Articles | Volume 19, issue 3
https://doi.org/10.5194/os-19-581-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-581-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physical processes and biological productivity in the upwelling regions of the tropical Atlantic
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Faculty of Mathematics and Natural Sciences, Kiel University, Kiel,
Germany
Gaël Alory
LEGOS, CNES/CNRS/IRD/UPS, Toulouse, France
Founi Mesmin Awo
Nansen-Tutu Centre for Marine Environmental Research, Department of
Oceanography, University of Cape Town, Cape Town, South Africa
Marcus Dengler
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Sandrine Djakouré
LASMES, UFR SSMT, Felix Houphouët-Boigny University, Abidjan,
Côte d'Ivoire
Rodrigue Anicet Imbol Koungue
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Julien Jouanno
LEGOS, CNES/CNRS/IRD/UPS, Toulouse, France
Mareike Körner
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Marisa Roch
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Mathieu Rouault
Nansen-Tutu Centre for Marine Environmental Research, Department of
Oceanography, University of Cape Town, Cape Town, South Africa
deceased
Related authors
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302, https://doi.org/10.5194/egusphere-2024-3302, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Key parameters representing the gravity flux in global models are the sinking speed and the vertical attenuation of the exported material. We calculate for the first time, these parameters in situ for 6 intermittent blooms followed by export events using high-resolution (3 days) time series of 0–1000 m depth profiles from imaging sensor mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, density being an important property.
Joelle Habib, Lars Stemmann, Alexandre Accardo, Alberto Baudena, Franz Philip Tuchen, Peter Brandt, and Rainer Kiko
EGUsphere, https://doi.org/10.5194/egusphere-2024-3365, https://doi.org/10.5194/egusphere-2024-3365, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study investigates how carbon moves from the ocean surface to the depths in the equatorial Atlantic, contributing to long-term carbon storage. Using an Argo float equipped with a camera, we captured two periods with major carbon export events. By identifying particle types and their sinking behaviors, we found that smaller, compact particles are key drivers of carbon transport. Our findings underscore the value of using imaging tools on autonomous platforms in tracking carbon sequestration.
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3320, https://doi.org/10.5194/egusphere-2024-3320, 2024
Short summary
Short summary
The West African coastal region sustains highly productive fisheries and marine ecosystems influenced by sea surface temperature. We use oceanic models to show that the freshwater input from land to ocean strengthens a surface northward (southward) coastal current north (south) of the Congo river mouth, promoting a transfer of cooler (warmer) waters to north (south) of the Congo discharge location. We highlight the significant impact of river discharge on ocean temperatures and circulation.
Eike E. Köhn, Richard J. Greatbatch, Peter Brandt, and Martin Claus
Ocean Sci., 20, 1281–1290, https://doi.org/10.5194/os-20-1281-2024, https://doi.org/10.5194/os-20-1281-2024, 2024
Short summary
Short summary
The latitudinally alternating zonal jets are a ubiquitous feature of the ocean. We use a simple model to illustrate the potential role of these jets in the formation, maintenance, and multidecadal variability in the oxygen minimum zones, using the eastern tropical North Atlantic oxygen minimum zone as an example.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Swantje Bastin, Martin Claus, Richard J. Greatbatch, and Peter Brandt
Ocean Sci., 19, 923–939, https://doi.org/10.5194/os-19-923-2023, https://doi.org/10.5194/os-19-923-2023, 2023
Short summary
Short summary
Equatorial deep jets are ocean currents that flow along the Equator in the deep oceans. They are relevant for oxygen transport and tropical surface climate, but their dynamics are not yet entirely understood. We investigate different factors leading to the jets being broader than theory predicts. Mainly using an ocean model, but corroborating the results with shipboard observations, we show that loss of momentum is the main factor for the broadening but that meandering also contributes.
Mareike Körner, Peter Brandt, and Marcus Dengler
Ocean Sci., 19, 121–139, https://doi.org/10.5194/os-19-121-2023, https://doi.org/10.5194/os-19-121-2023, 2023
Short summary
Short summary
The coastal waters off Angola host a productive ecosystem. Surface waters at the coast are colder than further offshore. We find that surface heat fluxes warm the coastal region more strongly than the offshore region and cannot explain the differences. The influence of horizontal heat advection is minor on the surface temperature change. In contrast, ocean turbulence data suggest that cooling associated with vertical mixing is an important mechanism to explain the near-coastal cooling.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Josefine Herrford, Peter Brandt, Torsten Kanzow, Rebecca Hummels, Moacyr Araujo, and Jonathan V. Durgadoo
Ocean Sci., 17, 265–284, https://doi.org/10.5194/os-17-265-2021, https://doi.org/10.5194/os-17-265-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of the climate system. Understanding its structure and variability is a key priority for many scientists. Here, we present the first estimate of AMOC variations for the tropical South Atlantic from the TRACOS array at 11° S. Over the observed period, the AMOC was dominated by seasonal variability. We investigate the respective mechanisms with an ocean model and find that different wind-forced waves play a big role.
Tim Fischer, Annette Kock, Damian L. Arévalo-Martínez, Marcus Dengler, Peter Brandt, and Hermann W. Bange
Biogeosciences, 16, 2307–2328, https://doi.org/10.5194/bg-16-2307-2019, https://doi.org/10.5194/bg-16-2307-2019, 2019
Short summary
Short summary
We investigated air–sea gas exchange in oceanic upwelling regions for the case of nitrous oxide off Peru. In this region, routine concentration measurements from ships at 5 m or 10 m depth prove to overestimate surface (bulk) concentration. Thus, standard estimates of gas exchange will show systematic error. This is due to very shallow stratified layers that inhibit exchange between surface water and waters below and can exist for several days. Maximum bias occurs in moderate wind conditions.
Yao Fu, Johannes Karstensen, and Peter Brandt
Ocean Sci., 14, 589–616, https://doi.org/10.5194/os-14-589-2018, https://doi.org/10.5194/os-14-589-2018, 2018
Short summary
Short summary
Hydrographic analysis in the Atlantic along 14.5° N and 24.5° N shows that between the periods of 1989/92 and 2013/15, the Antarctic Intermediate Water became warmer and saltier at 14.5° N, and that the Antarctic Bottom Water became lighter at both latitudes. By applying a box inverse model, the Atlantic Meridional Overturning Circulation (AMOC) was determined. Comparison among the inverse solution, GECCO2, RAPID, and MOVE shows that the AMOC has not significantly changed in the past 20 years.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Yao Fu, Johannes Karstensen, and Peter Brandt
Ocean Sci., 13, 531–549, https://doi.org/10.5194/os-13-531-2017, https://doi.org/10.5194/os-13-531-2017, 2017
Short summary
Short summary
Meridional Ekman transport in the tropical Atlantic was estimated directly by using observed ageostrophic velocity, and indirectly by using wind stress data. The direct and indirect methods agree well with each other. The top of the pycnocline represents the Ekman depth better than the mixed layer depth and a constant depth. The Ekman heat and salt fluxes calculated from sea surface temperature and salinity or from high-resolution temperature and salinity profile data differ only marginally.
Johannes Hahn, Peter Brandt, Sunke Schmidtko, and Gerd Krahmann
Ocean Sci., 13, 551–576, https://doi.org/10.5194/os-13-551-2017, https://doi.org/10.5194/os-13-551-2017, 2017
Short summary
Short summary
Recent studies have shown that the eastern tropical North Atlantic is subject to a strong decrease of the oceanic oxygen concentration in the upper 1000 m from the 1960s to today. By analyzing a broad observational data set, this study found an even stronger oxygen decrease in the upper 400 m throughout the past decade, whereas oxygen increase was found below (400–1000 m). Changes in the strength of the zonal currents are the most likely reason for the observed decadal oxygen changes.
Florian Schütte, Johannes Karstensen, Gerd Krahmann, Helena Hauss, Björn Fiedler, Peter Brandt, Martin Visbeck, and Arne Körtzinger
Biogeosciences, 13, 5865–5881, https://doi.org/10.5194/bg-13-5865-2016, https://doi.org/10.5194/bg-13-5865-2016, 2016
Short summary
Short summary
Mesoscale eddies with very low–oxygen concentrations at shallow depth have been recently discovered in the eastern tropical North Atlantic. Our analysis shows that low oxygen eddies occur more frequent than expected and are found even close to the equator (8° N). From budget calculations we show that an oxygen reduction of 7 µmol/kg in the depth range of 50–150 m in the eastern tropical North Atlantic (peak reduction is 16 µmol/kg at 100 m depth) can be associated with the dispersion of these eddies.
Florian Schütte, Peter Brandt, and Johannes Karstensen
Ocean Sci., 12, 663–685, https://doi.org/10.5194/os-12-663-2016, https://doi.org/10.5194/os-12-663-2016, 2016
Short summary
Short summary
We want to examine the characteristics of mesoscale eddies in the tropical northeastern Atlantic. They serve as transport agents, exporting water from the coast into the open ocean. Traditionally eddies are categorized with respect to their rotation: cyclonic and anticyclonic. But we could identify, with a combination of different satellite products, a third type called "anticyclonic mode-water eddy" transporting much larger anomalies. We propose a distinction into three classes for further studies.
L. Stramma, R. Czeschel, T. Tanhua, P. Brandt, M. Visbeck, and B. S. Giese
Ocean Sci., 12, 153–167, https://doi.org/10.5194/os-12-153-2016, https://doi.org/10.5194/os-12-153-2016, 2016
Short summary
Short summary
The subsurface circulation in the eastern tropical North Atlantic OMZ is derived from velocity, float and tracer data and data assimilation results, and shows a cyclonic flow around the Guinea Dome reaching into the oxygen minimum zone. The stronger cyclonic flow around the Guinea Dome in 2009 seem to be connected to a strong Atlantic Meridional Mode (AMM) event.
A continuous deoxygenation trend of the low oxygen layer was confirmed.
Eddy influence is weak south of the Cape Verde Islands.
