Articles | Volume 14, issue 4
https://doi.org/10.5194/os-14-827-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-827-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of HF radar current gap-filling methodologies on the Lagrangian assessment of coastal dynamics
Ismael Hernández-Carrasco
CORRESPONDING AUTHOR
ICTS-SOCIB, 07122, Palma, Spain
Lohitzune Solabarrieta
King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
Anna Rubio
AZTI Marine Research, 20110, Pasaia, Spain
Ganix Esnaola
Nuc. Eng. and Fluid Mechanics Department, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia-San Sebastian, Spain
Joint Research Unit BEGIK, Instituto Español de Oceanografía (IEO), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48620, Plentzia, Spain
Emma Reyes
ICTS-SOCIB, 07122, Palma, Spain
Alejandro Orfila
Oceanography and Global Change Department, IMEDEA (CSIC-UIB), 07190, Esporles, Spain
Related authors
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Gotzon Basterretxea, Joan S. Font-Muñoz, Ismael Hernández-Carrasco, and Sergio A. Sañudo-Wilhelmy
Ocean Sci., 19, 973–990, https://doi.org/10.5194/os-19-973-2023, https://doi.org/10.5194/os-19-973-2023, 2023
Short summary
Short summary
We examine global ocean color data and modeling outputs of nutrients using SOM analysis to identify characteristic spatial and temporal patterns of HNLC regions and their association with different climate modes. HNLC regions in polar and subpolar areas have experienced an increase in phytoplankton biomass over the last decades, particularly in the Southern Ocean. Our study finds that chlorophyll variations in HNLC regions respond to major climate variability signals.
Rafael R. Torres, Estefanía Giraldo, Cristian Muñoz, Ana Caicedo, Ismael Hernández-Carrasco, and Alejandro Orfila
Ocean Sci., 19, 685–701, https://doi.org/10.5194/os-19-685-2023, https://doi.org/10.5194/os-19-685-2023, 2023
Short summary
Short summary
A reverse seasonal ocean circulation in the Panama Bight has been assessed using 27 years of absolute dynamical topography. The mean circulation in the eastern tropical Pacific (east of 100° W) is analyzed from the mean dynamic topography (MDT) and a self-organizing-map analysis. Small differences are observed west of ~82° W. In the Panama Bight, MDT shows the cyclonic circulation when the Panama surface wind jet dominates the region. We assess ENSO effects on seasonal circulation.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
I. Hernández-Carrasco, J. Sudre, V. Garçon, H. Yahia, C. Garbe, A. Paulmier, B. Dewitte, S. Illig, I. Dadou, M. González-Dávila, and J. M. Santana-Casiano
Biogeosciences, 12, 5229–5245, https://doi.org/10.5194/bg-12-5229-2015, https://doi.org/10.5194/bg-12-5229-2015, 2015
Short summary
Short summary
We have reconstructed maps of air-sea CO2 fluxes at high resolution (4 km) in the offshore Benguela region using sea surface temperature and ocean colour data and CarbonTracker CO2 fluxes data at low resolution (110 km).
The inferred representation of pCO2 improves the description provided by CarbonTracker, enhancing small-scale variability.
We find that the resolution, as well as the inferred pCO2 data itself, is closer to in situ measurements of pCO2.
I. Hernández-Carrasco, C. López, A. Orfila, and E. Hernández-García
Nonlin. Processes Geophys., 20, 921–933, https://doi.org/10.5194/npg-20-921-2013, https://doi.org/10.5194/npg-20-921-2013, 2013
Pablo Lorente, Anna Rubio, Emma Reyes, Lohitzune Solabarrieta, Silvia Piedracoba, Joaquín Tintoré, and Julien Mader
State Planet, 1-osr7, 8, https://doi.org/10.5194/sp-1-osr7-8-2023, https://doi.org/10.5194/sp-1-osr7-8-2023, 2023
Short summary
Short summary
Upwelling is an important process that impacts water quality and aquaculture production in coastal areas. In this work we present a new methodology to monitor this phenomenon in two different regions by using surface current estimations provided by remote sensing technology called high-frequency radar.
