Articles | Volume 20, issue 6
https://doi.org/10.5194/os-20-1457-2024
https://doi.org/10.5194/os-20-1457-2024
Research article
 | 
12 Nov 2024
Research article |  | 12 Nov 2024

A three-quantile bias correction with spatial transfer for the correction of simulated European river runoff to force ocean models

Stefan Hagemann, Thao Thi Nguyen, and Ha Thi Minh Ho-Hagemann

Related authors

POPE: a Global Gridded Emission Inventory for PFAS 1950–2020
Pascal Simon, Martin Otto Paul Ramacher, Stefan Hagemann, Volker Matthias, Hanna Joerss, and Johannes Bieser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-236,https://doi.org/10.5194/essd-2024-236, 2024
Preprint under review for ESSD
Short summary
First comprehensive assessment of industrial-era land heat uptake from multiple sources
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024,https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Compound flood events: analysing the joint occurrence of extreme river discharge events and storm surges in northern and central Europe
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023,https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
HydroPy (v1.0): a new global hydrology model written in Python
Tobias Stacke and Stefan Hagemann
Geosci. Model Dev., 14, 7795–7816, https://doi.org/10.5194/gmd-14-7795-2021,https://doi.org/10.5194/gmd-14-7795-2021, 2021
Short summary
Coupled regional Earth system modeling in the Baltic Sea region
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021,https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary

Related subject area

Approach: Numerical Models | Properties and processes: Coastal and near-shore processes
High-resolution numerical modelling of seasonal volume, freshwater, and heat transport along the Indian coast
Kunal Madkaiker, Ambarukhana D. Rao, and Sudheer Joseph
Ocean Sci., 20, 1167–1185, https://doi.org/10.5194/os-20-1167-2024,https://doi.org/10.5194/os-20-1167-2024, 2024
Short summary
Mechanisms and intraseasonal variability in the South Vietnam Upwelling, South China Sea: the role of circulation, tides, and rivers
Marine Herrmann, Thai To Duy, and Patrick Marsaleix
Ocean Sci., 20, 1013–1033, https://doi.org/10.5194/os-20-1013-2024,https://doi.org/10.5194/os-20-1013-2024, 2024
Short summary
Exploring water accumulation dynamics in the Pearl River estuary from a Lagrangian perspective
Mingyu Li, Alessandro Stocchino, Zhongya Cai, and Tingting Zu
Ocean Sci., 20, 931–944, https://doi.org/10.5194/os-20-931-2024,https://doi.org/10.5194/os-20-931-2024, 2024
Short summary
Exploring the tidal response to bathymetry evolution and present-day sea level rise in a channel–shoal environment
Robert Lepper, Leon Jänicke, Ingo Hache, Christian Jordan, and Frank Kösters
Ocean Sci., 20, 711–723, https://doi.org/10.5194/os-20-711-2024,https://doi.org/10.5194/os-20-711-2024, 2024
Short summary
Wave-resolving Voronoi model of Rouse number for sediment entrainment equilibrium
Johannes Lawen
EGUsphere, https://doi.org/https://doi.org/10.48550/arXiv.2404.10878,https://doi.org/https://doi.org/10.48550/arXiv.2404.10878, 2024
Short summary

Cited articles

Arora, V. K., Seiler, C., Wang, L., and Kou-Giesbrecht, S.: Towards an ensemble-based evaluation of land surface models in light of uncertain forcings and observations, Biogeosciences, 20, 1313–1355, https://doi.org/10.5194/bg-20-1313-2023, 2023. 
Becker, G. A., Dick, S., and Dippner, J. W.: Hydrography of the German Bight, Mar. Ecol. Prog. Ser., 91, 9–18, https://doi.org/10.3354/meps091009, 1992. 
Becker, G. A., Giese, H., Isert, K., König, P., Langenberg, H., Pohlmann, T., and Schrum, C.: Mesoscale structures, fluxes and water mass variability in the German Bight as exemplified in the KUSTOS- experiments and numerical models, Deutsche Hydrographische Zeitschrift, 51, 155–179, https://doi.org/10.1007/bf02764173, 1999. 
Borgvang, S. A., Skarbøvik, E., and Pengerud, A.: RID 2006 data report: Presentation and Assessment of the OSPAR Contracting Parties' RID 2006 Data, Norwegian Institute for Agricultural and Environmental Research, London, No. 376/2008, 373 pp., https://www.ospar.org/documents?v=7121 (last access: 7 November 2024) 2008. 
Brown, J. D. and Seo, D. J.: A nonparametric postprocessor for bias correction of hydrometeorological and hydrologic ensemble forecasts, J. Hydrometeorol., 11, 642–665, https://doi.org/10.1175/2009jhm1188.1, 2010. 
Download
Short summary
We have developed a methodology for the bias correction of simulated river runoff to force ocean models in which low, medium, and high discharges are corrected once separated at the coast. We show that the bias correction generally leads to an improved representation of river runoff in Europe. The methodology is suitable for model regions with a sufficiently high coverage of discharge observations, and it can be applied to river runoff based on climate hindcasts or climate change simulations.