J. Karstensen, B. Fiedler, F. Schütte, P. Brandt, A. Körtzinger, G. Fischer, R. Zantopp, J. Hahn, M. Visbeck, and D. Wallace
Biogeosciences, 12, 2597–2605, https://doi.org/10.5194/bg-12-2597-2015, https://doi.org/10.5194/bg-12-2597-2015, 2015
Short summary
Short summary
This study is the first report of the formation of dead zones in the open ocean. A combination of multiple ocean observing system elements (mooring, floats, satellites, ships) allowed us to reconstruct the generation of the dead zones and to connect the formation to enhanced respiration within mesoscale ocean eddies. The dead zones present specific threats to the ecosystem, such as the interruption of the diurnal migration of zooplankters.
P. Brandt, H. W. Bange, D. Banyte, M. Dengler, S.-H. Didwischus, T. Fischer, R. J. Greatbatch, J. Hahn, T. Kanzow, J. Karstensen, A. Körtzinger, G. Krahmann, S. Schmidtko, L. Stramma, T. Tanhua, and M. Visbeck
Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, https://doi.org/10.5194/bg-12-489-2015, 2015
Short summary
Short summary
Our observational study looks at the structure of the eastern tropical North Atlantic (ETNA) oxygen minimum zone (OMZ) in comparison with the less-ventilated, eastern tropical South Pacific OMZ. We quantify the OMZ’s oxygen budget composed of consumption, advection, lateral and vertical mixing. Substantial oxygen variability is observed on interannual to multidecadal timescales. The deoxygenation of the ETNA OMZ during the last decades represents a substantial imbalance of the oxygen budget.
T. Fischer, D. Banyte, P. Brandt, M. Dengler, G. Krahmann, T. Tanhua, and M. Visbeck
Biogeosciences, 10, 5079–5093, https://doi.org/10.5194/bg-10-5079-2013, https://doi.org/10.5194/bg-10-5079-2013, 2013
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302, https://doi.org/10.5194/egusphere-2024-3302, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Key parameters representing the gravity flux in global models are the sinking speed and the vertical attenuation of the exported material. We calculate for the first time, these parameters in situ for 6 intermittent blooms followed by export events using high-resolution (3 days) time series of 0–1000 m depth profiles from imaging sensor mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, density being an important property.
Joelle Habib, Lars Stemmann, Alexandre Accardo, Alberto Baudena, Franz Philip Tuchen, Peter Brandt, and Rainer Kiko
EGUsphere, https://doi.org/10.5194/egusphere-2024-3365, https://doi.org/10.5194/egusphere-2024-3365, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study investigates how carbon moves from the ocean surface to the depths in the equatorial Atlantic, contributing to long-term carbon storage. Using an Argo float equipped with a camera, we captured two periods with major carbon export events. By identifying particle types and their sinking behaviors, we found that smaller, compact particles are key drivers of carbon transport. Our findings underscore the value of using imaging tools on autonomous platforms in tracking carbon sequestration.
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3320, https://doi.org/10.5194/egusphere-2024-3320, 2024
Short summary
Short summary
The West African coastal region sustains highly productive fisheries and marine ecosystems influenced by sea surface temperature. We use oceanic models to show that the freshwater input from land to ocean strengthens a surface northward (southward) coastal current north (south) of the Congo river mouth, promoting a transfer of cooler (warmer) waters to north (south) of the Congo discharge location. We highlight the significant impact of river discharge on ocean temperatures and circulation.
Eike E. Köhn, Richard J. Greatbatch, Peter Brandt, and Martin Claus
Ocean Sci., 20, 1281–1290, https://doi.org/10.5194/os-20-1281-2024, https://doi.org/10.5194/os-20-1281-2024, 2024
Short summary
Short summary
The latitudinally alternating zonal jets are a ubiquitous feature of the ocean. We use a simple model to illustrate the potential role of these jets in the formation, maintenance, and multidecadal variability in the oxygen minimum zones, using the eastern tropical North Atlantic oxygen minimum zone as an example.
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
EGUsphere, https://doi.org/10.5194/egusphere-2024-2281, https://doi.org/10.5194/egusphere-2024-2281, 2024
Short summary
Short summary
Vertical mixing is an important process e.g. for tropical sea surface temperature, but cannot be resolved by ocean models. Comparisons of mixing schemes and settings have usually been done with a single model, sometimes yielding conflicting results. We systematically compare two widely used schemes, TKE and KPP, with different parameter settings, in two different ocean models, and show that most effects from mixing scheme parameter changes are model dependent.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Swantje Bastin, Martin Claus, Richard J. Greatbatch, and Peter Brandt
Ocean Sci., 19, 923–939, https://doi.org/10.5194/os-19-923-2023, https://doi.org/10.5194/os-19-923-2023, 2023
Short summary
Short summary
Equatorial deep jets are ocean currents that flow along the Equator in the deep oceans. They are relevant for oxygen transport and tropical surface climate, but their dynamics are not yet entirely understood. We investigate different factors leading to the jets being broader than theory predicts. Mainly using an ocean model, but corroborating the results with shipboard observations, we show that loss of momentum is the main factor for the broadening but that meandering also contributes.
Roy Dorgeless Ngakala, Gaël Alory, Casimir Yélognissè Da-Allada, Olivia Estelle Kom, Julien Jouanno, Willi Rath, and Ezinvi Baloïtcha
Ocean Sci., 19, 535–558, https://doi.org/10.5194/os-19-535-2023, https://doi.org/10.5194/os-19-535-2023, 2023
Short summary
Short summary
Surface heat flux is the main driver of the heat budget in the Senegal, Angola, and Benguela regions but not in the equatorial region. In the Senegal and Benguela regions, freshwater flux governs the salt budget, while in equatorial and Angola regions, oceanic processes are the main drivers. Results from numerical simulation show the important role of mesoscale advection for temperature and salinity variations in the mixed layer. Nonlinear processes unresolved by observations play a key role.
Sarah Berthet, Julien Jouanno, Roland Séférian, Marion Gehlen, and William Llovel
Earth Syst. Dynam., 14, 399–412, https://doi.org/10.5194/esd-14-399-2023, https://doi.org/10.5194/esd-14-399-2023, 2023
Short summary
Short summary
Phytoplankton absorbs the solar radiation entering the ocean surface and contributes to keeping the associated energy in surface waters. This natural effect is either not represented in the ocean component of climate models or its representation is simplified. An incomplete representation of this biophysical interaction affects the way climate models simulate ocean warming, which leads to uncertainties in projections of oceanic emissions of an important greenhouse gas (nitrous oxide).
Mareike Körner, Peter Brandt, and Marcus Dengler
Ocean Sci., 19, 121–139, https://doi.org/10.5194/os-19-121-2023, https://doi.org/10.5194/os-19-121-2023, 2023
Short summary
Short summary
The coastal waters off Angola host a productive ecosystem. Surface waters at the coast are colder than further offshore. We find that surface heat fluxes warm the coastal region more strongly than the offshore region and cannot explain the differences. The influence of horizontal heat advection is minor on the surface temperature change. In contrast, ocean turbulence data suggest that cooling associated with vertical mixing is an important mechanism to explain the near-coastal cooling.
Michel Tchilibou, Ariane Koch-Larrouy, Simon Barbot, Florent Lyard, Yves Morel, Julien Jouanno, and Rosemary Morrow
Ocean Sci., 18, 1591–1618, https://doi.org/10.5194/os-18-1591-2022, https://doi.org/10.5194/os-18-1591-2022, 2022
Short summary
Short summary
This high-resolution model-based study investigates the variability in the generation, propagation, and sea height signature (SSH) of the internal tide off the Amazon shelf during two contrasted seasons. ITs propagate further north during the season characterized by weak currents and mesoscale eddies and a shallow and strong pycnocline. IT imprints on SSH dominate those of the geostrophic motion for horizontal scales below 200 km; moreover, the SSH is mainly incoherent below 70 km.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Pierre Damien, Julio Sheinbaum, Orens Pasqueron de Fommervault, Julien Jouanno, Lorena Linacre, and Olaf Duteil
Biogeosciences, 18, 4281–4303, https://doi.org/10.5194/bg-18-4281-2021, https://doi.org/10.5194/bg-18-4281-2021, 2021
Short summary
Short summary
The Gulf of Mexico deep waters are relatively poor in phytoplankton biomass due to low levels of nutrients in the upper layers. Using modeling techniques, we find that the long-living anticyclonic Loop Current eddies that are shed episodically from the Yucatan Channel strongly shape the distribution of phytoplankton and, more importantly, stimulate their growth. This results from the contribution of multiple mechanisms of physical–biogeochemical interactions discussed in this study.
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021, https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary
Short summary
The tropical Atlantic has been facing a massive proliferation of Sargassum since 2011, with severe environmental and socioeconomic impacts. We developed a modeling framework based on the NEMO ocean model, which integrates transport by currents and waves, and physiology of Sargassum with varying internal nutrient quota, and considers stranding at the coast. Results demonstrate the ability of the model to reproduce and forecast the seasonal cycle and large-scale distribution of Sargassum biomass.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Josefine Herrford, Peter Brandt, Torsten Kanzow, Rebecca Hummels, Moacyr Araujo, and Jonathan V. Durgadoo
Ocean Sci., 17, 265–284, https://doi.org/10.5194/os-17-265-2021, https://doi.org/10.5194/os-17-265-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of the climate system. Understanding its structure and variability is a key priority for many scientists. Here, we present the first estimate of AMOC variations for the tropical South Atlantic from the TRACOS array at 11° S. Over the observed period, the AMOC was dominated by seasonal variability. We investigate the respective mechanisms with an ocean model and find that different wind-forced waves play a big role.