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Gotzon Basterretxea, Joan S. Font-Muñoz, Ismael Hernández-Carrasco, and Sergio A. Sañudo-Wilhelmy
Ocean Sci., 19, 973–990, https://doi.org/10.5194/os-19-973-2023, https://doi.org/10.5194/os-19-973-2023, 2023
Short summary
Short summary
We examine global ocean color data and modeling outputs of nutrients using SOM analysis to identify characteristic spatial and temporal patterns of HNLC regions and their association with different climate modes. HNLC regions in polar and subpolar areas have experienced an increase in phytoplankton biomass over the last decades, particularly in the Southern Ocean. Our study finds that chlorophyll variations in HNLC regions respond to major climate variability signals.
Rafael R. Torres, Estefanía Giraldo, Cristian Muñoz, Ana Caicedo, Ismael Hernández-Carrasco, and Alejandro Orfila
Ocean Sci., 19, 685–701, https://doi.org/10.5194/os-19-685-2023, https://doi.org/10.5194/os-19-685-2023, 2023
Short summary
Short summary
A reverse seasonal ocean circulation in the Panama Bight has been assessed using 27 years of absolute dynamical topography. The mean circulation in the eastern tropical Pacific (east of 100° W) is analyzed from the mean dynamic topography (MDT) and a self-organizing-map analysis. Small differences are observed west of ~82° W. In the Panama Bight, MDT shows the cyclonic circulation when the Panama surface wind jet dominates the region. We assess ENSO effects on seasonal circulation.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Irene Ruiz, Anna Rubio, Ana J. Abascal, and Oihane C. Basurko
Ocean Sci., 18, 1703–1724, https://doi.org/10.5194/os-18-1703-2022, https://doi.org/10.5194/os-18-1703-2022, 2022
Short summary
Short summary
The south-eastern Bay of Biscay is an accumulation zone for marine litter. Yet, the behaviour of the riverine litter fraction reaching the sea is poorly understood. We resolve this by studying litter buoyancy and transport, based on high-frequency radar observations and Lagrangian simulations. We show large seasonal and regional differences between items' behaviour, particularly in summer when highly buoyant litter beaches faster and Gipuzkoa and Pyrénées-Atlantiques regions are mostly affected.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Jaime Hernandez-Lasheras, Baptiste Mourre, Alejandro Orfila, Alex Santana, Emma Reyes, and Joaquín Tintoré
Ocean Sci., 17, 1157–1175, https://doi.org/10.5194/os-17-1157-2021, https://doi.org/10.5194/os-17-1157-2021, 2021
Short summary
Short summary
Correct surface ocean circulation forecasts are highly relevant to search and rescue, oil spills, and ecological processes, among other things. High-frequency radar (HFR) is a remote sensing technology that measures surface currents in coastal areas with high temporal and spatial resolution. We performed a series of experiments in which we use HFR observations from the Ibiza Channel to improve the forecasts provided by a regional ocean model in the western Mediterranean.
Xabier Davila, Anna Rubio, Luis Felipe Artigas, Ingrid Puillat, Ivan Manso-Narvarte, Pascal Lazure, and Ainhoa Caballero
Ocean Sci., 17, 849–870, https://doi.org/10.5194/os-17-849-2021, https://doi.org/10.5194/os-17-849-2021, 2021
Short summary
Short summary
The ocean is a turbulent system, full of meandering currents and fronts of various scales. These processes can influence the distribution of microscopic algae or phytoplankton by upwelling deep, nutrient-rich waters to the sunlit surface or by actively gathering and accumulating them. Our results suggest that, at the surface, salinity is the main conditioning factor for phytoplankton distribution. However, at the subsurface, oceanic currents influence phytoplankton distribution the most.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
Ivan Manso-Narvarte, Erick Fredj, Gabriel Jordà, Maristella Berta, Annalisa Griffa, Ainhoa Caballero, and Anna Rubio
Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, https://doi.org/10.5194/os-16-575-2020, 2020
Short summary
Short summary
Our main aim is to study the feasibility of reconstructing oceanic currents by extending the data obtained from coastal multiplatform observatories to nearby areas in 3D in the SE Bay of Biscay. To that end, two different data-reconstruction methods with different approaches were tested, providing satisfactory results. This work is a first step towards the real applicability of these methods in this study area, and it shows the capabilities of the methods for a wide range of applications.
