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Abstract. In ocean or Earth system model applications, the
riverine freshwater inflow is an important flux affecting salin-
ity and marine stratification in coastal areas. However, in cli-
mate change studies, the river runoff based on climate model
output often has large biases on local, regional, or even basin-
wide scales. If these biases are too large, the ocean model
forced by the runoff will drift into a different climate state
compared to the observed state, which is particularly relevant
for semi-enclosed seas such as the Baltic Sea. To achieve low
biases in riverine freshwater inflow in large-scale climate ap-
plications, a bias correction is required that can be applied
in periods where runoff observations are not available and
that allows spatial transferability of its correction factors.
In order to meet these requirements, we have developed a
three-quantile bias correction that includes different correc-
tion factors for low-, medium-, and high-percentile ranges
of river runoff over Europe. Here, we present an experimen-
tal setup using the Hydrological Discharge (HD) model and
its high-resolution (1/12°) grid. First, bias correction fac-
tors are derived at the locations of the downstream stations
with available daily discharge observations for many Euro-
pean rivers. These factors are then transferred to the respec-
tive river mouths and mapped to neighbouring grid boxes be-
longing to ungauged catchments. The results show that the
bias correction generally leads to an improved representa-
tion of river runoff. Especially over northern Europe, where
many rivers are regulated, the three-quantile bias correction
provides an advantage compared to a bias correction that
only corrects the mean bias of the river runoff. Evaluating
two NEMO (Nucleus for European Modelling of the Ocean)
model simulations in the German Bight indicated that the use
of the bias-corrected discharges as forcing leads to an im-

proved simulation of sea surface salinity in coastal areas. Al-
though the bias correction is tailored to the high-resolution
HD model grid over Europe in the present study, the method-
ology is suitable for any high-resolution model region with
a sufficiently high coverage of river runoff observations. It is
also noted that the methodology is applicable to river runoff
based on climate hindcasts, as well as on historical climate
simulations where the sequence of weather events does not
match the actual observed history. Therefore, it may also be
applied in climate change simulations.

1 Introduction

River runoff (or discharge or streamflow) is an important
component of the global hydrological cycle, accounting for
about one-third of precipitation over land areas. It closes
the water cycle between land and ocean and influences var-
ious ocean properties, in particular the salinity of coastal
and semi-enclosed seas (e.g. Väli et al., 2013), the ocean
stratification in shelf areas (e.g. Hordoir and Meier, 2010)
such as the German Bight (Becker et al., 1992), and the
thermohaline circulation in different regions (e.g. Hordoir et
al., 2008; Lehmann and Hinrichsen, 2000; Marzeion et al.,
2007). In addition, river runoff and associated nutrient loads
are important factors influencing marine ecosystem function-
ing (Daewel and Schrum, 2017).

Consequently, river runoff needs to be adequately repre-
sented in studies of the impacts of climate change on the ma-
rine environment or in coupled Earth system studies. In such
studies, the atmospheric data used to force the respective
ocean model are usually taken from climate models, reanal-
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ysis products, or hydrological models. Here, it is desirable
that the river runoff is consistent with the atmospheric forc-
ing (e.g. Vinayachandran et al., 2015; Hagemann and Stacke,
2022); i.e. that the impact of weather events and trends in the
atmospheric forcing is transferred via the river runoff into the
ocean. In previous modelling studies, runoff was often taken
from climatology or discharge observations, especially when
hindcasts were used. However, this is not a recommended
approach for climate change studies where consistently sim-
ulated river runoff should be used. Runoff from the driving
climate, land surface, or hydrological model will contain bi-
ases, e.g., due to biases in precipitation and/or uncertainties
in the land surface representation of the model. Many simu-
lations of historical daily river runoff show common biases
in the tails of their distributions, with high discharges under-
estimated and low discharges overestimated (Farmer et al.,
2018, and references therein). If the basin-wide biases are too
large, a bias correction of the simulated discharge would be
necessary to avoid the ocean model drifting into a different
climate state compared to the observed state. This is particu-
larly relevant for semi-enclosed seas such as the Baltic Sea.
For example, for Baltic Sea ocean models, the mean long-
term bias of river runoff must be less than 7 % (Hagemann
and Stacke, 2022).

The bias correction of river runoff is an approach that
has been used particularly for short-term hydrological fore-
casts and ensemble predictions of up to 6 months. However,
these approaches (see, e.g., those listed in Kim et al., 2021;
Madadgar et al., 2014) are often specifically trimmed to flood
forecasts. Therefore, they often require the existence of ob-
served values from previous time steps so that are not appli-
cable in climate change studies, such as autoregression mod-
els (Kim et al., 2021) or components of a Bayesian forecast-
ing system (Krzysztofowicz and Maranzano, 2004). Others
like non-parametric methods based on Bayesian approaches,
as proposed by Brown and Seo (2010, 2012), need a large
number of ensemble members (Madadgar et al., 2014).

Recently, bias correction of river runoff has also been ap-
plied in the context of climate change. Quantile-mapping-
based approaches are often used for such bias correction, as
this usually leads to a large improvement in the representa-
tion of discharge of the considered river. For example, Bud-
hathoki et al. (2022) used quantile mapping to correct dis-
charge bias in the Chao Phraya River basin (Thailand), and
Daraio (2020) used it for two basins in New Jersey (USA).
A criticism of using quantile mapping in flood forecasting is
that it does not maintain the pairing of corresponding simu-
lated and observed flows (Madadgar et al., 2014). Madadgar
et al. (2014) also noted that quantile mapping was not al-
ways successful in improving the initial forecast trajectory.
In their application for the Sprague River (southern Oregon,
USA), the skill of the forecast actually deteriorated when the
quantile mapping technique was used. Similarly, Malek et
al. (2022) used a quantile-mapping-based bias correction of
discharge and showed that ex post corrections of simulated

discharge do not necessarily reduce biases in the simulation
of key processes and, in some cases, can severely degrade
system simulations.

Consequently, the aim of the present study was to develop
a bias correction method sufficient to meet the requirements
of ocean models in large-scale climate change studies. Note
that we did not aim for the most accurate reproduction of
observed discharge characteristics as required for short-term
hydrological predictions and flood forecasts used by water
resource decision-makers (e.g. Shi et al., 2008). In order to
maintain a high degree of temporal consistency of simulated
runoff with the meteorological patterns in the driving (on-
or offline) climate model (or data), a bias correction with as
little fitting or modification of the daily sequence of runoff
curves as possible is desired. Thus, our target is a simple
bias correction that corrects the mean bias and the tail bi-
ases of the discharge distribution in climate change applica-
tions of ocean or coupled system models. The bias correc-
tion factors should be transferable from downstream stations
to river mouths, as well as to neighbouring ungauged catch-
ments. Furthermore, it should be applicable to climate model
or Earth system model data that lack the observed sequence
of actual discharge events. Therefore, we decided to not ap-
ply methods that employ detailed modifications of the dis-
charge curves for specific rivers, such as those methods that
use complex matrix arithmetic of observed and simulated
discharge time series (e.g. Zhao et al., 2011) or the common
quantile mapping approaches. The latter are conducted using
a lot of bins, so that the bias in the discharge curve of a spe-
cific river can be strongly reduced. However, these detailed
correction factors for every bin may likely not be transferred
to other locations. It may work for the same river if the sta-
tion and river mouth are relatively close to each other but
certainly may not be valid for the transfer to neighbouring
catchments.