Jan Lüdke, Marcus Dengler, Stefan Sommer, David Clemens, Sören Thomsen, Gerd Krahmann, Andrew W. Dale, Eric P. Achterberg, and Martin Visbeck
Ocean Sci., 16, 1347–1366, https://doi.org/10.5194/os-16-1347-2020, https://doi.org/10.5194/os-16-1347-2020, 2020
Short summary
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
Julien Jouanno and Xavier Capet
Ocean Sci., 16, 1207–1223, https://doi.org/10.5194/os-16-1207-2020, https://doi.org/10.5194/os-16-1207-2020, 2020
Short summary
Short summary
The dynamical balance of the Antarctic Circumpolar Current and its implications on the functioning of the world ocean are not fully understood and poorly represented in global circulation models. In this study, the sensitivities of an idealized Southern Ocean (SO) storm track are explored with a set of eddy-rich numerical simulations. We show that the classical partition between barotropic and baroclinic modes is sensitive to current–topography interactions in the mesoscale range of 10–100 km.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Marie-Hélène Radenac, Julien Jouanno, Christine Carine Tchamabi, Mesmin Awo, Bernard Bourlès, Sabine Arnault, and Olivier Aumont
Biogeosciences, 17, 529–545, https://doi.org/10.5194/bg-17-529-2020, https://doi.org/10.5194/bg-17-529-2020, 2020
Short summary
Short summary
Satellite data and a remarkable set of in situ measurements show a main bloom of microscopic seaweed, the phytoplankton, in summer and a secondary bloom in December in the central equatorial Atlantic. They are driven by a strong vertical supply of nitrate in May–July and a shorter and moderate supply in November. In between, transport of low-nitrate water from the west explains most nitrate losses in the sunlit layer. Horizontal eddy-induced processes also contribute to seasonal nitrate removal.
Insa Rapp, Christian Schlosser, Jan-Lukas Menzel Barraqueta, Bernhard Wenzel, Jan Lüdke, Jan Scholten, Beat Gasser, Patrick Reichert, Martha Gledhill, Marcus Dengler, and Eric P. Achterberg
Biogeosciences, 16, 4157–4182, https://doi.org/10.5194/bg-16-4157-2019, https://doi.org/10.5194/bg-16-4157-2019, 2019
Short summary
Short summary
The availability of iron (Fe) affects phytoplankton growth in large parts of the ocean. Shelf sediments, particularly in oxygen minimum zones, are a major source of Fe and other essential micronutrients, such as cobalt (Co) and manganese (Mn). We observed enhanced concentrations of Fe, Co, and Mn corresponding with low oxygen concentrations along the Mauritanian shelf, indicating that the projected future decrease in oxygen concentrations may result in increases in Fe, Mn, and Co concentrations.
Tim Fischer, Annette Kock, Damian L. Arévalo-Martínez, Marcus Dengler, Peter Brandt, and Hermann W. Bange
Biogeosciences, 16, 2307–2328, https://doi.org/10.5194/bg-16-2307-2019, https://doi.org/10.5194/bg-16-2307-2019, 2019
Short summary
Short summary
We investigated air–sea gas exchange in oceanic upwelling regions for the case of nitrous oxide off Peru. In this region, routine concentration measurements from ships at 5 m or 10 m depth prove to overestimate surface (bulk) concentration. Thus, standard estimates of gas exchange will show systematic error. This is due to very shallow stratified layers that inhibit exchange between surface water and waters below and can exist for several days. Maximum bias occurs in moderate wind conditions.
Alexandra N. Loginova, Sören Thomsen, Marcus Dengler, Jan Lüdke, and Anja Engel
Biogeosciences, 16, 2033–2047, https://doi.org/10.5194/bg-16-2033-2019, https://doi.org/10.5194/bg-16-2033-2019, 2019
Short summary
Short summary
High primary production in the Peruvian upwelling system is followed by rapid heterotrophic utilization of organic matter and supports the formation of one of the most intense oxygen minimum zones (OMZs) in the world. Here, we estimated vertical fluxes of oxygen and dissolved organic matter (DOM) from the surface to the OMZ. Our results suggest that DOM remineralization substantially reduces oxygen concentration in the upper water column and controls the shape of the upper oxycline.
Soeren Thomsen, Johannes Karstensen, Rainer Kiko, Gerd Krahmann, Marcus Dengler, and Anja Engel
Biogeosciences, 16, 979–998, https://doi.org/10.5194/bg-16-979-2019, https://doi.org/10.5194/bg-16-979-2019, 2019
Short summary
Short summary
Physical and biogeochemical observations from an autonomous underwater vehicle in combination with ship-based measurements are used to investigate remote and local drivers of the oxygen and nutrient variability off Mauritania. Beside the transport of oxygen and nutrients characteristics from remote areas towards Mauritania also local remineralization of organic material close to the seabed seems to be important for the distribution of oxygen and nutrients.
Lala Kounta, Xavier Capet, Julien Jouanno, Nicolas Kolodziejczyk, Bamol Sow, and Amadou Thierno Gaye
Ocean Sci., 14, 971–997, https://doi.org/10.5194/os-14-971-2018, https://doi.org/10.5194/os-14-971-2018, 2018
Short summary
Short summary
The currents along the West African seaboard are poorly known. Based on a carefully evaluated numerical simulation the present study describes these currents in the sector 8–20°N and the physical processes that drive them. Prevailing northward flow with two intensification periods per year is identified. Both local and distant coastal winds (blowing as far as thousands of kilometers away in the Gulf of Guinea) contribute to the circulation in this sector.
Gilles Reverdin, Hedinn Valdimarsson, Gael Alory, Denis Diverres, Francis Bringas, Gustavo Goni, Lars Heilmann, Leon Chafik, Tanguy Szekely, and Andrew R. Friedman
Earth Syst. Sci. Data, 10, 1403–1415, https://doi.org/10.5194/essd-10-1403-2018, https://doi.org/10.5194/essd-10-1403-2018, 2018
Short summary
Short summary
We report monthly time series of surface temperature, salinity, and density in the North Atlantic subpolar gyre in 1993–2017 from hydrographical data collected in particular from thermosalinographs onboard selected ships of opportunity. Most of the time, this data set reproduces well the large-scale variability, except for a few seasons with limited sampling, in particular in winter along western Greenland or northeast of Newfoundland in the presence of sea ice.
Yao Fu, Johannes Karstensen, and Peter Brandt
Ocean Sci., 14, 589–616, https://doi.org/10.5194/os-14-589-2018, https://doi.org/10.5194/os-14-589-2018, 2018
Short summary
Short summary
Hydrographic analysis in the Atlantic along 14.5° N and 24.5° N shows that between the periods of 1989/92 and 2013/15, the Antarctic Intermediate Water became warmer and saltier at 14.5° N, and that the Antarctic Bottom Water became lighter at both latitudes. By applying a box inverse model, the Atlantic Meridional Overturning Circulation (AMOC) was determined. Comparison among the inverse solution, GECCO2, RAPID, and MOVE shows that the AMOC has not significantly changed in the past 20 years.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Julien Jouanno, Olga Hernandez, and Emilia Sanchez-Gomez
Earth Syst. Dynam., 8, 1061–1069, https://doi.org/10.5194/esd-8-1061-2017, https://doi.org/10.5194/esd-8-1061-2017, 2017
Yao Fu, Johannes Karstensen, and Peter Brandt
Ocean Sci., 13, 531–549, https://doi.org/10.5194/os-13-531-2017, https://doi.org/10.5194/os-13-531-2017, 2017
Short summary
Short summary
Meridional Ekman transport in the tropical Atlantic was estimated directly by using observed ageostrophic velocity, and indirectly by using wind stress data. The direct and indirect methods agree well with each other. The top of the pycnocline represents the Ekman depth better than the mixed layer depth and a constant depth. The Ekman heat and salt fluxes calculated from sea surface temperature and salinity or from high-resolution temperature and salinity profile data differ only marginally.
Johannes Hahn, Peter Brandt, Sunke Schmidtko, and Gerd Krahmann
Ocean Sci., 13, 551–576, https://doi.org/10.5194/os-13-551-2017, https://doi.org/10.5194/os-13-551-2017, 2017
Short summary
Short summary
Recent studies have shown that the eastern tropical North Atlantic is subject to a strong decrease of the oceanic oxygen concentration in the upper 1000 m from the 1960s to today. By analyzing a broad observational data set, this study found an even stronger oxygen decrease in the upper 400 m throughout the past decade, whereas oxygen increase was found below (400–1000 m). Changes in the strength of the zonal currents are the most likely reason for the observed decadal oxygen changes.
Florian Schütte, Johannes Karstensen, Gerd Krahmann, Helena Hauss, Björn Fiedler, Peter Brandt, Martin Visbeck, and Arne Körtzinger
Biogeosciences, 13, 5865–5881, https://doi.org/10.5194/bg-13-5865-2016, https://doi.org/10.5194/bg-13-5865-2016, 2016
Short summary
Short summary
Mesoscale eddies with very low–oxygen concentrations at shallow depth have been recently discovered in the eastern tropical North Atlantic. Our analysis shows that low oxygen eddies occur more frequent than expected and are found even close to the equator (8° N). From budget calculations we show that an oxygen reduction of 7 µmol/kg in the depth range of 50–150 m in the eastern tropical North Atlantic (peak reduction is 16 µmol/kg at 100 m depth) can be associated with the dispersion of these eddies.
Julien Jouanno, Xavier Capet, Gurvan Madec, Guillaume Roullet, and Patrice Klein
Ocean Sci., 12, 743–769, https://doi.org/10.5194/os-12-743-2016, https://doi.org/10.5194/os-12-743-2016, 2016
Short summary
Short summary
The aim of this study is to clarify the role of the Southern Ocean storms on interior mixing and meridional overturning circulation. A periodic and idealized configuration of the NEMO model has been designed to represent the key physical processes of a zonal portion of the Southern Ocean. Challenging issues concerning how numerical models are able to represent interior mixing forced by high-frequency winds are exposed and discussed, particularly in the context of the overturning circulation.
Florian Schütte, Peter Brandt, and Johannes Karstensen
Ocean Sci., 12, 663–685, https://doi.org/10.5194/os-12-663-2016, https://doi.org/10.5194/os-12-663-2016, 2016
Short summary
Short summary
We want to examine the characteristics of mesoscale eddies in the tropical northeastern Atlantic. They serve as transport agents, exporting water from the coast into the open ocean. Traditionally eddies are categorized with respect to their rotation: cyclonic and anticyclonic. But we could identify, with a combination of different satellite products, a third type called "anticyclonic mode-water eddy" transporting much larger anomalies. We propose a distinction into three classes for further studies.
M. Rouault, P. Verley, and B. Backeberg
Ocean Sci., 12, 495–506, https://doi.org/10.5194/os-12-495-2016, https://doi.org/10.5194/os-12-495-2016, 2016
Short summary
Short summary
Our study shows that wind increases of 4 to 8 m s−1 above warm Agulhas Current eddies are not uncommon. This should be taken seriously when sailing in the “Roaring Forties”. Using microwave remote sensing from satellite is a very useful tool for monitoring such eddies. This could be displayed operationally to provide vessels with early warning and to indicate where there are likely to sustain stronger wind. The result is also relevant for the Gulf Stream and the Kuroshio Current.
