Articles | Volume 21, issue 6
https://doi.org/10.5194/os-21-2873-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-21-2873-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of internal tides on chlorophyll a distribution and primary production off the Amazon shelf from glider measurements and satellite observations
LEGOS, Université de Toulouse, CNRS, OMP, IRD, Toulouse, France
Departamento de Oceanografia, Universidade Federal de Pernambuco (DOCEAN/UFPE), Recife, Brazil
CECI CNRS/Cerfacs/IRD, Université de Toulouse, Toulouse, France
Ariane Koch-Larrouy
LEGOS, Université de Toulouse, CNRS, OMP, IRD, Toulouse, France
CECI CNRS/Cerfacs/IRD, Université de Toulouse, Toulouse, France
Alex Costa da Silva
Departamento de Oceanografia, Universidade Federal de Pernambuco (DOCEAN/UFPE), Recife, Brazil
Isabelle Dadou
LEGOS, Université de Toulouse, CNRS, OMP, IRD, Toulouse, France
Carina Regina de Macedo
LEGOS, Université de Toulouse, CNRS, OMP, IRD, Toulouse, France
Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, IRD, UMR 8187 – LOG – Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos, Brazil
Anthony Bosse
Mediterranean Institute of Oceanography, OSU Institut Pytheas, Aix Marseille University, Université de Toulon, CNRS, IRD, Marseille, France
Vincent Vantrepotte
Departamento de Oceanografia, Universidade Federal de Pernambuco (DOCEAN/UFPE), Recife, Brazil
Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, IRD, UMR 8187 – LOG – Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
Habib Micaël Aguedjou
LEGOS, Université de Toulouse, CNRS, OMP, IRD, Toulouse, France
Centre National d'Etudes Spatiales, 18 av. Edouard Belin, 31400 Tououse, France
Trung-Kien Tran
Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, IRD, UMR 8187 – LOG – Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
Pierre Testor
LOCEAN-IPSL/CNRS, Université Pierre et Marie Curie, T45-55 E4 case 100, 4 place Jussieu, 75252 Paris, France
Laurent Mortier
Ecole Nationale Supérieure de Techniques Avancées, 29 rue d'Ulm, CEDEX 05, 75230 Paris, France
Arnaud Bertrand
MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Sète, France
Pedro Augusto Mendes de Castro Melo
Departamento de Oceanografia, Universidade Federal de Pernambuco (DOCEAN/UFPE), Recife, Brazil
James Lee
Departamento de Oceanografia, Universidade Federal do Pará (UFPA), Belém, Brazil
Marcelo Rollnic
Departamento de Oceanografia, Universidade Federal do Pará (UFPA), Belém, Brazil
Moacyr Araujo
Departamento de Oceanografia, Universidade Federal de Pernambuco (DOCEAN/UFPE), Recife, Brazil
Brazilian Research Network on Global Climate Change (Rede CLIMA), 12227-010, São José dos Campos-SP, Brazil
Related authors
No articles found.
Maxime Arnaud, Anne Petrenko, Jean-Luc Fuda, Caroline Comby, Anthony Bosse, Yann Ourmières, and Stéphanie Barrillon
Ocean Sci., 21, 2829–2847, https://doi.org/10.5194/os-21-2829-2025, https://doi.org/10.5194/os-21-2829-2025, 2025
Short summary
Short summary
Measuring oceanic vertical velocities accurately is a challenge in today’s physical oceanography. Our work shows intense wind-induced coastal events involving upward or downward water movements that have been detected using an acoustic current profiler. These data has also been validated with other in situ and satellite observations. A brand new method to identify and filter out biology-induced velocities is also presented, giving an interdisciplinary point of view of such coastal processes.
Landry Junior Mbang Essome, Gaël Alory, Casimir Yelognissé Da-allada, Isabelle Dadou, Roy Dorgeless Ngakala, and Guillaume Morvan
EGUsphere, https://doi.org/10.5194/egusphere-2025-5112, https://doi.org/10.5194/egusphere-2025-5112, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
We used a high-resolution model to study how ocean currents and waves, especially coastal trapped waves, control nitrate variability in the Congolese upwelling system. This nutrient availability drives seasonal marine productivity, with the Congo River also adding significant nitrate. Our research clarifies the complex interplay of physical and biological factors, offering crucial insights for managing regional fisheries and assessing climate change impacts on this vital ecosystem.
Gillian M. Damerell, Anthony Bosse, and Ilker Fer
Ocean Sci., 21, 2763–2785, https://doi.org/10.5194/os-21-2763-2025, https://doi.org/10.5194/os-21-2763-2025, 2025
Short summary
Short summary
The Lofoten Vortex is an unusual feature in the ocean: a permanent eddy which does not dissipate as most eddies do. We have long thought that other eddies must merge into the vortex in order to maintain its heat content and energetics, but such mergers are very difficult to observe due to their transient, unpredictable nature. For the first time, we have observed a merger using an ocean glider and high-resolution satellite data and can document how the merger affects the properties of the vortex.
Chloé Goret, Ariane Koch-Larrouy, Fabius Kouogang, Carina Regina de Macedo, Amine M’Hamdi, Jorge Magalhães, José Carlos Bastos da Silva, Michel Tchilibou, Camila Artana, Isabelle Dadou, Antoine Delepoulle, Simon Barbot, Maxime Ballarotta, Loren Carrère, and Alex Costa da Silva
EGUsphere, https://doi.org/10.5194/egusphere-2025-3933, https://doi.org/10.5194/egusphere-2025-3933, 2025
Short summary
Short summary
Using high-resolution satellite measurements, we observed how eddies off the Amazon shelf modify internal solitary waves. The results show that these waves can be deflected from their path, even split into two branches, and change their geometry when interacting with different types of eddies. This work provides new insight into the ocean’s complex dynamic interactions and could help guide future predictions of ocean behavior and its effects on coastal and marine ecosystems.