The paper is organised as follows. Section 2 describes how
the simulated discharges were generated and the newly de-
veloped bias correction methodology, as well as the data,
models, and metrics used in this study. Sections 3 and 4 eval-
uate the simulated and bias-corrected discharges and present
the effects of the bias correction for station locations and sea
basin inflows, respectively. Finally, Sect. 5 concludes with a
summary and conclusions.

2 Data and methods

To generate the freshwater inflow from rivers to the ocean,
we used an experimental setup analogous to Hagemann
and Stacke (2022). Here we used two atmospheric forcing
datasets (Sect. 2.1) and the same model chain of two large-
scale hydrological models. The global hydrological model
HydroPy (Sect. 2.2) was used to generate the input to the Hy-
drological Discharge (HD) model (Sect. 2.3) at the resolution
of the atmospheric forcing data (0.5°). These input data of
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Figure 1. Overview on the main steps of generating bias-corrected river discharge at HD river mouths.

surface and subsurface runoff were then interpolated onto the
HD model grid, and the HD model was used to simulate daily
discharges from land to sea. Subsequently, we bias-corrected
these time series as described in Sect. 2.4 to generate bias-
corrected discharges at coastal ocean boxes of the European
HD model domain from 1901–2019. Note that we combined
the simulations based on two different atmospheric forcing
datasets to cover the whole 20th century and to include the
more recent years in the bias-corrected discharge time se-
ries. Such an approach was also used in the second phase
(ISIMIP, 2023) of the Inter-Sectoral Impact Model Intercom-
parison Project (ISIMIP; Warszawski et al., 2014). Figure 1
summarises the experimental setup. Section 2.5 refers to the
observational data that are used in the evaluation of the model
results. Finally, the evaluation metrics used in the analysis of
the results are presented in Sect. 2.7.

2.1 Atmospheric forcing

We used two atmospheric datasets comprising daily data of
various near-surface atmospheric variables. They have been
used as meteorological forcing datasets in several climate im-
pact assessments and are recommended by ISIMIP (2023).
Both datasets were specifically generated to force global hy-
drological models for hindcast simulations. They are based
on re-analysis products from different weather forecast cen-
tres and bias correction procedures were applied by the re-
spective creators to improve their data.

The Global Soil Wetness Project Phase 3 (GSWP3;
Dirmeyer et al., 2006; Kim, 2017) dataset is available at 0.5°
resolution from 1901–2014. To generate the GSWP3 dataset,
Kim (2017) dynamically downscaled the 20th Century Re-
analysis (Compo et al., 2011) onto the T248 (∼ 0.5°) grid

using a spectral nudging technique (Yoshimura and Kana-
mitsu, 2008) in a global spectral model. Observation-based
bias correction procedures were then applied to the down-
scaled data to obtain daily time series.

To generate the WFDE5 dataset, Cucchi et al. (2020) ap-
plied the WATCH Forcing Data methodology (Weedon et al.,
2011) to surface meteorological variables from the ERA5 re-
analysis (Hersbach et al., 2020) to obtain a bias-corrected
time series. ERA5 is the fifth generation of atmospheric
reanalysis produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF). WFDE5 is provided at
0.5° spatial resolution from 1979–2019. Mengel et al. (2021)
stated that WFDE5 is considered the more realistic dataset,
especially with respect to day-to-day variability for variables
for which the monthly mean values were bias corrected, such
as precipitation and temperature. For more information on
application and evaluation of both datasets, see, e.g., Mengel
et al. (2021) and references therein (Hassler and Lauer, 2021;
Arora et al., 2023).

2.2 HydroPy setup

HydroPy (Stacke and Hagemann, 2021) is a state-of-the-art
global hydrology model for which no model calibration was
performed for its setup. Within global hydrological mod-
elling, the usage of uncalibrated models is rather common
(see, e.g., Haddeland et al., 2011), even though some mod-
els exist that are calibrated for global studies. In the present
study, HydroPy was driven by daily forcing data from 1901–
2019. Daily input fields of surface and subsurface runoff
were generated at a resolution of 0.5°. Analogous to the
ERA5 forced simulation in Hagemann and Stacke (2022),
precipitation, 2 m temperature, downwelling shortwave and
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longwave radiation, 2 m specific humidity, surface pressure,
and 10 m wind are used as forcing from the respective forcing
dataset. We performed a spin-up simulation over 50 iterations
of the year 1901 with the GSWP3 forcing (cf. Stacke and
Hagemann, 2021) to initialise the storages in the HydroPy
model and to avoid any drift during the actual simulation pe-
riod. We then forced HydroPy with the GSWP3 data from
1901–1978 and continued with the WFDE5 data from 1979–
2019. We also conducted a GSWP3 forced simulation from
1979–2014 in order to derive bias correction parameters for
the earlier period. For our analysis, we focus on the years
from 1950 onwards so that we have an additional transient
spin-up of 49 years.

2.3 HD model setup

The HD model (Hagemann et al., 2020) is a well-established
river-routing model that is implemented in a range of global
and regional model systems. As noted in Hagemann et
al. (2020), no river-specific parameter adjustments were con-
ducted in the HD model to enable its applicability for cli-
mate change studies and over catchments where no daily dis-
charges are available at a downstream station. To simulate
discharge with the HD model, we used the daily input fields
of surface and subsurface runoff that were generated by Hy-
droPy from the GSWP3 and WFDE5 data (see Sect. 2.2).
As the time step of these runoff data is 1 d, the time step
of the HD model was also set to 1 d. However, an internal
time step of 0.5 h is used for the flow within the river, as the
minimum travel time through a grid box is limited by the
chosen time step. The HD model v5.2.0 (Hagemann et al.,
2023) was applied over the European domain, which covers
the land areas between 27 to 72° N and−11° W to 69° E. The
domain, along with a number of rivers specifically noted in
this study, is shown in Fig. 2. In the following, we refer to
the WFDE5-based discharges as HDW and to the GSWP3-
based discharges as HDG. The corresponding bias-corrected
discharges are referred to as HD-BC in general and HDW-BC
and HDG-BC in particular.

2.4 Bias correction of river runoff

We have developed a bias correction method for river runoff
that uses correction factors for three quantiles and includes
a spatial transfer of these factors. We note that our three-
quantile bias correction is similar to a very coarse quantile
mapping. The latter has been introduced in climate change
impact research to correct for significant biases in data pro-
duced by global and regional climate models. Quantile map-
ping is a distribution mapping in which the distribution func-
tion of climate values is corrected to match the observed dis-
tribution function. Details of such mapping applied to precip-
itation and surface air temperature can be found, for example,
in Piani et al. (2010) and Teutschbein and Seibert (2012). Our
bias correction method involves several steps. First, different

correction factors for low, medium, and high percentiles are
calculated at the station locations and then applied at the re-
spective river mouths. Finally, an interpolation is performed
on neighbouring coastal mouth points for which no down-
stream observations are available in the respective catch-
ment. This procedure is summarised in Fig. 3. The three per-
centile ranges for daily discharge qi are classified as

– low (L), qi ≤Qp,

– medium (M), Qp < qi < Q100−p, and

– high (H ), qi ≥Q100−p.