Lorenzo Rovelli, Marcus Dengler, Mark Schmidt, Stefan Sommer, Peter Linke, and Daniel F. McGinnis
Biogeosciences, 13, 1609–1620, https://doi.org/10.5194/bg-13-1609-2016, https://doi.org/10.5194/bg-13-1609-2016, 2016
L. Stramma, R. Czeschel, T. Tanhua, P. Brandt, M. Visbeck, and B. S. Giese
Ocean Sci., 12, 153–167, https://doi.org/10.5194/os-12-153-2016, https://doi.org/10.5194/os-12-153-2016, 2016
Short summary
Short summary
The subsurface circulation in the eastern tropical North Atlantic OMZ is derived from velocity, float and tracer data and data assimilation results, and shows a cyclonic flow around the Guinea Dome reaching into the oxygen minimum zone. The stronger cyclonic flow around the Guinea Dome in 2009 seem to be connected to a strong Atlantic Meridional Mode (AMM) event.
A continuous deoxygenation trend of the low oxygen layer was confirmed.
Eddy influence is weak south of the Cape Verde Islands.
R. Steinfeldt, J. Sültenfuß, M. Dengler, T. Fischer, and M. Rhein
Biogeosciences, 12, 7519–7533, https://doi.org/10.5194/bg-12-7519-2015, https://doi.org/10.5194/bg-12-7519-2015, 2015
Short summary
Short summary
The coastal upwelling systems, e.g. off Peru and Mauritania,
are key regions for the emissions of climate relevant trace gases
from the ocean into the atmosphere. Here, gases and nutrients are
transported into the ocean mixed layer from below. The upwelling velocities,
however, are too small to be measured directly.
We use the enhancement of helium-3 in upwelled
waters to quantify the vertical velocity,
which varies between 1.0 and 2.5 metres per day in the coastal regions.
J. Karstensen, B. Fiedler, F. Schütte, P. Brandt, A. Körtzinger, G. Fischer, R. Zantopp, J. Hahn, M. Visbeck, and D. Wallace
Biogeosciences, 12, 2597–2605, https://doi.org/10.5194/bg-12-2597-2015, https://doi.org/10.5194/bg-12-2597-2015, 2015
Short summary
Short summary
This study is the first report of the formation of dead zones in the open ocean. A combination of multiple ocean observing system elements (mooring, floats, satellites, ships) allowed us to reconstruct the generation of the dead zones and to connect the formation to enhanced respiration within mesoscale ocean eddies. The dead zones present specific threats to the ecosystem, such as the interruption of the diurnal migration of zooplankters.
A. W. Dale, S. Sommer, U. Lomnitz, I. Montes, T. Treude, V. Liebetrau, J. Gier, C. Hensen, M. Dengler, K. Stolpovsky, L. D. Bryant, and K. Wallmann
Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, https://doi.org/10.5194/bg-12-1537-2015, 2015
P. Brandt, H. W. Bange, D. Banyte, M. Dengler, S.-H. Didwischus, T. Fischer, R. J. Greatbatch, J. Hahn, T. Kanzow, J. Karstensen, A. Körtzinger, G. Krahmann, S. Schmidtko, L. Stramma, T. Tanhua, and M. Visbeck
Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, https://doi.org/10.5194/bg-12-489-2015, 2015
Short summary
Short summary
Our observational study looks at the structure of the eastern tropical North Atlantic (ETNA) oxygen minimum zone (OMZ) in comparison with the less-ventilated, eastern tropical South Pacific OMZ. We quantify the OMZ’s oxygen budget composed of consumption, advection, lateral and vertical mixing. Substantial oxygen variability is observed on interannual to multidecadal timescales. The deoxygenation of the ETNA OMZ during the last decades represents a substantial imbalance of the oxygen budget.
S. C. Kenfack, K. F. Mkankam, G. Alory, Y. du Penhoat, N. M. Hounkonnou, D. A. Vondou, and G. N. Bawe
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npgd-1-235-2014, https://doi.org/10.5194/npgd-1-235-2014, 2014
Revised manuscript not accepted
T. Fischer, D. Banyte, P. Brandt, M. Dengler, G. Krahmann, T. Tanhua, and M. Visbeck
Biogeosciences, 10, 5079–5093, https://doi.org/10.5194/bg-10-5079-2013, https://doi.org/10.5194/bg-10-5079-2013, 2013
Cited articles
Adamec, D. and Obrien, J. J.: Seasonal upwelling in Gulf of Guinea due to
remote forcing, J. Phys. Oceanogr., 8, 1050–1060,
https://doi.org/10.1175/1520-0485(1978)008<1050:Tsuitg>2.0.Co;2, 1978.
Alory, G., Da-Allada, C. Y., Djakouré, S., Dadou, I., Jouanno, J., and
Loemba, D. P.: Coastal Upwelling Limitation by Onshore Geostrophic Flow in
the Gulf of Guinea Around the Niger River Plume, Front. Mar. Sci., 7, 607216,
https://doi.org/10.3389/fmars.2020.607216, 2021.
Amemou, H., Koné, V., Aman, A., and Lett, C.: Assessment of a Lagrangian
model using trajectories of oceanographic drifters and fishing devices in
the Tropical Atlantic Ocean, Prog. Oceanogr., 188, 102426,
https://doi.org/10.1016/j.pocean.2020.102426, 2020.
Athie, G. and Marin, F.: Cross-equatorial structure and temporal modulation
of intraseasonal variability at the surface of the Tropical Atlantic Ocean,
J. Geophys. Res.-Oceans, 113, C08020, https://doi.org/10.1029/2007jc004332,
2008.
Awo, F. M., Alory, G., Da-Allada, C. Y., Delcroix, T., Jouanno, J.,
Kestenare, E., and Baloitcha, E.: Sea Surface Salinity Signature of the
Tropical Atlantic Interannual Climatic Modes, J. Geophys. Res.-Oceans, 123,
7420–7437, https://doi.org/10.1029/2018jc013837, 2018.
Awo, F. M., Rouault, M., Ostrowski, M., Tomety, F. S., Da-Allada, C. Y., and
Jouanno, J.: Seasonal cycle of sea surface salinity in the Angola Upwelling
System, J. Geophys. Res.-Oceans, 127, e2022JC018518,
https://doi.org/10.1029/2022JC018518, 2022.
Bachèlery, M. L., Illig, S., and Dadou, I.: Interannual variability in
the South-East Atlantic Ocean, focusing on the Benguela Upwelling System:
Remote versus local forcing, J. Geophys. Res.-Oceans, 121, 284–310,
https://doi.org/10.1002/2015jc011168, 2016a.
Bachèlery, M. L., Illig, S., and Dadou, I.: Forcings of nutrient,
oxygen, and primary production interannual variability in the southeast
Atlantic Ocean, Geophys. Res. Lett., 43, 8617–8625,
https://doi.org/10.1002/2016gl070288, 2016b.
Bachèlery, M. L., Illig, S., and Rouault, M.: Interannual coastal
trapped waves in the Angola-Benguela upwelling system and Benguela Niño
and Niña events, J. Marine Syst., 203, 103262,
https://doi.org/10.1016/j.jmarsys.2019.103262, 2020.
Bakun, A.: Guinea Current Upwelling, Nature, 271, 147–150,
https://doi.org/10.1038/271147a0, 1978.
Bakun, A.: Global Climate Change and Intensification of Coastal Ocean
Upwelling, Science, 247, 198–201,
https://doi.org/10.1126/science.247.4939.198, 1990.
Bourlès, B., D'Orgeville, M., Eldin, G., Gouriou, Y., Chuchla, R.,
DuPenhoat, Y., and Arnault, S.: On the evolution of the thermocline and
subthermocline eastward currents in the Equatorial Atlantic, Geophys. Res.
Lett., 29, 32.31–32.34, https://doi.org/10.1029/2002gl015098, 2002.
Brandt, P., Caniaux, G., Bourlès, B., Lazar, A., Dengler, M., Funk, A.,
Hormann, V., Giordani, H., and Marin, F.: Equatorial upper-ocean dynamics
and their interaction with the West African monsoon, Atmos. Sci. Lett., 12,
24–30, https://doi.org/10.1002/Asl.287, 2011.
Brandt, P., Funk, A., Tantet, A., Johns, W., and Fischer, J.: The Equatorial
Undercurrent in the central Atlantic and its relation to tropical Atlantic
variability, Clim. Dynam., 43, 2985–2997,
https://doi.org/10.1007/s00382-014-2061-4, 2014.
Brandt, P., Bange, H. W., Banyte, D., Dengler, M., Didwischus, S.-H., Fischer, T., Greatbatch, R. J., Hahn, J., Kanzow, T., Karstensen, J., Körtzinger, A., Krahmann, G., Schmidtko, S., Stramma, L., Tanhua, T., and Visbeck, M.: On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic, Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, 2015.
Brandt, P., Claus, M., Greatbatch, R. J., Kopte, R., Toole, J. M., Johns, W.
E., and Böning, C. W.: Annual and semiannual cycle of equatorial
Atlantic circulation associated with basin-mode resonance, J. Phys. Oceanogr.,
46, 3011–3029, https://doi.org/10.1175/Jpo-D-15-0248.1, 2016.
Brandt, P., Hahn, J., Schmidtko, S., Tuchen, F. P., Kopte, R., Kiko, R.,
Bourlés, B., Czeschel, R., and Dengler, M.: Atlantic Equatorial
Undercurrent intensification counteracts warming-induced deoxygenation, Nat.
Geosci., 14, 278–282, https://doi.org/10.1038/s41561-021-00716-1, 2021.
Brandt, P., Czeschel, R., and Krahmann, G.: ADCP current measurements (38 and 75 kHz) during METEOR cruise M158, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.952101, 2023a.
Brandt, P., Czeschel, R., and Krahmann, G.: ADCP current measurements during METEOR cruise M181, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.956143, 2023b.