Ivan Manso-Narvarte, Ainhoa Caballero, Anna Rubio, Claire Dufau, and Florence Birol
Ocean Sci., 14, 1265–1281, https://doi.org/10.5194/os-14-1265-2018, https://doi.org/10.5194/os-14-1265-2018, 2018
Short summary
Short summary
Our main aim is to compare two different measuring systems of the surface ocean currents: land-based, high-frequency radar and satellite altimetry. Results show that the surface currents detected by both systems agree up to a 70 %, mostly in areas of persistent currents. This work is a first step in the combination of both technologies for an improved monitoring of the coastal surface ocean dynamics.
I. Hernández-Carrasco, J. Sudre, V. Garçon, H. Yahia, C. Garbe, A. Paulmier, B. Dewitte, S. Illig, I. Dadou, M. González-Dávila, and J. M. Santana-Casiano
Biogeosciences, 12, 5229–5245, https://doi.org/10.5194/bg-12-5229-2015, https://doi.org/10.5194/bg-12-5229-2015, 2015
Short summary
Short summary
We have reconstructed maps of air-sea CO2 fluxes at high resolution (4 km) in the offshore Benguela region using sea surface temperature and ocean colour data and CarbonTracker CO2 fluxes data at low resolution (110 km).
The inferred representation of pCO2 improves the description provided by CarbonTracker, enhancing small-scale variability.
We find that the resolution, as well as the inferred pCO2 data itself, is closer to in situ measurements of pCO2.
I. Hernández-Carrasco, C. López, A. Orfila, and E. Hernández-García
Nonlin. Processes Geophys., 20, 921–933, https://doi.org/10.5194/npg-20-921-2013, https://doi.org/10.5194/npg-20-921-2013, 2013
Cited articles
Alvera-Azcárate, A., Barth, A., Beckers, J. M., and Weisberg, R. H.:
Multivariate reconstruction of missing data in sea surface temperature,
chlorophyll, and wind satellite fields, J. Geophys.
Res.-Oceans, 112, C03008, https://doi.org/10.1029/2006JC003660, 2007. a
Alvera-Azcárate, A., Barth, A., Sirjacobs, D., and Beckers, J.-M.:
Enhancing temporal correlations in EOF expansions for the reconstruction of
missing data using DINEOF, Ocean Sci., 5, 475–485,
https://doi.org/10.5194/os-5-475-2009, 2009. a
Alvera-Azcárate, A., Vanhellemont, Q., Ruddick, K., Barth, A., and Beckers,
J.-M.: Analysis of high frequency geostationary ocean colour data using
DINEOF, Estuar. Coast. Shelf S., 159, 28–36,
https://doi.org/10.1016/j.ecss.2015.03.026, 2015. a
Alvera-Azcárate, A., Barth, A., Parard, G., and Beckers, J.-M.: Analysis of
SMOS sea surface salinity data using DINEOF, Remote Sens.
Environ., 180, 137–145, https://doi.org/10.1016/j.rse.2016.02.044, 2016. a
Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., and Vulpiani, A.:
Predictability in the large: an extension of the Lyapunov exponent, J.
Phys. A, 30, 1–26, https://doi.org/10.1088/0305-4470/30/1/003, 1997. a
Barrick, D. E.: Geometrical Dilution of Statistical Accuracy (GDOSA)
in Multi-Static HF Radar Networks, Codar Ocean Sensors, available
at:
http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/Informative/GDOSA_Definition.pdf
(last access: 20 August 2018), 2002. a
Basterretxea, G., Font-Muñoz, J. S., Salgado-Hernanz, P. M., Arrieta, J.,
and
Hernández-Carrasco, I.: Patterns of chlorophyll interannual variability
in Mediterranean biogeographical regions, Remote Sens. Environ.,
215, 7–17, https://doi.org/10.1016/j.rse.2018.05.027, 2018. a
Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S.,
and Regnier, P. A. G.: The changing carbon cycle of the coastal ocean,
Nature, 514, 61–70, https://doi.org/10.1038/nature12857, 2013. a
Beckers, J. M. and Rixen, M.: EOF calculations and data filling from
incomplete oceanographic datasets, J. Atmos. Ocean.