Here, Qp denotes the pth percentile of the daily discharge,
and p was set to 20. The percentiles Qp and Q100−p were
determined separately for the observed and the simulated
discharges at the downstream station locations, and then the
mean discharges qR were calculated for the three percentile
ranges R ∈ {L, M, H }. Note that only those days for which
an observed discharge was available were considered for
these calculations. Then, the mean bias bR (in %) was cal-
culated for each percentile range, and a correction factor fR
to remove the bias was derived as

fR =
100

bR + 100
.

For the evaluation of the bias correction in Sect. 3, these cor-
rection factors were applied to the simulated discharges at the
station locations. As the correction factors are independent
of the absolute amount of discharge, they could be applied to
the respective river mouths. For each river mouth with more
than one inflow (j > 1) for which a correction factor fR,j is
determined, a combined correction factor is obtained by cal-
culating an average weighted by the respective mean inflows
Qj .

fR =

∑
j

fR, j ×Qj∑
j

Qj

From these river mouths, an interpolation is performed on
neighbouring coastal mouth points for which no downstream
observations are available in the respective catchment. This
interpolation was motivated by the fact that the general
pattern of bias of neighbouring rivers is often similar (cf.
Sect. 3.1). The interpolation is performed by inverse-distance
weighting from the four (or fewer) closest river mouths
within a search radius of 200 km. If no river mouth with a
correction factor was found within the search radius, the cor-
rection factor was set to one (i.e. no correction).

Note that the bias correction can lead to spurious daily
jumps in discharge when the percentile boundary is crossed
and the bias correction factors differ between the percentile
ranges. In order to reduce this effect, a smoothing radius of
1s = 0.05 was introduced around the percentile boundaries,
which was applied at both station locations and river mouths.
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Figure 2. European HD model domain and catchment areas for selected rivers.

Figure 3. Steps to derive bias-corrected discharge at river mouths
from simulated discharges.

For (1−1s)×Qp < qi < (1+1s)×Qp,

q̃i = qi × (fL+ (fM − fL)×
(qi − (1− 1s)×Qp)

2× 1s×Qp

.

For (1−1s)×Q100−p < qi < (1+1s)×Q100−p,

q̃i = qi × (fM + (fH − fM)×
(qi − (1− 1s)×Q100−p)

2× 1s×Q100−p

.

The bias correction procedure corrects the days that fall into
the different percentile ranges. However, this does not nec-
essarily mean that it also corrects the whole distribution into

the three percentile ranges. Particularly if the biases in these
ranges are quite different, the days may change their class
and order within the distribution.

In order to apply the three-quantile bias correction to the
simulated discharge time series from 1901–2019, two sets of
bias correction factors were derived. The first set uses HDW
and discharge station observations for the period 1979–2014.
This set was used to bias correct the simulated discharge at
HD river mouths from 1979–2019. The second set uses a
further discharge simulation, where we continued HDG and
utilised the GSWP3 forcing up to 2014. Again, the set of bias
correction factors was derived for the period 1979–2014 us-
ing discharge station observations. This set was then used to
bias correct the simulated discharge at the HD river mouths
from 1901–1978.

2.5 Observed discharge data

We used available daily discharge data from downstream
gauges for many rivers across Europe with a catchment area
of about 1000 km2 or more. These station data were ob-
tained from Global Runoff Data Centre and various agen-
cies and institutions listed in Table 2 of Hagemann and
Stacke (2022). In addition, French discharge data were ac-
cessed from the EU Copernicus Marine Service Information.
In order to allow an assessment of the discharge at the river
mouths, we considered basin-wide estimates from three dif-
ferent sources.

For the Baltic Marine Environment Protection Commis-
sion, also known as the Helsinki Commission (HELCOM),
Svendsen and Gustafsson (2022) provided annual water-
borne inflows into the seven main sub-basins of the Baltic
Sea (Fig. 4; upper panel) from 1995 to 2020. Waterborne in-
flows comprise the sum of river runoff and direct inflows,
i.e. flows from point sources discharging directly into the
Baltic Sea. These point sources are not included in our exper-
imental setup or in the bias correction. However, their contri-
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Table 1. Sea basin catchment areas on the HD model grid and the fractional catchment coverage of the associated IGC-EMO rivers. Fractional
coverages of less than 75 % are indicated in italic.

HD area [km2]

Sea basin IGC-EMO Total Coverage

Baltic Sea 1 513 967 1 671 823 90.6 %
Bothnian Bay 238 898 258 420 92.4 %
Bothnian Sea 199 908 219 375 91.1 %
Gulf of Finland 379 628 412 412 92.1 %
Gulf of Riga 124 386 134 025 92.8 %
Baltic Proper 494 929 551 295 89.8 %
Danish Straits 6731 19 417 34.7 %
Kattegat 69 487 76 876 90.4 %
Norwegian Barents Sea 0 81 004 0.0 %
Norwegian Sea 0 58 408 0.0 %
Skagerrak 89 060 101 787 87.5 %
North Sea 514 334 599 755 85.8 %
German Bight 201 233 208 807 96.4 %
Norwegian North Sea 4590 31 327 14.7 %
English Channel 94 327 122 235 77.2 %
Celtic Sea 41 122 44 845 91.7 %
Irish Sea 29 748 35 584 83.6 %
French Atlantic 207 657 257 981 80.5 %
Northern Spanish Atlantic 17 692 46 574 38.0 %

Table 2. Country catchment coverage of OSPAR data and inclu-
sion of estimates for unmonitored areas (Borgvang et al., 2008). NI
means that no information on the coverage was provided.

Country Coverage Unmonitored

Belgium > 90% No
Denmark NI Yes3

France 84 % Yes
Germany > 90% No1

Ireland NI Yes
The Netherlands > 90% No
Norway ca. 50 % Yes
Portugal NI No
Spain NI No
Sweden 88.7 % Yes
United Kingdom ca. 80 %2 No

1 Only for the Eider river. 2 A total of 10 % in direct discharge.
3 For example, Farkas and Skarbøvik (2021).

bution to the total waterborne inflow to the Baltic Sea is only
about 1 % (HELCOM, 1998).

Under the umbrella of the OSPAR Convention (Con-
vention for the Protection of the Marine Environment of
the northeast Atlantic), the IGC-EMO (Intersessional Cor-
respondence Group for Eutrophication Modelling) database
(Lenhart et al., 2010) of daily riverine freshwater inflows
and nutrient loads was compiled by Van Leeuwen and
Lenhart (2021), covering the major rivers discharging into

the Baltic Sea, the North Sea, and the northeast Atlantic. An
updated database covering a total of 370 rivers was mapped
onto the flow grid of the European 1/12° domain of the HD
model by Van Leeuwen and Hagemann (2023). The associ-
ated catchment areas of these rivers, which flow into a par-
ticular specific sea basin, do not cover the entire catchment
area of the respective basin (see Table 1), so the total inflow
of the sea basin is underrepresented by the IGC-EMO data.
To generate basin-wide estimates, we have up-scaled these
values by dividing the integrated IGC-EMO river discharges
in a basin by the fractional coverage of the entire basin catch-
ment on the HD grid. Basin estimates for which the fractional
coverage is less than 75 % are considered to be highly uncer-
tain and are therefore provided for completeness only but are
not included in the assessment of simulated inflows.