Brandt, P., Subramaniam, A., Schmidtko, S., and Krahmann, G.: Physical oceanography (CTD) during METEOR cruise M158, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.952354, 2023c.
Brandt, P., Subramaniam, A., and Krahmann, G.: Physical oceanography (CTD) during METEOR cruise M181, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.952520, 2023d.
Burls, N. J., Reason, C. J. C., Penven, P., and Philander, S. G.:
Similarities between the tropical Atlantic seasonal cycle and ENSO: An
energetics perspective, J. Geophys. Res.-Oceans, 116, C11010,
https://doi.org/10.1029/2011jc007164, 2011.
Cai, W. J., Wang, G. J., Dewitte, B., Wu, L. X., Santoso, A., Takahashi, K.,
Yang, Y., Carreric, A., and McPhaden, M. J.: Increased variability of
eastern Pacific El Niño under greenhouse warming, Nature, 564, 201–206,
https://doi.org/10.1038/s41586-018-0776-9, 2018.
Caniaux, G., Giordani, H., Redelsperger, J. L., Guichard, F., Key, E., and
Wade, M.: Coupling between the Atlantic cold tongue and the West African
monsoon in boreal spring and summer, J. Geophys. Res.-Oceans, 116, C04003,
https://doi.org/10.1029/2010jc006570, 2011.
Chai, F., Lindley, S. T., and Barber, R. T.: Origin and maintenance of a
high nitrate condition in the equatorial Pacific, Deep-Sea Res. Pt. II, 43,
1031–1064, https://doi.org/10.1016/0967-0645(96)00029-X, 1996.
Chang, P., Zhang, R., Hazeleger, W., Wen, C., Wan, X. Q., Ji, L., Haarsma,
R. J., Breugem, W. P., and Seidel, H.: Oceanic link between abrupt changes
in the North Atlantic Ocean and the African monsoon, Nat. Geosci., 1, 444–448,
https://doi.org/10.1038/Ngeo218, 2008.
Chenillat, F., Illig, S., Jouanno, J., Awo, F. M., Alory, G., and Brehmer,
P.: How do climate modes shape the Chlorophyll-a interannual variability in
the tropical Atlantic?, Geophys. Res. Lett., 48, e2021GL093769,
https://doi.org/10.1029/2021GL093769, 2021.
Clarke, A. J.: On the generation of the seasonal coastal upwelling in the
Gulf of Guinea, J. Geophys. Res.-Oceans, 84, 3743–3751,
https://doi.org/10.1029/JC084iC07p03743, 1979.
Colin, C., Gallardo, Y., Chuchla, R., and Cissoko, S.: Environnements
climatique et océanographique sur le plateau continental de Côte
d'Ivoire, in: Environnement et ressources aquatiques de Côte d'Ivoire:
1. Le milieu marin, edited by: Le Loeuff, P., Marchal, E., and Amon Kothias,
J. B., ORSTOM, Paris, 75–110, https://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/divers2/37710.pdf (last access: 11 April 2023), 1993.
Copernicus: Global Ocean Colour (Copernicus-GlobColour), Bio-Geo-Chemical, L4 (monthly and interpolated) from satellite observations (1997-ongoing), Copernicus [data set], https://doi.org/10.48670/moi-00281, 2023a.
Copernicus: Global Ocean Gridded L4 Sea Surface Heights and derived variables reprocessed 1993 ongoing, Copernicus [data set], https://doi.org/10.48670/moi-00148, 2023b.
Crespo, L. R., Prigent, A., Keenlyside, N., Koseki, S., Svendsen, L.,
Richter, I., and Sanchez-Gomez, E.: Weakening of the Atlantic Niño
variability under global warming, Nat. Clim. Change, 12, 822–827,
https://doi.org/10.1038/s41558-022-01453-y, 2022.
Da-Allada, C. Y., Agada, J., Baloitcha, E., Hounkonnou, M. N., Jouanno, J.,
and Alory, G.: Causes of the Northern Gulf of Guinea Cold Event in 2012, J.
Geophys. Res.-Oceans, 126, e2021JC017627,
https://doi.org/10.1029/2021JC017627, 2021.
Ding, H., Keenlyside, N. S., and Latif, M.: Seasonal cycle in the upper
equatorial Atlantic Ocean, J. Geophys. Res.-Oceans, 114, C09016,
https://doi.org/10.1029/2009jc005418, 2009.
Djakouré, S., Penven, P., Bourlès, B., Veitch, J., and Kone, V.:
Coastally trapped eddies in the north of the Gulf of Guinea, J. Geophys.
Res.-Oceans, 119, 6805–6819, https://doi.org/10.1002/2014jc010243, 2014.
Djakouré, S., Penven, P., Bourlès, B., Kone, V., and Veitch, J.:
Respective roles of the Guinea Current and local winds on the coastal
upwelling in the northern Gulf of Guinea, J. Phys. Oceanogr., 47, 1367–1387,
https://doi.org/10.1175/Jpo-D-16-0126.1, 2017.
Duteil, O., Böning, C. W., and Oschlies, A.: Variability in
subtropical-tropical cells drives oxygen levels in the tropical Pacific
Ocean, Geophys. Res. Lett., 41, 8926–8934,
https://doi.org/10.1002/2014gl061774, 2014.
ERA5 surface wind stress data: Climate Data Store, https://cds.climate.copernicus.eu/, last access: 11 April 2023.
FAO: Fishery and Aquaculture Country Profiles, Angola, 2020, Country Profile Fact Sheets, Fisheries and Aquaculture Division [online], Rome, https://www.fao.org/fishery/en/facp/ago?lang=en (last access: 11 April 2023), updated 7 February 2022.
Foltz, G. R. and McPhaden, M. J.: Abrupt equatorial wave-induced cooling of
the Atlantic cold tongue in 2009, Geophys. Res. Lett., 37, L24605,
https://doi.org/10.1029/2010gl045522, 2010a.
Foltz, G. R. and McPhaden, M. J.: Interaction between the Atlantic
meridional and Nino modes, Geophys. Res. Lett., 37,
L18604, https://doi.org/10.1029/2010gl044001, 2010b.
Foltz, G. R., Brandt, P., Richter, I., Rodriguez-Fonsecao, B., Hernandez,
F., Dengler, M., Rodrigues, R. R., Schmidt, J. O., Yu, L., Lefevre, N., Da
Cunha, L. C., McPhaden, M. J., Araujo, M., Karstensen, J., Hahn, J.,
Martin-Rey, M., Patricola, C. M., Poli, P., Zuidema, P., Hummels, R., Perez,
R. C., Hatje, V., Lübbecke, J. F., Palo, I., Lumpkin, R., Bourlès,
B., Asuquo, F. E., Lehodey, P., Conchon, A., Chang, P., Dandin, P., Schmid,
C., Sutton, A., Giordani, H., Xue, Y., Illig, S., Losada, T., Grodsky, S.
A., Gasparinss, F., Lees, T., Mohino, E., Nobre, P., Wanninkhof, R.,
Keenlyside, N., Garcon, V., Sanchez-Gomez, E., Nnamchi, H. C., Drevillon,
M., Storto, A., Remy, E., Lazar, A., Speich, S., Goes, M., Dorrington, T.,
Johns, W. E., Moum, J. N., Robinson, C., Perruches, C., de Souza, R. B.,
Gaye, A. T., Lopez-Paragess, J., Monerie, P. A., Castellanos, P., Benson, N.
U., Hounkonnou, M. N., Duha, J. T., Laxenairess, R., and Reul, N.: The
Tropical Atlantic Observing System, Front. Mar. Sci., 6, 206,
https://doi.org/10.3389/fmars.2019.00206, 2019.
Fu, Y., Brandt, P., Tuchen, F. P., Lübbecke, J. F., and Wang, C. Z.:
Representation of the mean Atlantic subtropical cells in CMIP6 models, J.
Geophys. Res.-Oceans, 127, e2021JC018191,
https://doi.org/10.1029/2021JC018191, 2022.
Gammelsrød, T., Bartholomae, C. H., Boyer, D. C., Filipe, V. L. L., and
O'Toole, M. J.: Intrusion of warm surface water along the Angolan-Namibian
coast in February–March 1995: The 1995 Benguela Niño, S. Afr. J. Marine
Sci., 19, 41–56, https://doi.org/10.2989/025776198784126719, 1998.
Garzoli, S. L. and Katz, E. J.: The Forced Annual Reversal of the Atlantic
North Equatorial Countercurrent, J. Phys. Oceanogr., 13, 2082–2090,
https://doi.org/10.1175/1520-0485(1983)013<2082:Tfarot>2.0.Co;2, 1983.
Giordani, H. and Caniaux, G.: Diagnosing vertical motion in the Equatorial
Atlantic, Ocean Dynam., 61, 1995–2018,
https://doi.org/10.1007/s10236-011-0467-7, 2011.
Grodsky, S. A., Carton, J. A., and McClain, C. R.: Variability of upwelling
and chlorophyll in the equatorial Atlantic, Geophys. Res. Lett., 35, L03610,
https://doi.org/10.1029/2007gl032466, 2008.
Hall, R. A., Huthnance, J. M., and Williams, R. G.: Internal wave reflection
on shelf slopes with depth-varying stratification, J. Phys. Oceanogr., 43,
248–258, https://doi.org/10.1175/Jpo-D-11-0192.1, 2013.
Hammond, M. L., Beaulieu, C., Henson, S. A., and Sahu, S. K.: Regional
surface chlorophyll trends and uncertainties in the global ocean, Sci.
Rep., 10, 15273, https://doi.org/10.1038/s41598-020-72073-9, 2020.
Han, W. Q., McCreary, J. P., Masumoto, Y., Vialard, J., and Duncan, B.:
Basin Resonances in the Equatorial Indian Ocean, J. Phys. Oceanogr., 41,
1252–1270, https://doi.org/10.1175/2011jpo4591.1, 2011.
Hardman-Mountford, N. J. and McGlade, J. M.: Seasonal and interannual
variability of oceanographic processes in the Gulf of Guinea: an
investigation using AVHRR sea surface temperature data, Int. J. Remote Sens.,
24, 3247–3268, https://doi.org/10.1080/0143116021000021297, 2003.