Fabius Kouogang, Ariane Koch-Larrouy, Jorge Magalhaes, Alex Costa da Silva, Daphne Kerhervé, Arnaud Bertrand, Evan Cervelli, Fernand Assene, Jean-François Ternon, Pierre Rousselot, James Lee, Marcelo Rollnic, and Moacyr Araujo
Ocean Sci., 21, 1589–1608, https://doi.org/10.5194/os-21-1589-2025, https://doi.org/10.5194/os-21-1589-2025, 2025
Short summary
Short summary
New research reveals that ocean mixing off the Amazon coast peaks not only near wave origins but also 230 km offshore, where different wave paths may intersect. This overlap likely forms strong solitary waves that intensify turbulence. Based on the AMAZOMIX-2021 cruise, which collected direct turbulence measurements alongside hydrographic data, the study quantifies dissipation and the relative contributions of tidal shear and large-scale shear. This mixing helps redistribute heat and nutrients, playing a key role in climate regulation and marine ecosystems.
Michel Tchilibou, Simon Barbot, Loren Carrere, Ariane Koch-Larrouy, Gérald Dibarboure, and Clément Ubelmann
Ocean Sci., 21, 1469–1486, https://doi.org/10.5194/os-21-1469-2025, https://doi.org/10.5194/os-21-1469-2025, 2025
Short summary
Short summary
MIOST24 (Multivariate Inversion of Ocean Surface Topography 2024) annual and monthly internal tide (IT) atlases, based on 25 years of altimetry data and an updated wavelength database, are presented for the Indo-Philippine archipelago and the Amazon shelf. The atlases show monthly IT variability and a better correction of IT in altimetry data than with MIOST22 (MIOST 2022) and HRET (High-Resolution Empirical Tide). The results support the development of a global MIOST24.
Carina Regina de Macedo, Ariane Koch-Larrouy, José Carlos Bastos da Silva, Jorge Manuel Magalhães, Fernand Assene, Manh Duy Tran, Isabelle Dadou, Amine M’Hamdi, Trung Kien Tran, and Vincent Vantrepotte
EGUsphere, https://doi.org/10.5194/egusphere-2025-2307, https://doi.org/10.5194/egusphere-2025-2307, 2025
Short summary
Short summary
We investigated how ocean tides influence marine phytoplankton along the North Brazilian coast. Using satellite data from 2005 to 2021, we found that tides can either enhance or reduce phytoplankton growth on the continental shelf. Offshore, internal tides stimulate primary production along their pathways. These results improve our understanding of how tidal processes shape marine life in tropical coastal regions.
Erick Vinicius Correia da Cunha, Pedro Augusto Mendes de Castro Melo, Gabriel Bittencourt Farias, and Vincent Vantrepotte
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 89–95, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-89-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-89-2024, 2024
Fernand Assene, Ariane Koch-Larrouy, Isabelle Dadou, Michel Tchilibou, Guillaume Morvan, Jérôme Chanut, Alex Costa da Silva, Vincent Vantrepotte, Damien Allain, and Trung-Kien Tran
Ocean Sci., 20, 43–67, https://doi.org/10.5194/os-20-43-2024, https://doi.org/10.5194/os-20-43-2024, 2024
Short summary
Short summary
Twin simulations, with and without tides, are used to assess the impact of internal tides (ITs) on ocean temperature off the Amazon mouth at a seasonal scale. We found that in the surface layers, ITs and barotropic tides cause a cooling effect on sea surface temperature, subsequently leading to an increase in the net heat flux between the atmosphere and ocean. Vertical mixing is identified as the primary driver, followed by vertical and horizontal advection.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Carina Regina de Macedo, Ariane Koch-Larrouy, José Carlos Bastos da Silva, Jorge Manuel Magalhães, Carlos Alessandre Domingos Lentini, Trung Kien Tran, Marcelo Caetano Barreto Rosa, and Vincent Vantrepotte
Ocean Sci., 19, 1357–1374, https://doi.org/10.5194/os-19-1357-2023, https://doi.org/10.5194/os-19-1357-2023, 2023
Short summary
Short summary
We focus on the internal solitary waves (ISWs) off the Amazon shelf, their velocity, and their variability in seasonal and tidal cycles. The analysis is based on a large remote-sensing data set. The region is newly described as a hot spot for ISWs with mode-2 internal tide wavelength. The wave activity is higher during spring tides. The mode-1 waves located in the region influenced by the North Equatorial Counter Current showed a velocity/wavelength 14.3 % higher during the boreal summer/fall.
Djoirka Minto Dimoune, Florence Birol, Fabrice Hernandez, Fabien Léger, and Moacyr Araujo
Ocean Sci., 19, 251–268, https://doi.org/10.5194/os-19-251-2023, https://doi.org/10.5194/os-19-251-2023, 2023
Short summary
Short summary
Altimeter-derived currents are used here to revisit the seasonal and interannual variability of all surface currents involved in the western tropical Atlantic circulation. A new approach based on the calculation of the current strengths and core positions is used to investigate the relationship between the currents, the remote wind variability, and the tropical Atlantic modes. The results show relationships at the seasonal and interannual timescale depending on the location of the currents.