In addition, we used estimates of long-term mean sub-
basin-wide inflows to the North Sea and northeast Atlantic
that were published by OSPAR (Farkas and Skarbøvik,
2021). Figure 4 (lower panel) shows the selected OSPAR
basins for which the inflows are considered. It should be
noted that the sea basin inflows provided by the different
OSPAR countries are not consistent. Some countries include
discharge estimates for unmonitored areas, while others do
not (Table 2). In addition, the sea basin catchment coverage
of the monitored areas varies between the countries. Note
also that we have excluded the Spanish Atlantic from our
comparisons for the following reason. Here, we limited the
Spanish Atlantic basin to the coast of northern Spain (see
Fig. 4; lower panel) to allow a comparison with the IGC-
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Figure 4. Selected HELCOM (a) and OSPAR (b) basins for which inflows are considered. For OSPAR, the Spanish Atlantic basin is limited
to the coast of northern Spain.

EMO data, as the IGC-EMO data only cover rivers in this
region, hereafter referred to as NSpA. These rivers cover
about 38 % of the total NSpA area on the HD model grid
(Table 1), while the OSPAR data for NSpA cover about 50 %
(23 201 km2; Farkas and Skarbøvik, 2021). However, the as-
sociated IGC-EMO discharge from 1961–1990 (629 m3 s−1)
is 75 % larger than the OSPAR long-term mean average
(359 m3 s−1). Therefore, both inflow values are unlikely to
be representative of the NSpA region, and this region is not
considered in the following.

2.6 Ocean model experiments

To assess the effect of using bias-corrected river discharge
on simulated salinity in the German Bight, we used version
3.6 of the Nucleus for European Modelling of the Ocean
(NEMO; Madec et al., 2017) and adopted a domain setup
used by Ho-Hagemann et al. (2020). This domain covers
the region of the northwest European shelf, the North Sea,

and the Baltic Sea between 40.07 to 65.93° N and 19.89 to
30.16° E with a resolution of 2 nautical miles (ca. 3.6 km).
We used the atmospheric forcing from ERA5 and the ocean
boundary forcing from the ECMWF Ocean Reanalysis Sys-
tem 5 (ORAS5; Zuo et al., 2019) to conduct two simulations
from 2010 to 2018. Initial conditions were taken from a 20-
year spin-up simulation driven by ERA5 data, so that the
deeper ocean layers could adapt to the present-day climate
(Sebastian Grayek, personal communication, 2023). Note
that for the evaluation of results, we neglected the year 2010
to have an additional spin-up in which NEMO could adapt to
the specific transient conditions within each of the two exper-
iments. For the German Bight, this spin-up of 1 year is suffi-
cient, as the residence time of water may comprise only up to
4 months (Becker et al., 1999). In the two experiments, the
daily riverine inflow into the ocean was taken from the un-
corrected and bias-corrected discharges of HDW, which were
converted to the NEMO grid using a procedure of Nguyen et
al. (2024). For each HD model river mouth box, we associ-

https://doi.org/10.5194/os-20-1457-2024 Ocean Sci., 20, 1457–1478, 2024



1464 S. Hagemann et al.: A three-quantile bias correction with spatial transfer

ated the nearest coastal ocean box on the NEMO grid if such
a box was found within a search radius of 200 km. Such a
large radius is necessary because the NEMO coastline is very
smooth, so many estuaries and bays in the HD model grid are
not resolved by NEMO. If no ocean box was found, the cor-
responding HD model box was not linked. Consequently, the
simulated discharge data at the river mouths were placed as
freshwater inflow into the corresponding NEMO grid boxes.

2.7 Evaluation metrics

The evaluation of the simulated discharge was performed for
the grid boxes corresponding to the discharge station loca-
tions within the river network. For the evaluation at these sta-
tion locations, we used the mean bias, the Pearson correlation
coefficient, and the Kling–Gupta efficiency (KGE; Gupta et
al., 2009; Kling et al., 2012). All metrics were calculated
with simulated and observed daily discharge time series for
the period considered, using only those days for which ob-
served data are available. The KGE is a quality metric com-
bining the bias, correlation, and coefficient of variation. If
a simulated discharge time series has a KGE >−0.41, then
it is a better representation of the observations than the use
of the observed long-term mean discharge (Knoben et al.,
2019). Note that many ocean model applications still use the
latter method.

For the evaluation of simulated salinity in the NEMO ex-
periments, we used daily values and considered

– the mean bias

– the correlation of simulated and observed time series ex-
pressed by the Pearson correlation coefficient

– the variability ratio defined by the ratio of the simulated
and observed coefficients of variation

– the normalised root mean square error (RSME)

– the centred RSME.

The first four metrics are described, e.g. ,in Hagemann et
al. (2020), while the centred RSME is described, e.g., in Tay-
lor (2001).

3 Evaluation of the bias correction

Below, various metrics have been calculated at the station
locations and at the river mouths. However, these measures
have been assigned to the respective catchment areas for the
purpose of graphical presentation.

3.1 Evaluation of simulated discharge

The distribution of bias and KGE for HDG and HDW during
1979–2014 (Fig. 5) is quite similar to the pattern shown by
Hagemann and Stacke (2022) for the ERA5-based discharge.

For both simulations, the general discharge behaviour is well
captured (KGE > 0.4) for many European rivers, especially
in northern Iberia, western and central Europe, and over
northern Russia (Fig. 5; lower row). As expected (cf. Hage-
mann et al., 2020), larger deviations in the simulated from
observed discharges occur for rivers that are heavily influ-
enced by human activities such as water abstraction, e.g., for
irrigation, and regulation, e.g., by dams. This is the case for
many Scandinavian and Turkish rivers, as well as the Volga
and Don.

In general, the HDW discharges are slightly drier than
the HDG discharges, as indicated by larger dry biases in
northern Europe and smaller wet biases in central Europe.
Despite the differences in bias distribution, the KGEs of
HDW are similar to or slightly better than those of HDG.
Compared to the ERA5-based discharge of Hagemann and
Stacke (2022), HDW tends to have smaller discharge biases
and better KGEs. This is an expected behaviour caused by
the application of a bias correction methodology to the ERA5
data in the generation of the WFDE5 data (cf. Sect. 2.1). An
exception to this general improvement occurs over northern
Europe, where the dry bias of HDW tends to be slightly larger
and the KGEs lower. Note that Hagemann and Stacke (2022)
attributed the dry bias over northern Europe to an overesti-
mation of the evapotranspiration simulated by HydroPy.

We also note the large-scale patterns of positive and neg-
ative discharge biases (Fig. 5). Abrupt changes in bias be-
haviour along the same coastline are rare. Most of the few
cases can be attributed to large human water abstractions
from the river, i.e. especially for the Ebro river (see also
Sect. 3.3) and in the Republic of Türkiye, which are not con-
sidered by the model. This supports our assumption about
the spatial transferability of the three-quantile bias correction
factors. The bias patterns are related to biases in the atmo-
spheric forcing dataset or biases introduced by the HydroPy
model.