Herbert, G., Bourlès, B., Penven, P., and Grelet, J.: New insights on
the upper layer circulation north of the Gulf of Guinea, J. Geophys.
Res.-Oceans, 121, 6793–6815, https://doi.org/10.1002/2016jc011959, 2016.
Herbland, A. and Voituriez, B.: Hydrological Structure-Analysis for
Estimating the Primary Production in the Tropical Atlantic Ocean, J. Mar. Res.,
37, 87–101, 1979.
Heukamp, F. O., Brandt, P., Dengler, M., Tuchen, F. P., McPhaden, M. J., and
Moum, J. N.: Tropical instability waves and wind-forced cross-equatorial
flow in the central Atlantic Ocean, Geophys. Res. Lett., 49, e2022GL099325,
https://doi.org/10.1029/2022GL099325, 2022.
Hisard, P.: El-Niño response of the eastern Tropical Atlantic, Oceanol.
Acta, 3, 69–78, 1980.
Hormann, V. and Brandt, P.: Upper equatorial Atlantic variability during
2002 and 2005 associated with equatorial Kelvin waves, J. Geophys. Res.-Oceans,
114, C03007, https://doi.org/10.1029/2008jc005101, 2009.
Hughes, C. W., Fukumori, I., Griffies, S. M., Huthnance, J. M., Minobe, S.,
Spence, P., Thompson, K. R., and Wise, A.: Sea Level and the Role of Coastal
Trapped Waves in Mediating the Influence of the Open Ocean on the Coast,
Surv. Geophys., 40, 1467–1492, https://doi.org/10.1007/s10712-019-09535-x,
2019.
Hummels, R., Dengler, M., and Bourlès, B.: Seasonal and regional
variability of upper ocean diapycnal heat flux in the Atlantic cold tongue,
Prog. Oceanogr., 111, 52–74, https://doi.org/10.1016/j.pocean.2012.11.001,
2013.
Hummels, R., Dengler, M., Brandt, P., and Schlundt, M.: Diapycnal heat flux
and mixed layer heat budget within the Atlantic Cold Tongue, Clim. Dynam., 43,
3179–3199, https://doi.org/10.1007/s00382-014-2339-6, 2014.
Hutchings, L., van der Lingen, C. D., Shannon, L. J., Crawford, R. J. M.,
Verheye, H. M. S., Bartholomae, C. H., van der Plas, A. K., Louw, D.,
Kreiner, A., Ostrowski, M., Fidel, Q., Barlow, R. G., Lamont, T., Coetzee,
J., Shillington, F., Veitch, J., Currie, J. C., and Monteiro, P. M. S.: The
Benguela Current: An ecosystem of four components, Prog. Oceanogr., 83, 15–32,
https://doi.org/10.1016/j.pocean.2009.07.046, 2009.
Illig, S., Dewitte, B., Ayoub, N., du Penhoat, Y., Reverdin, G., De Mey, P.,
Bonjean, F., and Lagerloef, G. S. E.: Interannual long equatorial waves in
the tropical Atlantic from a high-resolution ocean general circulation model
experiment in 1981–2000, J. Geophys. Res.-Oceans, 109, C02022,
https://doi.org/10.1029/2003jc001771, 2004.
Illig, S., Bachèlery, M. L., and Cadier, E.: Subseasonal coastal-trapped
wave propagations in the southeastern Pacific and Atlantic oceans: 2. Wave
characteristics and connection with the equatorial variability, J. Geophys.
Res.-Oceans, 123, 3942–3961, https://doi.org/10.1029/2017jc013540, 2018a.
Illig, S., Cadier, E., Bachèlery, M. L., and Kersale, M.: Subseasonal
coastal-trapped wave propagations in the southeastern Pacific and Atlantic
oceans: 1. A new approach to estimate wave amplitude, J. Geophys. Res.-Oceans,
123, 3915–3941, https://doi.org/10.1029/2017jc013539, 2018b.
Imbol Koungue, R. A. and Brandt, P.: Impact of intraseasonal waves on
Angolan warm and cold events, J. Geophys. Res.-Oceans, 126, e2020JC017088,
https://doi.org/10.1029/2020JC017088, 2021.
Imbol Koungue, R. A., Illig, S., and Rouault, M.: Role of interannual Kelvin
wave propagations in the equatorial Atlantic on the Angola Benguela Current
system, J. Geophys. Res.-Oceans, 122, 4685–4703,
https://doi.org/10.1002/2016jc012463, 2017.
Imbol Koungue, R. A., Rouault, M., Illig, S., Brandt, P., and Jouanno, J.:
Benguela Niños and Benguela Niñas in Forced Ocean Simulation From
1958 to 2015, J. Geophys. Res.-Oceans, 124, 5923–5951,
https://doi.org/10.1029/2019jc015013, 2019.
Imbol Koungue, R. A., Brandt, P., Lübbecke, J. F., Prigent, A., Sena
Martins, M., and Rodrigues, R. R.: The 2019 Benguela Niño, Front. Mar.
Sci., 8, 800103, https://doi.org/10.3389/fmars.2021.800103, 2021.
Ingham, M. C.: Coastal upwelling in northwestern Gulf of Guinea, B. Mar. Sci.,
20, 1–34, 1970.
Johns, W. E., Brandt, P., Bourlès, B., Tantet, A., Papapostolou, A., and
Houk, A.: Zonal structure and seasonal variability of the Atlantic
Equatorial Undercurrent, Clim. Dynam., 43, 3047–3069,
https://doi.org/10.1007/s00382-014-2136-2, 2014.
Jouanno, J., Marin, F., du Penhoat, Y., Molines, J. M., and Sheinbaum, J.:
Seasonal modes of surface cooling in the Gulf of Guinea, J. Phys. Oceanogr.,
41, 1408–1416, https://doi.org/10.1175/Jpo-D-11-031.1, 2011a.
Jouanno, J., Marin, F., du Penhoat, Y., Sheinbaum, J., and Molines, J. M.:
Seasonal heat balance in the upper 100 m of the equatorial Atlantic Ocean, J.
Geophys. Res.-Oceans, 116, C09003, https://doi.org/10.1029/2010jc006912,
2011b.
Jouanno, J., Marin, F., du Penhoat, Y., and Molines, J. M.: Intraseasonal
modulation of the surface cooling in the Gulf of Guinea, J. Phys. Oceanogr.,
43, 382–401, https://doi.org/10.1175/Jpo-D-12-053.1, 2013.
Jouanno, J., Hernandez, O., and Sanchez-Gomez, E.: Equatorial Atlantic interannual variability and its relation to dynamic and thermodynamic processes, Earth Syst. Dynam., 8, 1061–1069, https://doi.org/10.5194/esd-8-1061-2017, 2017.
Kämpf, J.: On the magnitude of upwelling fluxes in shelf-break canyons,
Cont. Shelf Res., 27, 2211–2223, https://doi.org/10.1016/j.csr.2007.05.010,
2007.
Katz, E. J. and Garzoli, S.: Response of the western Equatorial Atlantic
Ocean to an annual wind cycle, J. Mar. Res., 40, 307–327, 1982.
Keenlyside, N. S. and Latif, M.: Understanding equatorial Atlantic
interannual variability, J. Climate, 20, 131–142,
https://doi.org/10.1175/Jcli3992.1, 2007.
Kiko, R., Biastoch, A., Brandt, P., Cravatte, S., Hauss, H., Hummels, R.,
Kriest, I., Marin, F., McDonnell, A. M. P., Oschlies, A., Picheral, M.,
Schwarzkopf, F. U., Thurnherr, A. M., and Stemmann, L.: Biological and
physical influences on marine snowfall at the equator, Nat. Geosci., 10,
852–858, https://doi.org/10.1038/Ngeo3042, 2017.
Knight, J. R., Folland, C. K., and Scaife, A. A.: Climate impacts of the
Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 33, L17706,
https://doi.org/10.1029/2006gl026242, 2006.
Kolodziejczyk, N., Marin, F., Bourlès, B., Gouriou, Y., and Berger, H.:
Seasonal variability of the equatorial undercurrent termination and
associated salinity maximum in the Gulf of Guinea, Clim. Dynam., 43,
3025–3046, https://doi.org/10.1007/s00382-014-2107-7, 2014.
Koné, V., Lett, C., Penven, P., Bourles, B., and Djakouré, S.: A
biophysical model of S. aurita early life history in the northern Gulf of
Guinea, Prog. Oceanogr., 151, 83–96,
https://doi.org/10.1016/j.pocean.2016.10.008, 2017.
Kopte, R., Brandt, P., Dengler, M., Tchipalanga, P. C. M., Macueria, M., and
Ostrowski, M.: The Angola Current: Flow and hydrographic characteristics as
observed at 11∘ S, J. Geophys. Res.-Oceans, 122, 1177–1189,
https://doi.org/10.1002/2016jc012374, 2017.
Kopte, R., Brandt, P., Claus, M., Greatbatch, R. J., and Dengler, M.: Role
of equatorial basin-mode resonance for the seasonal variability of the
Angola Current at 11∘ S, J. Phys. Oceanogr., 48, 261–281,
https://doi.org/10.1175/Jpo-D-17-0111.1, 2018.
Körner, M., Brandt, P., and Dengler, M.: Seasonal cycle of sea surface temperature in the tropical Angolan Upwelling System, Ocean Sci., 19, 121–139, https://doi.org/10.5194/os-19-121-2023, 2023.
Lamb, K. G.: Internal wave breaking and dissipation mechanisms on the
continental slope/shelf, Annu. Rev. Fluid Mech., 46, 231–254,
https://doi.org/10.1146/annurev-fluid-011212-140701, 2014.
Longhurst, A.: Seasonal cooling and blooming in tropical oceans, Deep-Sea
Res. Pt. I, 40, 2145–2165, https://doi.org/10.1016/0967-0637(93)90095-K,
1993.
Loukos, H. and Memery, L.: Simulation of the nitrate seasonal cycle in the
equatorial Atlantic Ocean during 1983 and 1984, J. Geophys. Res.-Oceans, 104,
15549–15573, https://doi.org/10.1029/1999jc900084, 1999.
Lübbecke, J. F., Rodriguez-Fonseca, B., Richter, I., Martin-Rey, M.,
Losada, T., Polo, I., and Keenlyside, N. S.: Equatorial Atlantic
variability – Modes, mechanisms, and global teleconnections, WIREs Clim.
