Articles | Volume 14, issue 4
Ocean Sci., 14, 827–847, 2018
https://doi.org/10.5194/os-14-827-2018

Special issue: Coastal marine infrastructure in support of monitoring, science,...

Ocean Sci., 14, 827–847, 2018
https://doi.org/10.5194/os-14-827-2018

Research article 24 Aug 2018

Research article | 24 Aug 2018

Impact of HF radar current gap-filling methodologies on the Lagrangian assessment of coastal dynamics

Ismael Hernández-Carrasco et al.

Related authors

A new Lagrangian-based short-term prediction methodology for high-frequency (HF) radar currents
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021,https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Reconstruction of super-resolution ocean pCO2 and air–sea fluxes of CO2 from satellite imagery in the southeastern Atlantic
I. Hernández-Carrasco, J. Sudre, V. Garçon, H. Yahia, C. Garbe, A. Paulmier, B. Dewitte, S. Illig, I. Dadou, M. González-Dávila, and J. M. Santana-Casiano
Biogeosciences, 12, 5229–5245, https://doi.org/10.5194/bg-12-5229-2015,https://doi.org/10.5194/bg-12-5229-2015, 2015
Short summary
Lagrangian transport in a microtidal coastal area: the Bay of Palma, island of Mallorca, Spain
I. Hernández-Carrasco, C. López, A. Orfila, and E. Hernández-García
Nonlin. Processes Geophys., 20, 921–933, https://doi.org/10.5194/npg-20-921-2013,https://doi.org/10.5194/npg-20-921-2013, 2013

Cited articles

Alvera-Azcárate, A., Barth, A., Rixen, M., and Beckers, J. M.: Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature, Ocean Model., 9, 325–346, https://doi.org/10.1016/j.ocemod.2004.08.001, 2005. a, b, c, d, e
Alvera-Azcárate, A., Barth, A., Beckers, J. M., and Weisberg, R. H.: Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields, J. Geophys. Res.-Oceans, 112, C03008, https://doi.org/10.1029/2006JC003660, 2007. a
Alvera-Azcárate, A., Barth, A., Sirjacobs, D., and Beckers, J.-M.: Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF, Ocean Sci., 5, 475–485, https://doi.org/10.5194/os-5-475-2009, 2009. a
Alvera-Azcárate, A., Vanhellemont, Q., Ruddick, K., Barth, A., and Beckers, J.-M.: Analysis of high frequency geostationary ocean colour data using DINEOF, Estuar. Coast. Shelf S., 159, 28–36, https://doi.org/10.1016/j.ecss.2015.03.026, 2015. a
Alvera-Azcárate, A., Barth, A., Parard, G., and Beckers, J.-M.: Analysis of SMOS sea surface salinity data using DINEOF, Remote Sens. Environ., 180, 137–145, https://doi.org/10.1016/j.rse.2016.02.044, 2016. a
Download
Short summary
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed. Its performance is compared with other methods focusing on the propagation of errors introduced in the reconstruction of the velocity fields through the trajectories, Lagrangian flow structures and residence times. We find that even when a large number of measurements in the HFR velocity field is missing, the Lagrangian techniques still give an accurate description of oceanic transport properties.