Edward D. Zaron, Tonia A. Capuano, and Ariane Koch-Larrouy
Ocean Sci., 19, 43–55, https://doi.org/10.5194/os-19-43-2023, https://doi.org/10.5194/os-19-43-2023, 2023
Short summary
Short summary
Phytoplankton in the upper ocean are food for fish and are thus economically important to humans; furthermore, phytoplankton consume nutrients and generate oxygen by photosynthesis, just like plants on land. Vertical mixing in the ocean is responsible for transporting nutrients into the sunlit zone of the surface ocean. We used remotely sensed data to quantify the influence of tidal mixing on phytoplankton through an analysis of ocean color, which we interpret as chlorophyll concentration.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Everton Giachini Tosetto, Arnaud Bertrand, Sigrid Neumann-Leitão, Alex Costa da Silva, and Miodeli Nogueira Júnior
Ocean Sci., 18, 1763–1779, https://doi.org/10.5194/os-18-1763-2022, https://doi.org/10.5194/os-18-1763-2022, 2022
Short summary
Short summary
In the western tropical South Atlantic, coastward currents spread oceanic cnidarians over the continental shelf. While both coastal and oceanic communities co-occur in scenarios of higher runoff and weaker boundary current intensity, oceanic species dominate almost the entire shelf during the dry season characterized by stronger currents. Meanwhile, offshore, when the mixed-layer depth is shallower, the enhanced primary productivity supports larger populations of planktonic cnidarians.
Saúl Edgardo Martínez Castellón, José Henrique Cattanio, José Francisco Berrêdo, Marcelo Rollnic, Maria de Lourdes Ruivo, and Carlos Noriega
Biogeosciences, 19, 5483–5497, https://doi.org/10.5194/bg-19-5483-2022, https://doi.org/10.5194/bg-19-5483-2022, 2022
Short summary
Short summary
We seek to understand the influence of climatic seasonality and microtopography on CO2 and CH4 fluxes in an Amazonian mangrove. Topography and seasonality had a contrasting influence when comparing the two gas fluxes: CO2 fluxes were greater in high topography in the dry period, and CH4 fluxes were greater in the rainy season in low topography. Only CO2 fluxes were correlated with soil organic matter, the proportion of carbon and nitrogen, and redox potential.
Michel Tchilibou, Ariane Koch-Larrouy, Simon Barbot, Florent Lyard, Yves Morel, Julien Jouanno, and Rosemary Morrow
Ocean Sci., 18, 1591–1618, https://doi.org/10.5194/os-18-1591-2022, https://doi.org/10.5194/os-18-1591-2022, 2022
Short summary
Short summary
This high-resolution model-based study investigates the variability in the generation, propagation, and sea height signature (SSH) of the internal tide off the Amazon shelf during two contrasted seasons. ITs propagate further north during the season characterized by weak currents and mesoscale eddies and a shallow and strong pycnocline. IT imprints on SSH dominate those of the geostrophic motion for horizontal scales below 200 km; moreover, the SSH is mainly incoherent below 70 km.
Katia Mallil, Pierre Testor, Anthony Bosse, Félix Margirier, Loic Houpert, Hervé Le Goff, Laurent Mortier, and Ferial Louanchi
Ocean Sci., 18, 937–952, https://doi.org/10.5194/os-18-937-2022, https://doi.org/10.5194/os-18-937-2022, 2022
Short summary
Short summary
Our study documents the circulation in the Algerian Basin of the western Mediterranean Sea using in situ data. It shows that the Algerian Gyres have an impact on the distribution at intermediate depth of Levantine Intermediate Water. They allow a westward transport from the south of Sardinia toward the interior of the Algerian Basin. Temperature and salinity trends of this water mass are also investigated, confirming a recent acceleration of the warming and salinification during the last decade.
Ramilla Vieira Assunção, Anne Lebourges-Dhaussy, Alex Costa da Silva, Bernard Bourlès, Gary Vargas, Gildas Roudaut, and Arnaud Bertrand
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-101, https://doi.org/10.5194/os-2021-101, 2021
Publication in OS not foreseen
Short summary
Short summary
Active acoustics has been used to characterize physical structures and processes in the ocean, typically attributed to biological dispersion or turbulent structures. We take advantage of acoustic data from the Southwest Atlantic to test the feasibility of this approach in an oligotrophic region. The results show that the thermohaline structure impacts the vertical distribution of acoustic scatterers, however the methods tested did not allow a robust estimate of the thermohaline limits.
Josefine Herrford, Peter Brandt, Torsten Kanzow, Rebecca Hummels, Moacyr Araujo, and Jonathan V. Durgadoo
Ocean Sci., 17, 265–284, https://doi.org/10.5194/os-17-265-2021, https://doi.org/10.5194/os-17-265-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of the climate system. Understanding its structure and variability is a key priority for many scientists. Here, we present the first estimate of AMOC variations for the tropical South Atlantic from the TRACOS array at 11° S. Over the observed period, the AMOC was dominated by seasonal variability. We investigate the respective mechanisms with an ocean model and find that different wind-forced waves play a big role.
Cited articles
Aguedjou, H. M. A., Dadou, I., Chaigneau, A., Morel, Y., and Alory, G.: Eddies in the Tropical Atlantic Ocean and Their Seasonal Variability, Geophys. Res. Lett., 46, 12156–12164, https://doi.org/10.1029/2019GL083925, 2019.
Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centurioni, L. R., Chao, S.-Y., Chang, M.-H., Farmer, D. M., and Fringer, O. B.: The formation and fate of internal waves in the South China Sea, Nature, 521, 65–69, https://doi.org/10.1038/nature14399, 2015.
Assene, F., Koch-Larrouy, A., Dadou, I., Tchilibou, M., Morvan, G., Chanut, J., Costa da Silva, A., Vantrepotte, V., Allain, D., and Tran, T.-K.: Internal tides off the Amazon shelf – Part 1: The importance of the structuring of ocean temperature during two contrasted seasons, Ocean Sci., 20, 43–67, https://doi.org/10.5194/os-20-43-2024, 2024.