Change, 9, e527, https://doi.org/10.1002/wcc.527, 2018.
Lübbecke, J. F., Brandt, P., Dengler, M., Kopte, R., Ludke, J., Richter,
I., Martins, M. S., and Tchipalanga, P. C. M.: Causes and evolution of the
southeastern tropical Atlantic warm event in early 2016, Clim. Dynam., 53,
261–274, https://doi.org/10.1007/s00382-018-4582-8, 2019.
Mao, Z. X., Mao, Z. H., Jamet, C., Linderman, M., Wang, Y. T., and Chen, X.
Y.: Seasonal Cycles of Phytoplankton Expressed by Sine Equations Using the
Daily Climatology from Satellite-Retrieved Chlorophyll-a Concentration
(1997–2019) Over Global Ocean, Remote Sens.-Basel, 12, 2662,
https://doi.org/10.3390/rs12162662, 2020.
Marchal, E. and Picaut, J.: Répartition et abondance évaluées
par échointégration des poissons du plateau ivoiro-ghanéen en
relation avec les upwellings locaux, J. Rech. Océanogr., 2, 39–58, 1977.
Marchesiello, P. and Estrade, P.: Upwelling limitation by onshore
geostrophic flow, J. Mar. Res., 68, 37–62,
https://doi.org/10.1357/002224010793079004, 2010.
Martins, M. S. and Stammer, D.: Interannual variability of the Congo River
plume-induced sea surface salinity, Remote Sens.-Basel, 14, 1013,
https://doi.org/10.3390/rs14041013, 2022.
Menkes, C. E., Kennan, S. C., Flament, P., Dandonneau, Y., Masson, S.,
Biessy, B., Marchal, E., Eldin, G., Grelet, J., Montel, Y., Morliere, A.,
Lebourges-Dhaussy, A., Moulin, C., Champalbert, G., and Herbland, A.: A
whirling ecosystem in the equatorial Atlantic, Geophys. Res. Lett., 29, 1553,
https://doi.org/10.1029/2001gl014576, 2002.
Merle, J.: Seasonal Heat-Budget in the Equatorial Atlantic-Ocean, J. Phys.
Oceanogr., 10, 464–469,
https://doi.org/10.1175/1520-0485(1980)010<0464:Shbite>2.0.Co;2, 1980.
Microwave OI SST and CCMP wind data: Research-Quality Geophysical Products from Satellite Microwave Sensors, Microwave Climate Data Center (MCDC), Remote Sensing Systems (RSS), https://www.remss.com, last access: 11 April 2023.
Monger, B., McClain, C., and Murtugudde, R.: Seasonal phytoplankton dynamics
in the eastern tropical Atlantic, J. Geophys. Res.-Oceans, 102, 12389–12411,
https://doi.org/10.1029/96jc03982, 1997.
Moore, D., Hisard, P., Mccreary, J., Merle, J., Obrien, J., Picaut, J.,
Verstraete, J. M., and Wunsch, C.: Equatorial adjustment in the eastern
Atlantic, Geophys. Res. Lett., 5, 637–640,
https://doi.org/10.1029/GL005i008p00637, 1978.
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics
and iron cycling in a global three-dimensional model, Global Biogeochem. Cy.,
18, Gb4028, https://doi.org/10.1029/2004gb002220, 2004.
Mosquera-Vasquez, K., Dewitte, B., and Illig, S.: The Central Pacific El
Nino intraseasonal Kelvin wave, J. Geophys. Res.-Oceans, 119, 6605–6621,
https://doi.org/10.1002/2014jc010044, 2014.
Moum, J. N., Lien, R. C., Perlin, A., Nash, J. D., Gregg, M. C., and Wiles,
P. J.: Sea surface cooling at the Equator by subsurface mixing in tropical
instability waves, Nat. Geosci., 2, 761–765,
https://doi.org/10.1038/Ngeo657, 2009.
Moum, J. N., Hughes, K. G., Shroyer, E. L., Smyth, W. D., Cherian, D.,
Warner, S. J., Bourles, B., Brandt, P., and Dengler, M.: Deep Cycle
Turbulence in Atlantic and Pacific Cold Tongues, Geophys. Res. Lett., 49,
e2021GL097345, https://doi.org/10.1029/2021GL097345, 2022.
Nnamchi, H. C., Li, J. P., Kucharski, F., Kang, I. S., Keenlyside, N. S.,
Chang, P., and Farneti, R.: Thermodynamic controls of the Atlantic Nino, Nat.
Commun., 6, 8895, https://doi.org/10.1038/ncomms9895, 2015.
Nyadjro, E. S., Foli, B. A. K., Agyekum, K. A., Wiafe, G., and Tsei, S.:
Seasonal Variability of Sea Surface Salinity in the NW Gulf of Guinea from
SMAP Satellite, Remote Sens. Earth Syst. Sci., 5, 83–94,
https://doi.org/10.1007/s41976-021-00061-2, 2022.
Okumura, Y. and Xie, S. P.: Some overlooked features of tropical Atlantic
climate leading to a new Nino-like phenomenon, J. Climate, 19, 5859–5874,
https://doi.org/10.1175/Jcli3928.1, 2006.
Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and
mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467–473,
https://doi.org/10.1038/s41561-018-0152-2, 2018.
Ostrowski, M., da Silva, J. C. B., and Bazik-Sangolay, B.: The response of
sound scatterers to El Niño- and La Niña-like oceanographic regimes
in the southeastern Atlantic, ICES J. Mar. Sci., 66, 1063–1072,
https://doi.org/10.1093/icesjms/fsp102, 2009.
Perez, R. C., Hormann, V., Lumpkin, R., Brandt, P., Johns, W. E., Hernandez,
F., Schmid, C., and Bourlès, B.: Mean meridional currents in the central
and eastern equatorial Atlantic, Clim. Dynam., 43, 2943–2962,
https://doi.org/10.1007/s00382-013-1968-5, 2014.
Perlin, A., Moum, J. N., and Klymak, J. M.: Response of the bottom boundary
layer over a sloping shelf to variations in alongshore wind, J. Geophys.
Res.-Oceans, 110, C10S09, https://doi.org/10.1029/2004jc002500, 2005.
Philander, S. G. H.: Upwelling in the Gulf of Guinea, J. Mar. Res., 37, 23–33,
1979.
Philander, S. G. H. and Pacanowski, R. C.: Response of equatorial oceans to
periodic forcing, J. Geophys. Res.-Oceans, 86, 1903–1916,
https://doi.org/10.1029/Jc086ic03p01903, 1981.
Philander, S. G. H. and Pacanowski, R. C.: A model of the seasonal cycle in
the tropical Atlantic-Ocean, J. Geophys. Res.-Oceans, 91, 14192–14206,
https://doi.org/10.1029/JC091iC12p14192, 1986.
Picaut, J.: Propagation of the Seasonal Upwelling in the Eastern Equatorial
Atlantic, J. Phys. Oceanogr., 13, 18–37,
https://doi.org/10.1175/1520-0485(1983)013<0018:Potsui>2.0.Co;2, 1983.
Polo, I., Lazar, A., Rodriguez-Fonseca, B., and Arnault, S.: Oceanic Kelvin
waves and tropical Atlantic intraseasonal variability: 1. Kelvin wave
characterization, J. Geophys. Res.-Oceans, 113, C07009,
https://doi.org/10.1029/2007jc004495, 2008.
Prigent, A., Imbol Koungue, R. A., Lübbecke, J. F., Brandt, P., and
Latif, M.: Origin of weakened interannual sea surface temperature
variability in the southeastern tropical Atlantic Ocean, Geophys. Res. Lett.,
47, e2020GL089348, https://doi.org/10.1029/2020GL089348, 2020a.
Prigent, A., Lübbecke, J. F., Bayr, T., Latif, M., and Wengel, C.:
Weakened SST variability in the tropical Atlantic Ocean since 2000, Clim.
Dynam., 54, 2731–2744, https://doi.org/10.1007/s00382-020-05138-0, 2020b.
Rabe, B., Schott, F. A., and Köhl, A.: Mean circulation and variability
of the tropical Atlantic during 1952–2001 in the GECCO assimilation fields,
J. Phys. Oceanogr., 38, 177–192, https://doi.org/10.1175/2007jpo3541.1,
2008.
Radenac, M.-H., Jouanno, J., Tchamabi, C. C., Awo, M., Bourlès, B., Arnault, S., and Aumont, O.: Physical drivers of the nitrate seasonal variability in the Atlantic cold tongue, Biogeosciences, 17, 529–545, https://doi.org/10.5194/bg-17-529-2020, 2020.
Richter, I., Behera, S. K., Masumoto, Y., Taguchi, B., Komori, N., and
Yamagata, T.: On the triggering of Benguela Niños: Remote equatorial
versus local influences, Geophys. Res. Lett., 37, L20604,
https://doi.org/10.1029/2010gl044461, 2010.
Roch, M., Brandt, P., Schmidtko, S., Vaz Velho, F., and Ostrowski, M.:
Southeastern tropical Atlantic changing from subtropical to tropical
conditions, Front. Mar. Sci., 8, 748383,
https://doi.org/10.3389/fmars.2021.748383, 2021.
Rossi, V., Feng, M., Pattiaratchi, C., Roughan, M., and Waite, A. M.: On the
factors influencing the development of sporadic upwelling in the Leeuwin
Current system, J. Geophys. Res.-Oceans, 118, 3608–3621,
https://doi.org/10.1002/jgrc.20242, 2013.
Rouault, M.: Bi-annual intrusion of tropical water in the northern Benguela
upwelling, Geophys. Res. Lett., 39, L12606,
https://doi.org/10.1029/2012gl052099, 2012.
Rouault, M., Illig, S., Bartholomae, C., Reason, C. J. C., and Bentamy, A.:
Propagation and origin of warm anomalies in the Angola Benguela upwelling
system in 2001, J. Marine Syst., 68, 473–488,
https://doi.org/10.1016/j.jmarsys.2006.11.010, 2007.