In order to analyse how much the bias correction affects
the daily sequence of river runoff at the station locations, we
calculated the correlation between the simulated discharges
and the observations. Figure S1 in the Supplement shows
that the correlation patterns of HDW and HDW-BC with ob-
served discharges are quite similar. For rivers where differ-
ences can be identified, the correlation mostly increases for
HDW-BC. The correlation between HDW and HDW-BC is
generally higher than 0.95, and only a very few rivers show
correlations lower than 0.9. These rivers are usually rivers
that are heavily influenced by human activities, such as the
Volga and the Luleälven.

3.2 Added value of the three-quantile bias correction

In this section, we consider the effect of the bias correction
at the station locations and investigate whether the three-
quantile bias correction adds value compared to using only
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Figure 5. Mean discharge bias [%] (a, b) and KGE (c, d) for HDG (a, c) and HDW (b, d) during 1979–2014.

Figure 6. KGE for bias-corrected HDW discharges using the mean bias correction (a) and the three-quantile bias correction (b) during
1979–2014.

the mean bias correction. For this purpose, we use HDW and
the period 1979–2014.

Both bias correction methods reduce the mean discharge
bias to zero or close to zero in the case of the three-quantile
bias correction due to the smoothing around the percentile
range thresholds (see Table 3 for selected rivers). When the
mean bias correction is applied, the KGEs (Fig. 6; left panel)
are noticeably improved over western and central Europe.
However, with a few exceptions, the KGE pattern over north-
ern Europe and other areas remains largely unchanged. This
indicates that a correction of the long-term bias in the an-

nual mean discharge over these areas is not sufficient. Only
with the three-quantile bias correction does the KGE (Fig. 6,
right panel; see Table 3 for selected rivers) improve consid-
erably over these areas, with the largest improvements oc-
curring over Scandinavia. The three-quantile bias correction
also leads to some further improvements over western and
central Europe, where the bias-corrected discharge with the
mean bias correction already shows relatively high KGE val-
ues, e.g., for the rivers Elbe, Rhine, and Weser.

To visualise the effect of the three-quantile bias correc-
tion on the simulated daily discharges, we consider the cor-
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Figure 7. Observed and simulated daily discharges for the rivers (a) Elbe, (b) Rhine, (c) Weser and (d) Odra during 2000–2009.
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Table 3. Mean bias and KGE of simulated (HDW) and bias-corrected discharge during 1979–2014 for selected rivers, where the three-
quantile bias correction led to a noticeable KGE improvement in comparison to the mean bias correction.

HDW Mean bias corr. Three-quantile bias corr.

River Bias KGE Bias KGE Bias KGE

Dalälven −32.02% −0.32 0 % −0.28 0.01 % 0.48
Elbe 36.44 % 0.46 0 % 0.60 −0.06% 0.85
Indalsälven −19.32% −0.79 0 % −0.78 −0.02% 0.38
Odra 41.30 % 0.14 0 % 0.25 0.01 % 0.75
Rhine 14.60 % 0.74 0 % 0.78 −0.02% 0.85
Weser 33.15 % 0.55 0 % 0.70 −0.01% 0.90

Figure 8. Observed and simulated daily discharges for the rivers (a) Dalälven and (b) Indalsälven during 2000–2009.

responding discharge curves for the period 2000–2009 for se-
lected large rivers. The respective biases and KGE are shown
in Table 3 for the period 1979–2014. For the rivers Elbe,
Weser, and Oder, the peak discharges are generally overes-
timated, while the low flows are close to the observed values
(Fig. 7a, c, d). The correction of the high percentiles leads to
a considerable improvement in the representation of the peak
discharges, while the change in the low flows is rather small.
The discharge of the Rhine (Fig. 7b) is well represented by
HDW. However, the small downward correction of the peak
discharges and the slight increase in the low flows still lead
to an improved discharge curve, which is also indicated by
the increased KGE (Table 3).

As mentioned above, the greatest improvements from the
three-quantile bias correction compared to the application of
the mean bias correction occur over Scandinavia. Here many
rivers are highly regulated. For this reason, the discharge
curves of the Dalälven and Indalsälven rivers are examined in
more detail in Fig. 8. The observed discharges clearly show
the effect of the human regulation, where regulation leads to
the elimination of peak discharges, while maintaining certain
flows during low-flow periods. Figure 8 shows that, on the
one hand, peak discharges are often suppressed or reduced,
especially during the spring, and that, on the other hand, low-
flow periods are either almost absent (especially for the In-
dalsälven) or show a rather noisy and unnatural daily vari-
ability. Here, the bias correction partially mimics these regu-

https://doi.org/10.5194/os-20-1457-2024 Ocean Sci., 20, 1457–1478, 2024



1468 S. Hagemann et al.: A three-quantile bias correction with spatial transfer

lation effects by reducing the peak discharges and increasing
the low flows.

3.3 Application of the bias correction for a different
time period

To consider the effect of the bias correction for the applica-
tions over different time periods, we derived bias correction
factors for HDG during 1979–2014 and applied the factors
for the period 1950–1978.

For HDG, the distributions of bias and KGE are quite sim-
ilar between the two periods 1950–1978 (Fig. 9; left column)
and 1979–2014 (Fig. 5; left column). Consequently, the bias
correction leads to improvements in the KGE (Fig. 9) that are
similar for the most recent period (not shown). The bias also
becomes less for most of the rivers. Noticeable exceptions are
the Dnipro, Volga, and some rivers in southern Europe. This
may be related to differences in the anthropogenic influence
on the discharge between the two periods, as is the case for
the river Ebro. Here, the large wet bias (51.65 %) in the more
recent period is contrasted with a small wet bias (12.05 %) in
the earlier period (Fig. 10). Since large anthropogenic water
abstractions occur in the Ebro river (Merchán et al., 2013),
this seems to be related to the different irrigation activities in
the two periods, which are much more pronounced in more
recent years. The latter can be seen by looking at the ob-
served daily discharges between 1960–1969 and 2000–2009
(Fig. 10). In the earlier period, the Ebro discharge still shows
some variations according to the sequence of weather events
in the dry season. However, in the later period, the observed
discharge includes only very small variations during the dry
season, indicating more intense human water abstraction than
in the earlier period. Consequently, the bias correction based
on the recent wet bias leads to a dry bias (−25.78%) in the
corrected Ebro discharge in the earlier period. However, the
KGE decreases only slightly from 0.68 to 0.63, so that the
deterioration of the mean bias seems to be largely compen-
sated by the correction of the different percentile ranges.

3.4 Effect of the bias correction on contemporary
trends

As mentioned in Sect. 2.4, our three-quantile bias correc-
tion is similar to a very coarse quantile mapping, and quan-
tile mapping has been flagged as potentially not suitable for
climate simulations, as it has been shown to modify trends
(e.g. references in Cannon et al., 2015). However, Maraun
et al. (2017) pointed out that a debate has arisen about
whether trend modification by variance-adjusting bias cor-
rection methods actually improves or degrades the raw cli-
mate change signal. They further argued that purely statisti-
cal arguments cannot resolve this issue, which requires pro-
cess understanding. With respect to runoff, the latter needs
to take into account spatial and temporal characteristics of

rivers and events, which is beyond the scope of the present
large-scale study.

