL071349, 2016b.
Sasaki, H., Klein, P., Qiu, B., and Sasai, Y.: Impact of oceanic-scale
interactions on the seasonal modulation of ocean dynamics by the atmosphere,
Nat. Commun., 5, 5636, https://doi.org/10.1038/ncomms5636, 2014.
Schaeffer, P., Faugere, Y., Pujol, M.-I., Guillot, A., and Picot, N.: The CNES CLS 2015 Global Mean Sea Surface, Presented at the Ocean Surface Topography Meeting (OSTST), 2016, La Rochelle, France, 1 October–4 November 2016, https://ostst.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/GEO_03_Pres_OSTST2016_MSS_CNES_CLS2015_V1_16h55.pdf (last access: 19 December 2022),
2016.
Siegelman, L., Klein, P., Thompson, A. F., Torres, H. S., and Menemenlis,
D.: Altimetry-Based Diagnosis of Deep-Reaching Sub-Mesoscale Ocean Fronts,
Fluids, 5, 145,
doi.org/10.3390/fluids5030145, 2020.
Stammer, D.: Global characteristics of ocean variability estimated from
regional TOPEX/POSEIDON altimeter measurements, J. Phys. Oceanogr., 27,
1743–1769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2, 1997.
Su, Z., Torres, H., Klein, P., Thompson, A. F., Siegelman, L., Wang, J.,
Menemenlis, D., and Hill, C.: High-frequency submesoscale motions enhance
the upward vertical heat transport in the global ocean, J.
Geophys. Res.-Ocean., 125, e2020JC016544,
https://doi.org/10.1029/2020JC016544, 2020.
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais,
J.-F., Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years
of reprocessed sea level altimetry products, Ocean Sci., 15, 1207–1224,
https://doi.org/10.5194/os-15-1207-2019, 2019.
Tchilibou, M., Gourdeau, L., Morrow, R., Serazin, G., Djath, B., and Lyard,
F.: Spectral signatures of the tropical Pacific dynamics from model and
altimetry: A focus on the meso/submesoscale range, Ocean Sci., 14,
1283–1301, https://doi.org/10.5194/os-14-1283-2018, 2018.
Tchilibou, M., Koch-Larrouy, A., Barbot, S., Lyard, F., Morel, Y., Jouanno,
J., and Morrow, R.: Internal tides off the Amazon shelf during two
contrasted seasons: interactions with background circulation and SSH
imprints, Ocean Sci., 18, 1591–1618,
https://doi.org/10.5194/os-18-1591-2022, 2022.
Thomas, L. N., Tandon, A., and Mahadevan, A.: Submesoscale processes and
dynamics, Ocean Modeling in an eddying regime, Geophys. Monogr., 177, 17–38,
2008.
Tran, N., Hancock III, D., Hayne, G., Lockwood, D., Vandemark, D., Driscoll,
D., and Sailor, R.: Assessment of the Cycle-To-Cycle Noise Level of the
Geosat Follow-On, TOPEX, and Poseidon Altimeters, J. Atmos.
Ocean. Technol., 19, 2095–2107,
https://doi.org/10.1175/1520-0426(2002)019<2095:AOTCTC>2.0.CO;2, 2002.
Tran, N., Vandemark, D., Zaron, E. D., Thibaut, P., Dibarboure, G., and
Picot, N.: Assessing the effects of sea-state related errors on the
precision of high-rate Jason-3 altimeter sea level data, Adv. Space
Res., 68, 963–977,
https://doi.org/10.1016/j.asr.2019.11.034, 2021.
Vergara, O., Morrow, R., Pujol, I., Dibarboure, G., and Ubelmann, C.:
Revised global wave number spectra from recent altimeter observations, J.
Geophys. Res.-Ocean., 124, 3523–3537,
https://doi.org/10.1029/2018JC014844, 2019.
Wang, J., Fu, L.-L., Torres, H. S., Chen, S., Qiu, B., and Menemenlis, D.:
On the spatial scales to be resolved by the surface water and ocean
topography Ka-band radar interferometer, J. Atmos. Ocean. Technol., 36,
87–99,
https://doi.org/10.1175/JTECH-D-18-0119.1, 2018.
Xu, Y. and Fu, L.-L.: Global variability of the wavenumber spectrum of
oceanic mesoscale turbulence, J. Phys. Oceanogr., 41, 802–809,
https://doi.org/10.1175/2010JPO4558.1, 2011.
Xu, Y. and Fu, L.-L.: The effects of altimeter instrument noise on the
estimation of the wavenumber spectrum of sea surface height, J. Phys.
Oceanogr., 42, 2229–2233, https://doi.org/10.1175/JPO-D-12-0106.1, 2012.
Zaron, E. D.: Baroclinic tidal sea level from exact-repeat mission altimetry,
J. Phys. Oceanogr., 49, 193–210, https://doi.org/10.1175/JPO-D-18-0127.1, 2019.
Short summary
Recent advances allow us to observe the ocean from space with increasingly higher detail, challenging our knowledge of the ocean's surface height signature. We use a statistical approach to determine the spatial scale at which the sea surface height signal is no longer dominated by geostrophic turbulence but in turn becomes dominated by wave-type motions. This information helps us to better use the data provided by ocean-observing satellites and to gain knowledge on climate-driving processes.
Recent advances allow us to observe the ocean from space with increasingly higher detail,...