Tech., 20, 1839–1856, https://doi.org/10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2, 2003. a, b
Beckers, J.-M., Barth, A., Tomazic, I., and Alvera-Azcárate, A.: A method
to generate fully multi-scale optimal interpolation by combining efficient
single process analyses, illustrated by a DINEOF analysis spiced with a local
optimal interpolation, Ocean Sci., 10, 845–862,
https://doi.org/10.5194/os-10-845-2014, 2014. a
Bellomo, L., Griffa, A., Cosoli, S., Falco, P., Gerin, R., Iermano, I.,
Kalampokis, A., Kokkini, Z., Lana, A., Magaldi, M., Mamoutos, I., Mantovani,
C., Marmain, J., Potiris, E., Sayol, J., Barbin, Y., Berta, M., Borghini, M.,
Bussani, A., Corgnati, L., Dagneaux, Q., Gaggelli, J., Guterman, P.,
Mallarino, D., Mazzoldi, A., Molcard, A., Orfila, A., Poulain, P.-M.,
Quentin, C., Tintoré, J., Uttieri, M., Vetrano, A., Zambianchi, E., and
Zervakis, V.: Toward an integrated HF radar network in the Mediterranean
Sea to improve search and rescue and oil spill response: the TOSCA
project experience, J. Oper. Oceanogr., 8, 95–107,
https://doi.org/10.1080/1755876X.2015.1087184, 2015. a, b
Bettencourt, J., López, C., Hernández-García, E., Montes, I.,
Sudre, J., Dewitte, B., Paulmier, A., and Garçon, V.: Boundaries of the
Peruvian oxygen minimum zone shaped by coherent mesoscale dynamics, Nat.
Geosci., 8, 937–940, https://doi.org/10.1038/ngeo2570, 2015. a
Bjorkstedt, E. and Roughgarden, J.: Larval Transport and Coastal Upwelling:
An Application of HF Radar in Ecological Research, Oceanography, 10, 64–67,
1997. a
Boffetta, G., Celani, A., Cencini, M., Lacorata, G., and Vulpiani, A.:
Non-asymptotic properties of transport and mixing, Chaos, 10, 50–60,
https://doi.org/10.1063/1.166475, 2000. a, b
Buffoni, G., Cappelletti, A., and Cupini, E.: Advection-diffusion processes
and residence times in semi-enclosed marine basins, Int. J. Numer. Meth. Fl.,
22, 1–23, 1996. a
Callies, J. and Ferrari, R.: Interpreting Energy and Tracer Spectra of
Upper-Ocean Turbulence in the Submesoscale Range (1–200 km),
J. Phys. Oceanogr., 43, 2456–2474,
https://doi.org/10.1175/JPO-D-13-063.1, 2013. a
Capet, X., McWilliams, J. C., Molemaker, M. J., and Shchepetkin, A. F.:
Mesoscale to Submesoscale Transition in the California Current
System. Part I: Flow Structure, Eddy Flux, and Observational
Tests, J. Phys. Oceanogr., 38, 29–43,
https://doi.org/10.1175/2007JPO3671.1, 2008. a
Cavazos, T., Comrie, A. C., and Liverman, D. M.: Intraseasonal variability
associated with wet monsoons in southeast Arizona, J. Climate, 15,
2477–2490, 2002. a
Chapman, R. D., Shay, L. K., Graber, H. C., Edson, J. B., Karachintsev, A.,
Trump, C. L., and Ross, D. B.: On the accuracy of HF radar surface current
measurements: Intercomparisons with ship-based sensors, J.
Geophys. Res.-Oceans, 102, 18737–18748, https://doi.org/10.1029/97JC00049,
1997. a
Charantonis, A., F., B., and Thiria, S.: Retrieving the evolution of vertical
profiles of chlorophyll-a from satellite observations, by using hidden
Markov models and self-organizing maps, Remote Sens. Environ, 163,
229–239, 2015. a
Choi, J., Bracco, A., Barkan, R., Shchepetkin, A., McWilliams, J., and
Molemaker, J.: Submesoscale Dynamics in the Northern Gulf of Mexico.