Bai, X., Lamb, K. G., and da Silva, J. C. B.: Small-scale topographic effects on the generation of alongshelf propagating internal solitary waves on the Amazon Shelf, Journal of Geophysical Research: Oceans, 126, e2021JC017252. https://doi.org/10.1029/2021JC017252, 2021.
Baines, P. G.: On internal tide generation models, Deep-Sea Res. Part A, Oceanogr. Res. Pap., 29, 307–338, https://doi.org/10.1016/0198-0149(82)90098-X, 1982.
Beardsley, R. C., Candela, J., Limeburner, R., Geyer, W. R., Lentz, S. J., Castro, B. M., Cacchione, D., Carneiro, N., and Alverson, K.: The M2 tide on the Amazon Shelf, J. Geophys. Res.-Oceans, 100, 2283–2319, https://doi.org/10.1029/94JC01688, 1995.
Bourgault, D., Hamel, C., Cyr, F., Tremblay, J.-É., Galbraith, P. S., Dumont, D., and Gratton, Y.: Turbulent nitrate fluxes in the Amundsen Gulf during ice-covered conditions, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL047936, 2011.
Brandt, P., Rubino, A., and Fischer, J.: Large-Amplitude Internal Solitary Waves in the North Equatorial Countercurrent, J. Phys. Oceanogr., 32, 1567–1573, https://doi.org/10.1175/1520-0485(2002)032<1567:LAISWI>2.0.CO;2, 2002.
Buijsman, M. C., Kanarska, Y., and McWilliams, J. C.: On the generation and evolution of nonlinear internal waves in the South China Sea, J. Geophys. Res.: Oceans, 115, C02012, https://doi.org/10.1029/2009JC005275, 2010.
Calvo-Díaz, A., Morán, X. A. G., and Suárez, L. Á.: Seasonality of picophytoplankton chlorophyll a and biomass in the central Cantabrian Sea, southern Bay of Biscay, J. Mar. Syst., 72, 271–281, https://doi.org/10.1016/j.jmarsys.2007.03.008, 2008.
Capuano, T. A., Koch-Larrouy, A., Nugroho, D., Zaron, E., Dadou, I., Tran, K., Vantrepotte, V., and Allain, D.: Impact of Internal Tides on Distributions and Variability of Chlorophyll a and Nutrients in the Indonesian Seas, J. Geophys. Res.-Oceans, 130, e2022JC019128, https://doi.org/10.1029/2022JC019128, 2025.
Chaigneau, A., Gizolme, A., and Grados, C.: Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns, Prog. Oceanogr., 79, 106–119, https://doi.org/10.1016/j.pocean.2008.10.013, 2008.
Chaigneau, A., Eldin, G., and Dewitte, B.: Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007), Prog. Oceanogr., 83, 117–123, https://doi.org/10.1016/j.pocean.2009.07.012, 2009.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
de Macedo, C. R., Koch-Larrouy, A., da Silva, J. C. B., Magalhães, J. M., Lentini, C. A. D., Tran, T. K., Rosa, M. C. B., and Vantrepotte, V.: Spatial and temporal variability in mode-1 and mode-2 internal solitary waves from MODIS-Terra sun glint off the Amazon shelf, Ocean Sci., 19, 1357–1374, https://doi.org/10.5194/os-19-1357-2023, 2023.
Dimoune, D. M., Birol, F., Hernandez, F., Léger, F., and Araujo, M.: Revisiting the tropical Atlantic western boundary circulation from a 25-year time series of satellite altimetry data, Ocean Sci., 19, 251–268, https://doi.org/10.5194/os-19-251-2023, 2023.
Durham, W. M., and Stocker, R.: Thin phytoplankton layers: characteristics, mechanisms, and consequences, Annu. Rev. Mar. Sci., 4, 177–207, https://doi.org/10.1146/annurev-marine-120710-100957, 2012.
Egbert, G. D. and Ray, R. D.: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data, J. Geophys. Res.-Oceans, 106, 22475–22502, https://doi.org/10.1029/2000JC000699, 2001.
Falkowski, P. G., Barber, R. T., and Smetacek, V.: Biogeochemical Controls and Feedbacks on Ocean Primary Production, Science, 281, 200–206, https://doi.org/10.1126/science.281.5374.200, 1998.
Falkowski, P. G. and Knoll, A. H.: An introduction to primary producers in the sea: who they are, what they do, and when they evolved, in: Evolution of Primary Producers in the Sea, Elsevier, 1–6, https://doi.org/doi.org/10.1016/B978-012370518-1/50002-3, 2007.
Farmer, D., Li, Q., and Park, J.-H.: Internal wave observations in the South China Sea: the role of rotation and non-linearity, Atmos.-Ocean, 47, 267–280, https://doi.org/10.3137/OC310.2009, 2009.
Fratantoni, D. M. and Glickson, D. A.: North Brazil Current ring generation and evolution observed with SeaWiFS, J. Phys. Oceanogr., 32, 1058–1074, https://doi.org/10.1175/1520-0485(2002)032<1058:NBCRGA>2.0.CO;2, 2002.
Fratantoni, D. M., and Richardson, P. L.: The evolution and demise of North Brazil Current rings, J. Phys. Oceanogr., 36, 1241–1264, https://doi.org/10.1175/JPO2907.1, 2006.
Franks, P. J. S.: NPZ Models of Plankton Dynamics: Their Construction, Coupling to Physics, and Application, J. Oceanogr., 58, 379–387, https://doi.org/10.1023/A:1015874028196, 2002.