To investigate the effect of the bias correction on contem-
porary trends, we calculated trends in the annual maximum,
mean, and minimum discharge for the period 1979–2014 and
compared the results for HDW and HDW-BC (Fig. 11). The
trend patterns are generally within the range spanned by the
two datasets considered in Hagemann and Stacke (2022). For
the annual maximum and mean discharge, the trend patterns
are only slightly changed by the bias correction. For the an-
nual minimum discharge, the trend pattern is quite similar in
HDW and HDW-BC. However, there are a few more rivers
where the magnitude of the trend is affected by the bias cor-
rection. This is particularly the case over Scandinavia, where
many rivers are regulated, so that the correction of the low-
percentile range is often strong to account for the effect of
regulation on low flows (cf. Sect. 3.2).

4 Evaluation of the inflow into sea basins

To evaluate the simulated and bias-corrected discharges at
the river mouths, we considered the integrated inflow into
different sea basins. First, we evaluated the discharges into
the Baltic Sea using HELCOM and IGC-EMO data in
Sect. 4.1. We then compared the discharges to the North Sea
and the northeast Atlantic with OSPAR and up-scaled (see
Sect. 2.5) IGC-EMO data in Sect. 4.2.

4.1 Baltic Sea

In order to achieve a maximum overlap of the simulated
discharge time series data with the HELCOM data (cf.
Sect. 2.5), we considered 1995–2019 as the evaluation pe-
riod for the Baltic Sea and its seven sub-basins (Fig. 4; upper
panel). For the whole Baltic Sea and most of its sub-basins,
the bias correction improves the basin inflows if compared to
the HELCOM estimates (Table 4; Fig. 12). Only for the Gulf
of Finland and the Gulf of Riga does the bias correction leads
to a slightly larger bias, while the biases of HDW in these
basins are relatively small. When the simulated inflows are
compared with the IGC-EMO estimates, similar results are
obtained, except for the Gulf of Riga. Here, the IGC-EMO
estimates are about 32 % larger than the HELCOM estimates,
indicating a larger uncertainty in at least one of these two es-
timates. For the Gulf of Riga basin, the major part of the in-
flow is contributed by the Daugava River. In IGC-EMO, the
discharge from the Daugava is based on observed time series
from 1970–1990. These data were extended to earlier and
later periods, e.g., by climatological values and trend preser-
vation (Van Leeuwen and Hagemann, 2023). For 1970–1990,
the mean IGC-EMO discharge comprises 623 m3 s−1 at the
Daugava mouth, while this has increased by ca. 45 % in
1995–2019 (902 m3 s−1). However, this strong increase can-
not be seen in the observed discharge time series at the sta-
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Figure 9. Mean discharge bias [%] (a, b) and KGE (c, d) for HDG (a, c) and HDG-BC data (b, d) during 1950–1978.

Table 4. Estimated and simulated inflows (units in m3 s−1) into the Baltic Sea and its major sub-basins during 1995–2019. Note that for the
Danish Straits no IGC-EMO estimate is provided as the respective catchment area coverage of the rivers in IGC-EMO is too low. Note that
“IGC-EMO c.” stands for the IGC-EMO catchment.

Sea basin HELCOM IGC-EMO c. HDW HDW-BC

Baltic Sea 15 676 15 286 14 764 15 995
Bothnian Bay 3444 3420 2642 3369
Bothnian Sea 2913 3038 2347 3391
Gulf of Finland 3519 3448 3520 3612
Gulf of Riga 1071 1411 1114 1017
Baltic Proper 3436 2901 4070 3377
Danish Straits 217 0 198 222
Kattegat 1077 949 873 1008

tion Daugavpils that covers about three-quarters of the Dau-
gava catchment. Here, the discharge increases only slightly
from 1970–1999 (439 m3 s−1; 95 % temporal data coverage)
to 1995–2019 (452 m3 s−1; 83 % temporal data coverage).
This indicates a large overestimation of the IGC-EMO Dau-
gava discharge during 1995–2019 and, hence, also of the re-
spective Gulf of Riga inflow.

4.2 North Sea and northeast Atlantic

Due to the different treatment of unmonitored regions by the
OSPAR countries (cf. Sect. 2.5), and thus of the respective
sea basin areas, we have not corrected the OSPAR inflows.
Instead, we have also considered up-scaled IGC-EMO data
as alternative estimates of basin inflow (as in Sect. 4.1). Ta-
ble 5 shows simulated and estimated basin inflows for the
considered OSPAR regions (cf. Fig. 4; lower panel). Note
that IGC-EMO data for the Norwegian shares of the Barents
Sea, Norwegian Sea, and North Sea and the north Spanish
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Figure 10. Observed and simulated daily discharge based on HDG for the Ebro river during (a) 1960–1969 and (b) 2000–2009.

Atlantic are not included in the following comparisons due
to their limited area coverage. When comparing the simu-
lated sea basin inflows with the OSPAR and IGC-EMO data,
we found that the bias correction improves the simulated in-
flows for most of the OSPAR regions (Fig. 13). Exceptions
are the values for the Celtic Sea and the Irish Sea. For the
Celtic Sea, the bias-corrected inflows are very close to the un-
corrected inflows, and the difference with the OSPAR data is
rather small. For the Irish Sea, the bias-corrected inflows are
somewhat larger than the uncorrected ones, with both show-
ing large differences (52.5 % and 47.5 %) compared to the
OSPAR data. Here both inflows are closer to the IGC-EMO
estimate, which exceeds the OSPAR estimate by about 40 %.

While the OSPAR values from Ireland include esti-
mates for unmonitored areas, this is not the case for the
United Kingdom (Table 2). Farkas and Skarbøvik (2021)
list the rivers contributing to the OSPAR value (560 m3 s−1)
from the United Kingdom part of the Irish Sea catchment
(35 000 km2). Adding up the catchment areas of each river,
obtained from various online resources, gives a coverage of
about 70 %. In order to account for this under-representation
of the catchment area, an up-scaling can be performed, sim-
ilar to the treatment of the IGC-EMO data. This would give
an estimate of about 803 m3 s−1 for the Irish Sea inflow
from the United Kingdom and thus 915 m3 s−1 for the whole

Table 5. Estimated and simulated inflows (units in m3 s−1) into
major sub-basins of the North Sea and the northwest Atlantic dur-
ing 1961–1990. Note that the North Sea does not comprise Skager-
rak and the English Channel. Up-scaled IGC-EMO basin estimates
for which the fractional catchment coverage (see Table 1) of IGC-
EMO rivers is less than 75 % are considered highly uncertain and
are therefore only given in parentheses (cf. Sect. 2.5). The same
applies to the OSPAR inflow into the northern Spanish Atlantic.