Part III: Lagrangian Implications, J. Phys. Oceanogr.,
47, 2361–2376, https://doi.org/10.1175/JPO-D-17-0036.1, 2017. a
Chon, T.-S.: Self-Organizing Maps applied to ecological sciences, Ecol.
Inform., 6, 50–61, https://doi.org/10.1016/j.ecoinf.2010.11.002, 2011. a
Cianelli, D., D'Alelio, D., Uttieri, M., Sarno, D., Zingone, A., Zambianchi,
E., and d'Alcalá, M. R.: Disentangling physical and biological drivers
of phytoplankton dynamics in a coastal system, Sci. Rep., 7,
15868, https://doi.org/10.1038/s41598-017-15880-x, 2017. a
Cloern, J. E., Foster, S. Q., and Kleckner, A. E.: Phytoplankton primary
production in the world's estuarine-coastal ecosystems, Biogeosciences, 11,
2477–2501, https://doi.org/10.5194/bg-11-2477-2014, 2014. a
Corrado, R., Lacorata, G., Paratella, L., Santoleri, R., and Zambianchi, E.:
General characteristics of relative dispersion in the ocean, Sci. Rep., 7,
46291, https://doi.org/10.1038/srep46291, 2017. a, b
Esnaola, G., Sáenz, J., Zorita, E., Lazure, P., Ganzedo, U., Fontán,
A., Ibarra-Berastegi, G., and Ezcurra, A.: Coupled air-sea interaction
patterns and surface heat-flux feedback in the Bay of Biscay, J.
Geophys. Res.-Oceans, 117, C06030, https://doi.org/10.1029/2011JC007692, 2012. a
Fredj, E., Roarty, H., Kohut, J., Smith, M., and Glenn, S.: Gap Filling of
the Coastal Ocean Surface Currents from HFR Data: Application
to the Mid-Atlantic Bight HFR Network, J. Atmos.
Ocean. Tech., 33, 1097–1111, https://doi.org/10.1175/JTECH-D-15-0056.1,
2016. a, b, c
Ganzedo, U., Alvera-Azcárate, A., Esnaola, G., Ezcurra, A., and
Sáenz,
J.: Reconstruction of sea surface temperature by means of DINEOF: a case
study during the fishing season in the Bay of Biscay, Int.
J. Remote Sens., 32, 933–950, https://doi.org/10.1080/01431160903491420,
2011. a
Griffa, A., Haza, A., Özgökmen, T., Molcard, A., Taillandier, V.,
Schroeder, K., Chang, Y., and Poulain, P.-M.: Investigating transport
pathways in the ocean, Deep-Sea Res. Pt,.II, 85, 81–95, https://doi.org/10.1016/j.dsr2.2012.07.031, 2013. a
Guanche, Y., Mínguez, R., and Méndez, F. J.: Autoregressive logistic
regression applied to atmospheric circulation patterns, Clim. Dynam., 42,
537–552, https://doi.org/10.1007/s00382-013-1690-3, 2014. a
Haidvogel, D., Blanton, J., Kindle, J., and Lynch, D.: Coastal Ocean
Modeling: Processes and Real-Time Systems, Oceanography, 13,
35–46, 2000. a
Hales, B., Strutton, P. G., Saraceno, M., Letelier, R., Takahashi, T., Feely,
R. A., Sabine, C. L., and Chavez, F.: Satellite-based prediction of
pCO2 in coastal waters of the eastern North Pacific, Prog.