Fuchs, R., Rossi, V., Caille, C., Bensoussan, N., Pinazo, C., Grosso, O., and Thyssen, M.: Intermittent Upwelling Events Trigger Delayed, Major, and Reproducible Pico-Nanophytoplankton Responses in Coastal Oligotrophic Waters, Geophys. Res. Lett., 50, e2022GL102651, https://doi.org/10.1029/2022GL102651, 2023.
Gabioux, M., Vinzon, S. B., and Paiva, A. M.: Tidal propagation over fluid mud layers on the Amazon shelf, Cont. Shelf Res., 25, 113–125, https://doi.org/10.1016/j.csr.2004.09.001, 2005.
Garau, B., Ruiz, S., Zhang, W. G., Pascual, A., Heslop, E., Kerfoot, J., and Tintoré, J.: Thermal Lag Correction on Slocum CTD Glider Data, J. Atmos. Ocean. Tech., 28, 1065–1071, https://doi.org/10.1175/JTECH-D-10-05030.1, 2011.
Garnesson, P., Mangin, A., Fanton d'Andon, O., Demaria, J., and Bretagnon, M.: The CMEMS GlobColour chlorophyll a product based on satellite observation: multi-sensor merging and flagging strategies, Ocean Sci., 15, 819–830, https://doi.org/10.5194/os-15-819-2019, 2019.
Garzoli, S. L., Ffield, A., and Yao, Q.: North Brazil Current rings and the variability in the latitude of retroflection, in: Elsevier Oceanography Series, Elsevier, 357–373, https://doi.org/10.1016/S0422-9894(03)80154-X, 2003.
Gaxiola-Castro, G., Álvarez-Borrego, S., Nájera-Martínez, S., and Zirino, A.: Internal waves effect on the Gulf of California phytoplankton, Cienc. Mar., 28, 297–309, https://doi.org/10.7773/cm.v28i3.222, 2002.
Geyer, W. R.: Tide-induced mixing in the Amazon Frontal Zone, J. Geophys. Res.-Oceans, 100, 2341–2353, https://doi.org/10.1029/94JC02543, 1995.
Gohin, F.: Annual cycles of chlorophyll a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters, Ocean Sci., 7, 705–732, https://doi.org/10.5194/os-7-705-2011, 2011.
Grimshaw, R.: Internal Solitary Waves, in: Environmental Stratified Flows, Topics in Environmental Fluid Mechanics, Kluwer Academic Publishers, Boston, 27 pp., https://doi.org/10.1007/0-306-48024-7_1, 2003.
Grisouard, N., Staquet, C., and Gerkema, T.: Generation of internal solitary waves in a pycnocline by an internal wave beam: a numerical study, J. Fluid Mech., 676, 491–513, https://doi.org/10.1017/jfm.2011.61, 2011.
Holligan, P. M., Pingree, R. D., and Mardell, G. T.: Oceanic solitons, nutrient pulses and phytoplankton growth, Nature, 314, 348–350, https://doi.org/10.1038/314348a0, 1985.
Holloway, G. and Denman, K.: Influence of internal waves on primary production, J. Plankton Res., 11, 409–413, https://doi.org/10.1093/plankt/11.2.409, 1989.
Horne, E. P., Loder, J. W., Naime, C. E., Oakey, N. S., and Wright, D. G.: Turbulence dissipation rates and nitrate supply in the upper water column on Georges Bank, Deep-Sea Res. Part II, 43, 1683–1712, https://doi.org/10.1016/S0967-0645(96)00056-2, 1996.
Hu, C., Feng, L., Lee, Z., Davis, C. O., Mannino, A., McClain, C. R., and Franz, B. A.: Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past, Appl. Opt., 51, 6045–6062, https://doi.org/10.1364/AO.51.006045, 2012.
Ivanov, V. A., Ivanov, L. I., and Lisichenok, A. D.: Redistribution of energy of the internal tidal wave in the North Equatorial Countercurrent region, Sov. J. Phys. Oceanogr., 1, 383–386, https://doi.org/10.1007/BF02196837, 1990.
Jackson, C. R. and Alpers, W.: The role of the critical angle in brightness reversals on sunglint images of the sea surface, J. Geophys. Res.-Oceans, 115, https://doi.org/10.1029/2009JC006037, 2010.
Jackson, C. R., Da Silva, J. C., and Jeans, G.: The generation of nonlinear internal waves, Oceanography, 25, 108–123, https://doi.org/10.5670/oceanog.2012.46, 2012.
Jacobsen, J. R., Edwards, C. A., Powell, B. S., Colosi, J. A., and Fiechter, J.: Nutricline adjustment by internal tidal beam generation enhances primary production in idealized numerical models, Front. Mar. Sci., 10, 1309011, https://doi.org/10.3389/fmars.2023.1309011, 2023.
Jeans, D. R. G. and Sherwin, T. J.: The variability of strongly non-linear solitary internal waves observed during an upwelling season on the Portuguese shelf, Cont. Shelf Res., 21, 1855–1878, https://doi.org/10.1016/S0278-4343(01)00026-7, 2001.
Johns, W. E., Lee, T. N., Beardsley, R. C., Candela, J., Limeburner, R., and de Castro, B. M.: Annual cycle and variability of the North Brazil Current, J. Phys. Oceanogr., 28, 103–128, https://doi.org/10.1175/1520-0485(1998)028<0103:ACAVOT>2.0.CO;2, 1998.
Kahru, M.: Phytoplankton patchiness generated by long internal waves: A model, Mar. Ecol. Prog. Ser., 10, 111–117, https://doi.org/10.3354/meps010111, 1983.