Sea basin OSPAR IGC- HD HD-
EMO c. BC

North Sea 9190 6600 9798 9164
Norwegian North Sea 3534 (1499) 2038 2856
Norwegian Barents Sea 2294 – 1106 1723
Norwegian Sea 3663 – 2242 2922
Skagerrak 2544 2113 1956 2292
German Bight 1344 1505 2025 1419
English Channel 1250 1011 1498 1222
Celtic Sea 976 839 1016 1016
Irish Sea 672 939 992 1025
French Atlantic 2862 2391 3147 2684
Northern Spanish (359) (1655) 1104 1550
Atlantic
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Figure 11. Trends in annual maximum (a, b), mean (c, d), and minimum (e, f) discharge [% yr−1] for HDW (a, c, e) and HDW-BC (b, d, f)
from 1979–2014.

Table 6. Various metrics (see Sect. 2.7) of the simulated salinity time series at 6 m depth compared with the observations at the stations of
Deutsche Bucht and EMS for 2011–2018 and at Deutsche Bucht for 2013.

2011–2018 2013

Deutsche Bucht EMS Deutsche Bucht

Metric HDW HDW-BC HDW HDW-BC HDW HDW-BC

Bias [%] −4.5 −3.7 −4 −3.6 −3.2 −1.8
Variability ratio [%] 142.7 125 151.5 136.1 82.9 74.2
Normalised RMSE [%] 40.1 34.3 51.3 47.6 36.2 27.1
Centred RMSE 0.94 0.89 0.73 0.72 0.97 0.89
Correlation 0.24 0.21 0.48 0.39 0.20 0.28
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Figure 12. Relative difference in basin inflows compared to HELCOM data for 1995–2019. Note that no IGC-EMO estimate is provided for
the Danish Straits as the respective river catchment coverage in IGC-EMO is too small.

Figure 13. Relative difference in basin inflows compared to OSPAR data for 1961–1990. IGC-EMO basin estimates for which the fractional
catchment coverage (see Table 1) is less than 75 % are not shown.

Irish Sea. The respective IGC-EMO inflow is close to this
value (+2.6%), and the overestimation of inflows is less pro-
nounced for HD and bias-corrected discharges with +8.4%
and +12%, respectively.

4.3 Simulated salinity in the German Bight

Using the two experiments described in Sect. 2.6, we eval-
uated the simulated sea surface salinity (SSS) with satellite-
based analyses and in situ observations for the period 2010
to 2018. The SSS analyses were derived using a multivari-
ate optimal interpolation algorithm that combines sea sur-

face salinity images from several satellite sources, such as the
National Aeronautics and Space Administration Soil Mois-
ture Active Passive satellite and the European Space Agency
Soil Moisture and Ocean Salinity satellite, with in situ salin-
ity measurements (Droghei et al., 2018). These SSS data are
available with a spatial resolution of 0.125°.

Figure 14a shows the mean analysed SSS in the German
Bight for the period 2010–2018, with lower salinities near
the west coast of Germany and higher salinities towards the
east. The NEMO simulation using the uncorrected discharges
of HDW (Fig. 14c) has SSS that is too low in coastal areas,
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Figure 14. Mean analysed SSS in (a) Droghei et al. (2018) data (OBS) and various SSS differences in the NEMO experiments in the German
Bight for the period from 2010 to 2018. The SSS differences comprise (b) HD-BC minus HDW, (c) HDW minus OBS, and (d) HD-BC
minus OBS.

Figure 15. Coefficients of variation in SSS in the German Bight for the period from 2011–2018. (a) OBS, (b) HDW, and (c) HD-BC.

especially near the estuaries. This low bias is reduced us-
ing the bias-corrected discharges (Fig. 14d), as the general
effect of the bias correction in the German Bight leads to re-
duced riverine inflows (cf. Fig. 13) and hence increased SSS
in coastal areas (Fig. 14b). Similar improvements can also be
seen in June 2013 when the Elbe flood is strongly influences
the SSS of the German Bight (Fig. S2). Here, the increase in
salinity due to the bias-corrected runoff (Fig. S2b) is more
pronounced than in the long-term mean (Fig. 14b). In addi-
tion, we found that use of the bias-corrected river runoff also
improves the SSS variability expressed by its coefficient of
variation, as shown in Fig. 15.

In addition, we had access to salinity measurements at two
stations in the German Bight operated by the German Fed-
eral Maritime and Hydrographic Agency as part of the Ma-
rine Environmental Monitoring Network in the North and
Baltic seas. These two stations are Deutsche Bucht (DB; lo-
cated at 54.17° N, 7.45° E) and EMS (54.17° N, 6.35° E), and
their locations are shown in Fig. 14. In general, the bias-
corrected discharges lead to improved characteristics of the
daily salinity at 6 m depth at the Deutsche Bucht and EMS
stations (Fig. 16; Table 6). Here the bias and normalised and
centred RSME are decreased, and the coefficient of varia-
tion is closer to the salinity observations for HDW-BC. This
means that the bias correction improves the mean and the
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Figure 16. Observed (OBS) and simulated daily time series of salinity in 6 m depth for the stations (a) Deutsche Bucht (DB) and (b) EMS
(units in PSU). The solid blue and red lines correspond to the HDW and HD-BC experiments, respectively. The green line separates the
spin-up period in 2010 from the evaluation period 2011–2018.

variability in the simulated salinity at these stations. How-
ever, the correlation with the observed salinity measurements
is somewhat reduced. Note that temporal SSS variations are
strongly influenced by local currents, vertical mixing, and
wind–wave–surface interactions. Therefore, signals from an
improved river runoff can easily be obscured by the noise
from these processes, which can also differ at the point scale
of the station measurements and at the grid scale of the re-
spective NEMO grid box. This is reflected in the relatively
low correlation values. Furthermore, this can be seen when
the gridded SSS data of Droghei et al. (2018) are used as a
reference for the metrics at the station locations (Table S1
in the Supplement). Here, all metrics improve with HDW-
BC, even the correlation. However, the correlation is lower
than with the station observations, which is also the case for
the correlation of the gridded SSS data with the station ob-
servations (Deutsche Bucht: 0.15; EMS: 0.18). Considering
only the year 2013, when the influence of the Elbe flood on
the salinity at the Deutsche Bucht station is more pronounced
(Nguyen et al., 2024), the correlation also improves when us-
ing HDW-BC for both references (Tables 6 and S1). It seems
that in NEMO the positive effect of using bias-corrected dis-
charges is limited to near-surface salinities, as there is no no-
ticeable effect at 30 m depth (not shown). This is consistent
with the fact that the Deutsche Bucht and EMS stations are
located in an area where the salinity is temporarily stratified,
depending on the meteorological conditions and the intensity
of river runoff (Klein and Frohse, 2008).

In summary, the results of the NEMO experiments indicate
the beneficial effect of using bias-corrected discharges on the
simulated SSS in coastal areas. However, although the low
SSS biases are reduced using the bias-corrected discharges,
the simulated SSS is still underestimated in coastal areas,
especially close to the estuaries of large rivers (Fig. 14d).
This may be attributed to the rather smooth coastline of the
NEMO ocean grid. Here, most parts of the large estuaries of
the rivers Elbe, Ems, and Weser are not included. In reality,
a major part of the mixing of the riverine freshwater inflow
and the saline North Sea happens within these estuaries. In
the NEMO model setup, the freshwater inflow is introduced
at the respective river mouth points of the smooth NEMO
coastline where it starts to mix with the saline North Sea

water. Consequently, the simulated water at and near those
points is much fresher than in reality, which leads to the low
SSS bias. Note that, on the one hand, such a smooth coast-
line is necessary in NEMO to avoid numerical instabilities.
On the other hand, the spatial resolution of the NEMO grid
is not high enough to adequately resolve parts of the longer
estuaries.