Oceanogr., 103, 1–15, 2012. a
Haller, G.: Lagrangian Coherent Structures, Ann. Rev. Fluid Mech.,
47, 137–162, https://doi.org/10.1146/annurev-fluid-010313-141322, 2015. a
Haza, A. C., Poje, A. C., Özgökmen, T. M., and Martin, P.: Relative
dispersion from a high-resolution coastal model of the Adriatic Sea,
Ocean Model., 22, 48–65, https://doi.org/10.1016/j.ocemod.2008.01.006, 2008. a
Haza, A. C., Özgökmen, T. M., Griffa, A., Molcard, A., Poulain, P.-M.,
and
Peggion, G.: Transport properties in small-scale coastal flows: relative
dispersion from VHF radar measurements in the Gulf of La Spezia,
Ocean Dynam., 60, 861–882, https://doi.org/10.1007/s10236-010-0301-7,
2010. a, b
Hernández-Carrasco, I. and Orfila, A.: The role of an intense front on the
connectivity of the western Mediterranean sea: the Cartagena-Tenes front,
J. Geophys. Res.-Oceans, 123, 4398–4422, https://doi.org/10.1029/2017JC013613, 2018. a, b
Hernández-Carrasco, I., López, C., Hernández-García, E., and Turiel,
A.: How reliable are finite-size Lyapunov exponents for the assessment of
ocean dynamics?, Ocean Model., 36, 208–218,
https://doi.org/10.1016/j.ocemod.2010.12.006, 2011. a, b, c
Hernández-Carrasco, I., López, C., Hernández-García, E., and
Turiel, A.: Seasonal and regional characterization of horizontal stirring in
the global ocean, J. Geophys. Res.-Oceans, 117, C10007,
https://doi.org/10.1029/2012JC008222, 2012. a
Hernández-Carrasco, I., López, C., Orfila, A., and
Hernández-García, E.: Lagrangian transport in a microtidal coastal
area: the Bay of Palma, island of Mallorca, Spain, Nonlin. Processes
Geophys., 20, 921–933, https://doi.org/10.5194/npg-20-921-2013, 2013. a
Hernández-Carrasco, I., Rossi, V., Hernández-García, E., Garçon,
V., and López, C.: The reduction of plankton biomass induced by mesoscale
stirring: A modeling study in the Benguela upwelling, Deep-Sea Res.
Pt. I, 83, 65–80,
https://doi.org/10.1016/j.dsr.2013.09.003, 2014. a
Joseph, B. and Legras, B.: Relation between Kinematic Boundaries,
Stirring, and Barriers for the Antartic Polar Vortex, J. Atmos. Sci.,
59, 1198–1212, https://doi.org/10.1175/1520-0469(2002)059<1198:RBKBSA>2.0.CO;2, 2002. a
Kalampokis, A., Uttieri, M., Poulain, P. M., and Zambianchi, E.: Validation
of
HF Radar-Derived Currents in the Gulf of Naples With Lagrangian Data, IEEE
Geosci. Remote S., 13, 1452–1456,
https://doi.org/10.1109/LGRS.2016.2591258, 2016. a
Klein, P., Hua, B., Lapeyre, G., Capet, X., Gentil, S. L., and Sasaki, H.:
Upper ocean turbulence from a high 3-D resolution simulations, J.
Phys. Oceanogr., 38, 1748–1763, 2008. a
Kohonen, T.: Self-Organized Formation of Topologically Correct
Feature Maps, Biol. Cybern., 43, 59–69, 1982. a
Kohonen, T.: Self-Organizing Maps, 2nd edn., Springer, Heidelberg,
Germany, 1997. a
Lacorata, G., Aurell, E., and Vulpiani, A.: Drifter dispersion in the
Adriatic Sea: Lagrangian data and chaotic model, Ann. Geophys., 19, 121–129,
https://doi.org/10.5194/angeo-19-121-2001, 2001. a, b
Lana, A., Marmain, J., Fernández, V., Tintoré, J., and Orfila, A.:
Wind
influence on surface current variability in the Ibiza Channel from HF
Radar, Ocean Dynam., 66, 483–497, https://doi.org/10.1007/s10236-016-0929-z, 2016. a
Lekien, F., Coulliette, C., Mariano, A. J., Ryan, E. H., Shay, L. K., Haller,
G., and Marsden, J.: Pollution release tied to invariant manifolds: A Case
study for the coast of Florida, Physica D, 210, 1–20,
https://doi.org/10.1016/j.physd.2005.06.023, 2005. a, b
Liu, Y. and Weisberg, R. H.: Patterns of ocean current variability on the
West Florida Shelf using the self-organizing map, J.