Kaneko, H., Tanaka, T., Wakita, M., Sasaki, K., Okunishi, T., Miyazawa, Y., Zhang, R., Tatamisashi, S., Sato, Y., Hashimukai, T., and Kaneko, M.: Topographically driven vigorous vertical mixing supports mesoscale biological production in the Tsugaru Gyre, Nat. Commun., 16, 3656, https://doi.org/10.1038/s41467-025-56917-4, 2025.
Kantha, L. H. and Tierney, C. C.: Global baroclinic tides, Prog. Oceanogr., 40, 163–178, https://doi.org/10.1016/S0079-6611(97)00028-1, 1997.
Koch-Larrouy, A., Lengaigne, M., Terray, P., Madec, G., and Masson, S.: Tidal mixing in the Indonesian Seas and its effect on the tropical climate system, Clim. Dynam., 34, 891–904, https://doi.org/10.1007/s00382-009-0642-4, 2010.
Krahmann, G.: GEOMAR FB1-PO Matlab Slocum glider processing toolbox, GEOMAR, https://doi.org/10.3289/SW_4_2023, 2023.
Kunze, E.: Internal-wave-driven mixing: global geography and budgets, J. Phys. Oceanogr., 47, 1325–1345, https://doi.org/10.1175/JPO-D-16-0141.1, 2017.
Lamb, K. G. and Xiao, W.: Internal solitary waves shoaling onto a shelf: Comparisons of weakly-nonlinear and fully nonlinear models for hyperbolic-tangent stratifications, Ocean Model., 78, 17–34, https://doi.org/10.1016/j.ocemod.2014.02.005, 2014.
Lande, R. and Yentsch, C. S.: Internal waves, primary production and the compensation depth of marine phytoplankton, J. Plankton Res., 10, 565–571, https://doi.org/10.1093/plankt/10.3.565, 1988.
Law, C. S., Abraham, E. R., Watson, A. J., and Liddicoat, M. I.: Vertical eddy diffusion and nutrient supply to the surface mixed layer of the Antarctic Circumpolar Current, J. Geophys. Res.-Oceans, 108, https://doi.org/10.1029/2002JC001604, 2003.
Lewis, M. R., Hebert, D., Harrison, W. G., Platt, T., and Oakey, N. S.: Vertical Nitrate Fluxes in the Oligotrophic Ocean, Science, 234, 870–873, https://doi.org/10.1126/science.234.4778.870, 1986.
Liu, C., Pinkel, R., Klymak, J., Hsu, M., Chen, H., and Villanoy, C.: Nonlinear internal waves from the Luzon Strait, Eos Trans. Am. Geophys. Union, 87, 449–451, https://doi.org/10.1029/2006EO420002, 2006.
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021.
Kouogang, F., Koch-Larrouy, A., Magalhaes, J., Costa da Silva, A., Kerhervé, D., Bertrand, A., Cervelli, E., Assene, F., Ternon, J.-F., Rousselot, P., Lee, J., Rollnic, M., and Araujo, M.: Turbulent dissipation along contrasting internal tide paths off the Amazon shelf from AMAZOMIX, Ocean Sci., 21, 1589–1608, https://doi.org/10.5194/os-21-1589-2025, 2025.
M'hamdi, A., Bosse, A., Testor, P., Mortier, L., Rousselot, P., Costa da Silva, A., Araujo, M., Koch-Larrouy, A., and Bertrand, A.: AMAZOMIX cruise – Glider dataset, SEANOE [data set], https://doi.org/10.17882/108213, 2025.
Ma, L., Bai, X., Laws, E. A., Xiao, W., Guo, C., Liu, X., Chiang, K., Gao, K., and Huang, B.: Responses of Phytoplankton Communities to Internal Waves in Oligotrophic Oceans, J. Geophys. Res.-Oceans, 128, e2023JC020201, https://doi.org/10.1029/2023JC020201, 2023.
Magalhaes, J. M., da Silva, J. C. B., Buijsman, M. C., and Garcia, C. A. E.: Effect of the North Equatorial Counter Current on the generation and propagation of internal solitary waves off the Amazon shelf (SAR observations), Ocean Sci., 12, 243–255, https://doi.org/10.5194/os-12-243-2016, 2016.
Mahadevan, A. and Campbell, J. W.: Biogeochemical patchiness at the sea surface, Geophys. Res. Lett., 29, https://doi.org/10.1029/2001GL014116, 2002.
Marañón, E., Holligan, P. M., Varela, M., Mouriño, B., and Bale, A. J.: Basin-scale variability of phytoplankton biomass, production and growth in the Atlantic Ocean, Deep-Sea Res. Part I, 47, 825–857, https://doi.org/10.1016/S0967-0637(99)00087-4, 2000.
Martin, A. P., Lucas, M. I., Painter, S. C., Pidcock, R., Prandke, H., Prandke, H., and Stinchcombe, M. C.: The supply of nutrients due to vertical turbulent mixing: A study at the Porcupine Abyssal Plain study site in the northeast Atlantic, Deep-Sea Res. Part II, 57, 1293–1302, https://doi.org/10.1016/j.dsr2.2010.01.006, 2010.
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox, SCOR/IAPSO WG 127, 28 pp., ISBN 978-0-646-55621-5, https://www.teos-10.org/pubs/gsw/html/gsw_contents.html (last access: 10 May 2025), 2011.
McGillicuddy Jr, D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C. A., Davis, C. S., Ewart, C., Falkowsi, P. G., Goldthwait, S. A., Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V. K., Ledwell, J. R., Li, Q. P., Siegel, D. A., and Steinberg, D. K.: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms, Science, 316, 1021–1026, https://doi.org/10.1126/science.1136256, 2007.