Rouault, M., Illig, S., Lübbecke, J. F., and Imbol Koungue, R. A.:
Origin, development and demise of the 2010–2011 Benguela Niño, J. Marine
Syst., 188, 39–48, https://doi.org/10.1016/j.jmarsys.2017.07.007, 2018.
Ruiz-Barradas, A., Carton, J. A., and Nigam, S.: Structure of
interannual-to-decadal climate variability in the tropical Atlantic sector,
J. Climate, 13, 3285–3297,
https://doi.org/10.1175/1520-0442(2000)013<3285:Soitdc>2.0.Co;2, 2000.
Sallee, J. B., Pellichero, V., Akhoudas, C., Pauthenet, E., Vignes, L.,
Schmidtko, S., Garabato, A. N., Sutherland, P., and Kuusela, M.: Summertime
increases in upper-ocean stratification and mixed-layer depth, Nature, 591,
592–598, https://doi.org/10.1038/s41586-021-03303-x, 2021.
Schafstall, J., Dengler, M., Brandt, P., and Bange, H.: Tidal-induced mixing
and diapycnal nutrient fluxes in the Mauritanian upwelling region, J. Geophys.
Res.-Oceans, 115, C10014, https://doi.org/10.1029/2009jc005940, 2010.
Schott, F. A., Fischer, J., and Stramma, L.: Transports and pathways of the
upper-layer circulation in the western tropical Atlantic, J. Phys. Oceanogr.,
28, 1904–1928, https://doi.org/10.1175/1520-0485(1998)028<1904:TAPOTU>2.0.CO;2, 1998.
Schott, F. A., McCreary, J. P., and Johnson, G. C.: Shallow overturning
circulations of the tropical-subtropical oceans, in: Earth Climate: The
Ocean-Atmosphere Interaction, edited by: Wang, C., Xie, S.-P., and Carton,
J. A., Geophysical Monograph 147, American Geophysical Union, Washington,
DC, 261–304, https://doi.org/10.1029/147GM15, 2004.
Servain, J., Picaut, J., and Merle, J.: Evidence of Remote Forcing in the
Equatorial Atlantic-Ocean, J Phys Oceanogr, 12, 457-463,
https://doi.org/10.1175/1520-0485(1982)012<0457:Eorfit>2.0.Co;2, 1982.
Shannon, L. V., Boyd, A. J., Brundrit, G. B., and Taunton-Clark, J.: On the
Existence of an El-Niño-Type Phenomenon in the Benguela System, J. Mar.
Res., 44, 495–520, https://doi.org/10.1357/002224086788403105, 1986.
Sherman, J., Subramaniam, A., Gorbunov, M. Y., Fernandez-Carrera, A., Kiko,
R., Brandt, P., and Falkowski, P. G.: The photophysiological response of
nitrogen-limited phytoplankton to episodic nitrogen supply associated with
Tropical Instability Waves in the equatorial Atlantic, Front. Mar. Sci., 8,
814663, https://doi.org/10.3389/fmars.2021.814663, 2022.
Siegfried, L., Schmidt, M., Mohrholz, V., Pogrzeba, H., Nardini, P.,
Böttinger, M., and Scheuermann, G.: The tropical-subtropical coupling in
the Southeast Atlantic from the perspective of the northern Benguela
upwelling system, Plos One, 14, e0210083,
https://doi.org/10.1371/journal.pone.0210083, 2019.
Sohou, Z., Koné, V., Da-Allada, Y. C., Djakouré, S., Bourlès,
B., Racape, V., Degbe, G., and Adje, C.: Seasonal and inter-annual ONSET Sea
Surface Temperature variability along the northern coast of the Gulf of
Guinea, Reg. Stud. Mar. Sci., 35, 101129,
https://doi.org/10.1016/j.rsma.2020.101129, 2020.
Sowman, M. and Cardoso, P.: Small-scale fisheries and food security
strategies in countries in the Benguela Current Large Marine Ecosystem
(BCLME) region: Angola, Namibia and South Africa, Mar. Policy, 34,
1163–1170, https://doi.org/10.1016/j.marpol.2010.03.016, 2010.
Tchipalanga, P., Dengler, M., Brandt, P., Kopte, R., Macueria, M., Coelho,
P., Ostrowski, M., and Keenlyside, N. S.: Eastern Boundary Circulation and
Hydrography Off Angola: Building Angolan Oceanographic Capacities, B. Am.
Meteorol. Soc., 99, 1589–1605, https://doi.org/10.1175/Bams-D-17-0197.1,
2018a.
Tchipalanga, P. C. M., Ostrowski, M., and Dengler, M.: Physical oceanography (CTD) during Fridtjof Nansen cruise FN1998409, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.887163, 2018b.
Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, R. J., Dengler, M., and
Lavik, G.: The formation of a subsurface anticyclonic eddy in the Peru-Chile
Undercurrent and its impact on the near-coastal salinity, oxygen, and
nutrient distributions, J. Geophys. Res.-Oceans, 121, 476–501,
https://doi.org/10.1002/2015jc010878, 2016.
Thomsen, S., Capet, X., and Echevin, V.: Competition between Baroclinic
Instability and Ekman Transport under Varying Buoyancy Forcings in Upwelling
Systems: An Idealized Analog to the Southern Ocean, J. Phys. Oceanogr., 51,
3347–3364, https://doi.org/10.1175/Jpo-D-20-0294.1, 2021.
Tokinaga, H. and Xie, S. P.: Weakening of the equatorial Atlantic cold
tongue over the past six decades, Nat. Geosci., 4, 222–226,
https://doi.org/10.1038/Ngeo1078, 2011.
Toualy, E., Kouacou, B., and Aman, A.: Influence of Wind and Surface
Buoyancy Flux on the Variability of the Oceanic Mixed Layer Depth in the
Northern Gulf of Guinea Coastal Upwelling, Thalassas, 38, 599–608,
https://doi.org/10.1007/s41208-021-00358-5, 2022.
Tuchen, F. P., Lübbecke, J. F., Schmidtko, S., Hummels, R., and
Böning, C. W.: The Atlantic Subtropical Cells Inferred from
Observations, J. Geophys. Res.-Oceans, 124, 7591–7605,
https://doi.org/10.1029/2019jc015396, 2019.
Tuchen, F. P., Lübbecke, J. F., Brandt, P., and Fu, Y.: Observed
transport variability of the Atlantic Subtropical Cells and their connection
to tropical sea surface temperature variability, J. Geophys. Res.-Oceans, 125,
e2020JC016592, https://doi.org/10.1029/2020JC016592, 2020.
Tuchen, F. P., Brandt, P., Lübbecke, J. F., and Hummels, R.: Transports
and pathways of the tropical AMOC return flow from Argo data and shipboard
velocity measurements, J. Geophys. Res.-Oceans, 127, e2021JC018115,
https://doi.org/10.1029/2021JC018115, 2022a.
Tuchen, F. P., Perez, R. C., Foltz, G. R., Brandt, P., and Lumpkin, R.:
Multidecadal intensification of Atlantic tropical instability waves, Geophys.
Res. Lett., 49, e2022GL101073, https://doi.org/10.1029/2022GL101073, 2022b.
Voituriez, B., Herbland, A., and Le Borgne, R.: L'upwelling eìquatorial de
l'Atlantique Est pendant l'Expérience Météorologique Mondiale (PEMG),
Oceanol. Acta, 5, 301–314, 1982.
Wade, M., Caniaux, G., and du Penhoat, Y.: Variability of the mixed layer
heat budget in the eastern equatorial Atlantic during 2005–2007 as inferred
using Argo floats, J. Geophys. Res.-Oceans, 116, C08006,
https://doi.org/10.1029/2010jc006683, 2011.
Wang, D. W., Gouhier, T. C., Menge, B. A., and Ganguly, A. R.:
Intensification and spatial homogenization of coastal upwelling under
climate change, Nature, 518, 390–394,
https://doi.org/10.1038/nature14235, 2015.
Warner, S. J., Holmes, R. M., Hawkins, E. H. M., Hoecker-Martinez, M. S.,
Savage, A. C., and Moum, J. N.: Buoyant gravity currents released from
Tropical Instability Waves, J. Phys. Oceanogr., 48, 361–382,
https://doi.org/10.1175/Jpo-D-17-0144.1, 2018.
Weingartner, T. J. and Weisberg, R. H.: On the Annual Cycle of Equatorial
Upwelling in the Central Atlantic-Ocean, J. Phys. Oceanogr., 21, 68–82,
https://doi.org/10.1175/1520-0485(1991)021<0068:Otacoe>2.0.Co;2, 1991.
Wiafe, G. and Nyadjro, E. S.: Satellite Observations of Upwelling in the
Gulf of Guinea, IEEE Geosci. Remote S., 12, 1066–1070,
https://doi.org/10.1109/Lgrs.2014.2379474, 2015.
Yang, H., Lohmann, G., Krebs-Kanzow, U., Ionita, M., Shi, X. X., Sidorenko,
D., Gong, X., Chen, X. E., and Gowan, E. J.: Poleward Shift of the Major
Ocean Gyres Detected in a Warming Climate, Geophys. Res. Lett., 47,
e2019GL085868, https://doi.org/10.1029/2019GL085868, 2020.
Yang, Y., Wu, L. X., Cai, W. J., Jia, F., Ng, B., Wang, G. J., and Geng, T.:
Suppressed Atlantic Nino/Nina variability under greenhouse warming, Nat. Clim.
Change, 12, 814–821, https://doi.org/10.1038/s41558-022-01444-z, 2022.
Zeng, Z., Brandt, P., Lamb, K. G., Greatbatch, R. J., Dengler, M., Claus,
M., and Chen, X.: Three-dimensional numerical simulations of internal tides
in the Angolan upwelling region, J. Geophys. Res.-Oceans, 126, e2020JC016460,
https://doi.org/10.1029/2020JC016460, 2021.
Short summary
Tropical upwelling systems are among the most productive ecosystems globally. The tropical Atlantic upwelling undergoes a strong seasonal cycle that is forced by the wind. Local wind-driven upwelling and remote effects, particularly via the propagation of equatorial and coastal trapped waves, lead to an upward and downward movement of the nitracline. Turbulent mixing results in upward supply of nutrients. Here, we review the different physical processes responsible for biological productivity.
Tropical upwelling systems are among the most productive ecosystems globally. The tropical...