Geophys. Res.-Oceans, 110, C06003, https://doi.org/10.1029/2004JC002786, 2005. a
Liu, Y., Weisberg, R. H., and Mooers, C. N. K.: Performance evaluation of the
self-organizing map for feature extraction, J. Geophys. Res.-Oceans, 111, C05018, https://doi.org/10.1029/2005JC003117, 2006. a, b
Liu, Y., Weisberg, R. H., Vignudelli, S., and Mitchum, G. T.: Patterns of the
loop current system and regions of sea surface height variability in the
eastern Gulf of Mexico revealed by the self-organizing maps, J. Geophys. Res.-Oceans, 121, 2347–2366, https://doi.org/10.1002/2015JC011493,
2016. a, b
Lumpkin, R. and Elipot, S.: Surface drifter pair spreading in the North
Atlantic, J. Geophys. Res.-Oceans, 115, C12017,
https://doi.org/10.1029/2010JC006338, 2010. a
Molcard, A., Poulain, P., Forget, P., Griffa, A., Barbin, Y., Gaggelli, J.,
Maistre, J. D., and Rixen, M.: Comparison between VHF radar observations
and data from drifter clusters in the Gulf of La Spezia
(Mediterranean Sea), J. Marine Syst., 78, S79–S89,
https://doi.org/10.1016/j.jmarsys.2009.01.012, 2009. a
Nikkilä, J., Törönen, P., Kaski, S., Castrén, J. V. E., and
Wong,
G.: Analysis and visualization of gene expression data using self-organizing
maps, Neural Networks, 15, 953–966, 2002. a
Paduan, J. D. and Washburn, L.: High-frequency radar observations of ocean
surface currents, Ann. Rev. Mar. Sci., 5, 115–136,
https://doi.org/10.1146/annurev-marine-121211-172315, 2013. a
Pauly, D., Alder, J., Booth, S., Cheung, W., Christensen, V., Close, C.,
Sumaila, U., Swartz, W., Tavakolie, A., Watson, R., Wood, L., and Zeller, D.:
Fisheries in Large Marine Ecosystems: Descriptions and Diagnoses,
in: The UNEP Large Marine Ecosystem Report: a Perspective on
Changing Conditions in LMEs of the World's Regional Seas. UNEP
Regional Seas Reports and Studies No. 182, edited by: Sherman, K., and Hempel, G., Nairobi, Kenya, 23–40,
2008. a
Poje, A. C., Özgökmen, T. M., Lipphardt, B. L., Haus, B. K., Ryan, E. H.,
Haza, A. C., Jacobs, G. A., Reniers, A. J. H. M., Olascoaga, M. J., Novelli,
G., Griffa, A., Beron-Vera, F. J., Chen, S. S., Coelho, E., Hogan, P. J.,
Kirwan, A. D., Huntley, H. S., and Mariano, A. J.: Submesoscale dispersion in
the vicinity of the Deepwater Horizon spill, P. Natl.
Acad. Sci. USA, 111, 12693–12698, https://doi.org/10.1073/pnas.1402452111,
2014. a
QARTOD: Manual for Real-Time Quality Control of In-Situ Surface
Wave Data: a Guide to Quality Control and Quality Assurance of
In-Situ Surface Wave Observations Version 2.0., U.S. Department
of Commerce, National Oceanic and Atmospheric Administration, National Ocean
Service, Integrated Ocean Observing System, Silver Spring, MD, USA,
2015. a
Richardson, A. J., Risien, C., and Shillington, F. A.: Using self-organizing
maps to identify patterns in satellite imagery, Prog. Oceanogr., 59, 223–239,
2003. a
Rubio, A., Reverdin, G., Fontán, A., González, M., and Mader, J.: Mapping
near-inertial variability in the SE Bay of Biscay from HF radar data
and two offshore moored buoys, Geophys. Res. Lett., 38, L19607,
https://doi.org/10.1029/2011GL048783, 2011. a
Rubio, A., Mader, J., Corgnati, L., Mantovani, C., Griffa, A., Novellino, A.,
Quentin, C., Wyatt, L., Schulz-Stellenfleth, J., Horstmann, J., Lorente, P.,
Zambianchi, E., Hartnett, M., Fernandes, C., Zervakis, V., Gorringe, P.,
Melet, A., and Puillat, I.: HF Radar Activity in European Coastal
Seas: Next Steps toward a Pan-European HF Radar Network,