McInerney, J. B. T., Forrest, A. L., Schladow, S. G., Largier, J. L., and Monismith, S. G.: How to Fly an Autonomous Underwater Glider to Measure an Internal Wave, in: OCEANS 2019 MTS/IEEE SEATTLE, IEEE, Seattle, WA, USA, 8 pp., https://doi.org/10.23919/OCEANS40490.2019.8962407, 2019.
Mendes, R., Da Silva, J. C. B., Magalhães, J. M., St-Denis, B., Bourgault, D., Pinto, J., and Dias, J. M.: On the generation of internal waves by river plumes in subcritical initial conditions, Sci. Rep., 11, 1963, https://doi.org/10.1038/s41598-021-81464-5, 2021.
Mikaelyan, A. S., Zatsepin, A. G., and Kubryakov, A. A.: Effect of mesoscale eddy dynamics on bioproductivity of the marine ecosystems, Phys. Oceanogr., 27, 590–598, https://doi.org/10.22449/1573-160X-2020-6-590-618, 2020.
Moore, C. M., Seeyave, S., Hickman, A. E., Allen, J. T., Lucas, M. I., Planquette, H., Pollard, R. T., and Poulton, A. J.: Iron–light interactions during the CROZet natural iron bloom and EXport experiment (CROZEX) I: Phytoplankton growth and photophysiology, Deep-Sea Res. Part II, 54, 2045–2065, https://doi.org/10.1016/j.dsr2.2007.06.011, 2007.
Morel, A.: Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters), J. Geophys. Res.-Oceans, 93, 10749–10768, https://doi.org/10.1029/JC093iC09p10749, 1988.
Morel, A. and Maritorena, S.: Bio-optical properties of oceanic waters: A reappraisal, J. Geophys. Res.-Oceans, 106, 7163–7180, https://doi.org/10.1029/2000JC000319, 2001.
Moum, J. N., Farmer, D. M., Smyth, W. D., Armi, L., and Vagle, S.: Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf, J. Phys. Oceanogr., 33, 2093–2112, https://doi.org/10.1175/1520-0485(2003)033%3C2093:SAGOTA%3E2.0.CO;2, 2003.
Munk, W. and Wunsch, C.: Abyssal recipes II: energetics of tidal and wind mixing, Deep-Sea Res. Part I, 45, 1977–2010, https://doi.org/10.1016/S0967-0637(98)00070-3, 1998.
Nash, J. D., Kunze, E., Toole, J. M., and Schmitt, R. W.: Internal tide reflection and turbulent mixing on the continental slope, J. Phys. Oceanogr., 34, 1117–1134, https://doi.org/10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2, 2004.
Neto, A. V. N. and Da Silva, A. C.: Seawater temperature changes associated with the North Brazil current dynamics, Ocean Dyn., 64, 13–27, https://doi.org/10.1007/s10236-013-0667-4, 2014.
Osadchiev, A. A.: Small mountainous rivers generate high-frequency internal waves in coastal ocean, Sci. Rep., 8, 16609, https://doi.org/10.1038/s41598-018-34919-0, 2018.
Partensky, F., Hess, W. R., and Vaulot, D.: Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance, Microbiol. Mol. Biol. Rev., 63, 106–127, https://doi.org/10.1128/MMBR.63.1.106-127.1999, 1999.
Pegliasco, C., Chaigneau, A., and Morrow, R.: Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems, J. Geophys. Res.-Oceans, 120, 6008–6033, https://doi.org/10.1002/2015JC010950, 2015.
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., and Picot, N.: DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years, Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, 2016.
Raju, N. J., Dash, M. K., Bhaskaran, P. K., and Pandey, P. C.: Numerical investigation of bidirectional mode-1 and mode-2 internal solitary wave generation from north and south of Batti Malv Island, Nicobar Islands, India, J. Phys. Oceanogr., 51, 47–62, https://doi.org/10.1175/JPO-D-19-0182.1, 2021.
Rijnsburger, S., Flores, R. P., Pietrzak, J. D., Lamb, K. G., Jones, N. L., Horner-Devine, A. R., and Souza, A. J.: Observations of multiple internal wave packets in a tidal river plume, J. Geophys. Res.: Oceans, 126, e2020JC016575, https://doi.org/10.1029/2020JC016575, 2021.
Ruault, V., Jouanno, J., Durand, F., Chanut, J., and Benshila, R.: Role of the Tide on the Structure of the Amazon Plume: A Numerical Modeling Approach, J. Geophys. Res.-Oceans, 125, e2019JC015495, https://doi.org/10.1029/2019JC015495, 2020.
Sangrà, P., Basterretxea, G., Pelegrí, J. L., and Arístegui, J.: Chlorophyll increase due to internal waves in the shelf-break of Gran Canaria (Canary Islands), Sci. Mar., 65, 89–97, https://doi.org/10.3989/scimar.2001.65s189, 2001.
Scanlan, D. J., Ostrowski, M., Mazard, S., Dufresne, A., Garczarek, L., Hess, W. R., Post, A. F., Hagemann, M., Paulsen, I., and Partensky, F.: Ecological Genomics of Marine Picocyanobacteria, Microbiol. Mol. Biol. Rev., 73, 249–299, https://doi.org/10.1128/MMBR.00035-08, 2009.
Schott, F. A., Fischer, J., and Stramma, L.: Transports and pathways of the upper-layer circulation in the western tropical Atlantic, J. Phys. Oceanogr., 28, 1904–1928, https://doi.org/10.1175/1520-0485(1998)028<1904:TAPOTU>2.0.CO;2, 1998.
Silva, A., Araujo, M., Medeiros, C., Silva, M., and Bourlès, B.: Seasonal changes in the mixed and barrier layers in the western Equatorial Atlantic, Braz. J. Oceanogr., 53, 83–98, https://doi.org/10.1590/S1679-87592005000200001, 2005.
Silva, A. C., Bourles, B., and Araujo, M.: Circulation of the thermocline salinity maximum waters off the Northern Brazil as inferred from in situ measurements and numerical results, Ann. Geophys., 27, 1861–1873, https://doi.org/10.5194/angeo-27-1861-2009, 2009.
Sprintall, J., Gordon, A. L., Koch-Larrouy, A., Lee, T., Potemra, J. T., Pujiana, K., and Wijffels, S. E.: The Indonesian seas and their role in the coupled ocean–climate system, Nat. Geosci., 7, 487–492, https://doi.org/10.1038/ngeo2188, 2014.
Tchilibou, M., Koch-Larrouy, A., Barbot, S., Lyard, F., Morel, Y., Jouanno, J., and Morrow, R.: Internal tides off the Amazon shelf during two contrasted seasons: interactions with background circulation and SSH imprints, Ocean Sci., 18, 1591–1618, https://doi.org/10.5194/os-18-1591-2022, 2022.
Thomalla, S. J., Moutier, W., Ryan-Keogh, T. J., Gregor, L., and Schütt, J.: An optimized method for correcting fluorescence quenching using optical backscattering on autonomous platforms, Limnol. Oceanogr. Methods, 16, 132–144, https://doi.org/10.1002/lom3.10234, 2018.
Tsutsumi, E., Matsuno, T., Itoh, S., Zhang, J., Senjyu, T., Sakai, A., Lee, K., Yanagimoto, D., Yasuda, I., Ogawa, H., and Villanoy, C.: Vertical fluxes of nutrients enhanced by strong turbulence and phytoplankton bloom around the ocean ridge in the Luzon Strait, Sci. Rep., 10, 17879, https://doi.org/10.1038/s41598-020-74938-5, 2020.
Tuerena, R. E., Williams, R. G., Mahaffey, C., Vic, C., Green, J. A. M., Naveira-Garabato, A., Forryan, A., and Sharples, J.: Internal Tides Drive Nutrient Fluxes Into the Deep Chlorophyll Maximum Over Mid-ocean Ridges, Global Biogeochem. Cy, 33, 995–1009, https://doi.org/10.1029/2019GB006214, 2019.
Van Gennip, S., Martin, A. P., Srokosz, M. A., Allen, J. T., Pidcock, R., Painter, S. C., and Stinchcombe, M. C.: Plankton patchiness investigated using simultaneous nitrate and chlorophyll observations, J. Geophys. Res. Oceans, 121, 4149–4156, https://doi.org/10.1002/2016JC011789, 2016.
Vázquez, A., Flecha, S., Bruno, M., Macías, D., and Navarro, G.: Internal waves and short-scale distribution patterns of chlorophyll in the Strait of Gibraltar and Alborán Sea, Geophys. Res. Lett., 36, L23601, https://doi.org/10.1029/2009GL040959, 2009.
Vlasenko, V., Stashchuk, N., and Hutter, K.: Baroclinic tides: theoretical modeling and observational evidence, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511535932, 2005.
Waterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E., Simmons, H. L., Polzin, K. L., St. Laurent, L. C., Sun, O. M., and Pinkel, R.: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate, J. Phys. Oceanogr., 44, 1854–1872, https://doi.org/10.1175/JPO-D-13-0104.1, 2014.
Yuan, C., Pan, L., Gao, Z., and Wang, Z.: Combined effect of topography and rotation on oblique internal solitary wave–wave interactions, J. Geophys. Res.: Oceans, 128, e2023JC019634, https://doi.org/10.1029/2023JC019634, 2023.
Zaron, E. D., Capuano, T. A., and Koch-Larrouy, A.: Fortnightly variability of Chl a in the Indonesian seas, Ocean Sci., 19, 43–55, https://doi.org/10.5194/os-19-43-2023, 2023.
Zhang, X., Huang, X., Zhang, Z., Zhou, C., Tian, J., and Zhao, W.: Polarity variations of internal solitary waves over the continental shelf of the northern South China Sea: impacts of seasonal stratification, mesoscale eddies, and internal tides, J. Phys. Oceanogr., 48, 1349–1365, https://doi.org/10.1175/JPO-D-17-0069.1, 2018.
Zhao, Z., Alford, M. H., Girton, J. B., Rainville, L., and Simmons, H. L.: Global observations of open-ocean mode-1 M2 internal tides, J. Phys. Oceanogr., 46, 1657–1684, https://doi.org/10.1175/JPO-D-15-0105.1, 2016.
Zubkov, M. V., Sleigh, M. A., Burkill, P. H., and Leakey, R. J.: Picoplankton community structure on the Atlantic Meridional Transect: a comparison between seasons, Prog. Oceanogr., 45, 369–386, https://doi.org/10.1016/S0079-6611(00)00008-2, 2000.
Short summary
In the ocean off the Amazon shelf, internal waves caused by tides move water layers up and down and mix them. Using an underwater glider and satellites, we found internal tides redistribute chlorophyll from the deep chlorophyll maximum upward to the surface and downward to depth. Turbulent chlorophyll fluxes supply about 38 % of surface chlorophyll, and total chlorophyll increases by 14–29 % during strong tides, potentially affecting the marine food web.
In the ocean off the Amazon shelf, internal waves caused by tides move water layers up and down...
Special issue