5 Summary and conclusions

In the present study, we have introduced a methodology for
the bias correction of European river runoff to provide cor-
rected riverine inflows as forcing for ocean models in offline
and coupled system model simulations. The central part of
this methodology is a three-quantile bias correction, which
can correct different biases for low, medium, and high dis-
charges. The bias correction parameters are derived in two
steps. First, different correction factors for low, medium, and
high flows are derived for each river considered (cf. Sect. 2.5)
at the location of the most downstream station for which
daily discharge measurements were available. These factors
were then transferred to the respective river mouth on the HD
model grid and to adjacent coastal inflow points in its vicin-
ity.

The evaluation of the bias-corrected discharge at the sta-
tion location showed that the bias correction greatly im-
proved the simulated discharges. For the evaluation of the
bias-corrected discharge at the downstream station locations,
we considered the mean bias and the KGE, which is a qual-
ity metric combining the bias, correlation, and coefficient
of variation. Considering the same period as used to derive
the bias correction factors, the mean bias is trivially close
to zero. However, the bias is also substantially reduced for
most rivers if a different period is considered. Irrespective
of the period, the KGE pattern generally improves for the
bias-corrected discharges and shows high values for many
rivers. Exceptions are those rivers with a very strong anthro-
pogenic distortion of the natural flow, e.g. by many dams or
large water withdrawals. Here, despite some improvements,
the KGE values are still rather low, such as for the rivers
Dnipro, Volga, Luleälven, and a few Turkish rivers flowing
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into the Black Sea. The KGE also shows the beneficial ef-
fect of the three-quantile bias correction, as correcting only
the long-term mean annual discharge bias is not sufficient
in many areas, especially in northern Europe. We found that
the three-quantile bias correction often improves the KGE
in regulated rivers, so that it appears to mimic the effect of
regulation, where regulation leads to the elimination of peak
flows while maintaining certain flow levels during low-flow
periods.

The evaluation of riverine inflows to the sea at river
mouths with observed daily discharge is rarely possible as
there are usually no river gauges available. Even if there is
a gauge at the mouth of a river, the measurements are often
affected by tidal influences from the coast, so that the mea-
sured amounts may not represent the actual river discharge.
For obvious reasons, it is also difficult to compare simulated
inflows with observed discharges for unmonitored rivers.
Therefore, we compared the simulated and bias-corrected
discharges with long-term mean inflow estimates into differ-
ent sea basins from HELCOM, OSPAR, and IGC-EMO. For
most of the basins considered, the bias correction improves
the simulated inflows. This indicates a reasonable perfor-
mance of the approach to transfer the bias correction factors
obtained at the downstream stations to the respective river
mouths and adjacent coastal areas. The improved inflows to
the sea basins, together with the fact that the discharge bias
behaviour tends not to vary abruptly along the same coast-
line, underpin the validity of our transferability approach.
Exceptions are the Gulf of Finland, the Gulf of Riga, the
Celtic Sea, and the Irish Sea. For the Gulf of Finland and
the Celtic Sea, the deviations of the uncorrected and bias-
corrected inflows from the inflow estimates are rather small.
For the Gulf of Riga, the deviations of the uncorrected and
bias-corrected inflows from the HELCOM estimates are also
small, but they significantly underestimate the IGC-EMO es-
timates. However, this could be due to a large overestimation
of the Daugava discharge during the period 1995–2019 in the
IGC-EMO data and thus also of the corresponding Gulf of
Riga inflow. For the Irish Sea, IGC-EMO seems to be closer
to reality as the OSPAR inflow does not cover the unmoni-
tored rivers in the British part of the catchment.

A caveat applies for rivers where the human influence on
river flow has changed significantly over time. Applying bias
correction factors derived for 1979–2014 to earlier periods
may lead to errors for regulated rivers in years before these
regulatory measures were implemented. This is the case for
the Ebro, where irrigation activities have largely intensified
during the period 1979–2014 compared to earlier periods
(see Sect. 3.3). A detailed analysis of the rivers and peri-
ods concerned is beyond the scope of this study. However,
at least for the period 1950–1978, the KGE distribution does
not seem to be significantly affected, as there is no noticeable
deterioration.

We have shown that our bias correction method works well
for Europe at the station locations, as well as for the riverine

inflow into northern and western European sea basins. Using
two NEMO simulations in the German Bight, we have also
shown that the use of the bias-corrected discharges as forc-
ing leads to an improved simulation of sea surface salinity
in coastal areas, especially regarding the mean salinity and
its variability. However, for the potential transfer of the bias
correction methodology to other regions, it has to be pointed
out that the application of the three-quantile bias correction
over a region only makes sense if a large part of the catch-
ment area is covered by available daily discharge measure-
ments. As the three-quantile bias correction is based on bi-
ases in three percentile ranges of daily flows, it is also suit-
able for the use in climate change applications. Here the bias
correction factors can be derived from a historical discharge
simulation and then applied to future projections or past re-
constructions. In addition, the bias correction can also be ap-
plied in regional coupled system model simulations, where
the bias correction factors can be derived from an initial sim-
ulation and then applied during the runtime of the actual
coupled simulation. This capability has been implemented
in the HD model v5.2.2 (Hagemann et al., 2023) and is cur-
rently being applied in the coupled system model GCOAST-
AHOI (Ho-Hagemann et al., 2020). Finally, we note that the
bias-corrected discharges are available from the World Data
Centre for Climate and are already used within the Coastal-
Futures project (https://www.coastalfutures.de, last access:
7 November 2024).

Data availability. Much of the observed daily discharge data
used can be obtained from the Global Runoff Data Centre,
56068 Koblenz, Germany (https://grdc.bafg.de/data/data_portal/,
last access: 7 November 2024). Other data have been re-
trieved from public websites associated with the sources re-
ferred to in Sect. 2.5. GSWP3 data were retrieved from the
ISIMIP data portal (https://data.isimip.org, last access: 7 Novem-
ber 2024, Kim, 2017) and WFDE5 data were retrieved from the
Copernicus Climate Data Store (https://cds.climate.copernicus.eu,
last access: 7 November 2024, Cucchi et al., 2020). OSPAR
data were taken from an OSPAR report (Farkas and Skar-
bøvik, 2021) or its associated data available on the OSPAR
web page (https://odims.ospar.org/en/submissions/ospar_rid_data_
reports_2019_01/, last access: 7 November 2024). This study
has been conducted using EU Copernicus Marine Service In-
formation data on SSS (https://doi.org/10.48670/moi-7500051,
Droghei et al., 2018) and some French discharge measure-
ments. The daily data of surface runoff and subsurface runoff,
as well as the simulated and bias-corrected discharge data at
https://doi.org/10.26050/WDCC/Biasc_hr_riverro_Eu (Hagemann
and Stacke, 2023), can be accessed via the World Data Centre for
Climate at the German Climate Computing Centre.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/os-20-1457-2024-supplement.
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