Frontiers in Marine Science, 4, 8, https://doi.org/10.3389/fmars.2017.00008, 2017. a
Rubio, A., Caballero, A., Orfila, A., Hernández-Carrasco, I., Ferrer, L.,
González, M., Solabarrieta, L., and Mader, J.: Eddy-induced cross-shelf
export of high Chl-a coastal waters in the SE Bay of Biscay, Remote
Sens. Environ., 205, 290–304,
https://doi.org/10.1016/j.rse.2017.10.037, 2018. a, b
Schmidt, R. O.: Multiple emitter location and signal parameter estimation,
IEEE T. Antenn. Propag., 34, 276–280, 1986. a
Schroeder, K., Haza, A., Griffa, A., Özgökmen, T., Poulain, P., Gerin,
R.,
Peggion, G., and Rixen, M.: Relative dispersion in the Liguro-Provençal
basin: From sub-mesoscale to mesoscale, Deep-Sea Res. Pt. I, 58, 209–228,
https://doi.org/10.1016/j.dsr.2010.11.004,
2011. a
Solabarrieta, L., Rubio, A., Cárdenas, M., Castanedo, S., Esnaola, G.,
Méndez, F. J., Medina, R., and Ferrer, L.: Probabilistic relationships
between wind and surface water circulation patterns in the SE Bay of
Biscay, Ocean Dynam., 65, 1289–1303, https://doi.org/10.1007/s10236-015-0871-5,
2015. a
Solabarrieta, L., Frolov, S., Cook, M., Paduan, J., Rubio, A., González,
M.,
Mader, J., and Charria, G.: Skill Assessment of HF Radar-Derived
Products for Lagrangian Simulations in the Bay of Biscay, J. Atmos. Ocean. Tech., 33, 2585–2597,
https://doi.org/10.1175/JTECH-D-16-0045.1, 2016. a
Stewart, R. H. and Joy, J. W.: HF radio measurements of surface currents,
Deep Sea Research and Oceanographic Abstracts, 21, 1039–1049,
https://doi.org/10.1016/0011-7471(74)90066-7, 1974. a
Tew Kai, E., Rossi, V., Sudre, J., Weimerskirch, H., López, C.,
Hernández-García, E., Marsac, F., and Garçon, V.: Top marine
predators track Lagrangian coherent structures, P. Natl. Acad. Sci.
USA, 106, 8245–8250, https://doi.org/10.1073/pnas.0811034106, 2009.
a
Ullman, D. S., O'Donnell, J., Kohut, J., Fake, T., and Allen, A.: Trajectory
prediction using HF radar surface currents: Monte Carlo simulations of
prediction uncertainties, J. Geophys. Res.-Oceans, 111, C12005,
https://doi.org/10.1029/2006JC003715, 2006. a
Vatanen, T., Osmala, M., Raiko, T., Lagus, K., Sysi-Aho, M., Oresic, M.,
Honkela, T., and Lähdesmäki, H.: Self-organization and missing values in
SOM and GTM, Neurocomputing, 147, 60–70,
https://doi.org/10.1016/j.neucom.2014.02.061, 2015. a
Vesanto, J., Himberg, J., Alhoniemi, E., and Parhankangas, J.: SOM toolbox
for Matlab 5, report, Helsinki Univ. of Technol., Helsinki, Finland, 2000. a
Volpe, G., Nardelli, B. B., Cipollini, P., Santoleri, R., and Robinson,
I. S.:
Seasonal to interannual phytoplankton response to physical processes in the
Mediterranean Sea from satellite observations, Remote Sens. Environ.,
117, 223–235, https://doi.org/10.1016/j.rse.2011.09.020, 2012. a
Yaremchuk, M. and Sentchev, A.: Mapping radar-derived sea surface currents
with
a variational method, Cont. Shelf Res., 29, 1711–1722,
https://doi.org/10.1016/j.csr.2009.05.016, 2009. a, b, c
Short summary
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed. Its performance is compared with other methods focusing on the propagation of errors introduced in the reconstruction of the velocity fields through the trajectories, Lagrangian flow structures and residence times. We find that even when a large number of measurements in the HFR velocity field is missing, the Lagrangian techniques still give an accurate description of oceanic transport properties.
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed....