Articles | Volume 21, issue 1
https://doi.org/10.5194/os-21-261-2025
https://doi.org/10.5194/os-21-261-2025
Research article
 | 
29 Jan 2025
Research article |  | 29 Jan 2025

Dynamics of salt intrusion in complex estuarine networks: an idealised model applied to the Rhine–Meuse Delta

Bouke Biemond, Wouter M. Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra

Related authors

Physical characterization of the boundary separating safe and unsafe AMOC overshoot behavior
Aurora Faure Ragani and Henk A. Dijkstra
Earth Syst. Dynam., 16, 1287–1301, https://doi.org/10.5194/esd-16-1287-2025,https://doi.org/10.5194/esd-16-1287-2025, 2025
Short summary
Physics of AMOC multistable regime shifts due to freshwater biases in an EMIC
Amber A. Boot and Henk A. Dijkstra
Earth Syst. Dynam., 16, 1221–1235, https://doi.org/10.5194/esd-16-1221-2025,https://doi.org/10.5194/esd-16-1221-2025, 2025
Short summary
Explaining the high skill of reservoir computing methods in El Niño prediction
Francesco Guardamagna, Claudia Wieners, and Henk A. Dijkstra
Nonlin. Processes Geophys., 32, 201–224, https://doi.org/10.5194/npg-32-201-2025,https://doi.org/10.5194/npg-32-201-2025, 2025
Short summary
Causal Mechanisms of Subpolar Gyre Variability in CMIP6 Models
Swinda K. J. Falkena, Henk A. Dijkstra, and Anna S. von der Heydt
EGUsphere, https://doi.org/10.48550/arXiv.2408.16541,https://doi.org/10.48550/arXiv.2408.16541, 2025
Short summary
An idealized model for the spatial structure of the eddy-driven Ferrel cell in mid-latitudes
Woosok Moon, Seung Pyo Lee, Elian Vanderborght, Georgy Manucharyan, and Henk Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-1004,https://doi.org/10.5194/egusphere-2025-1004, 2025
Preprint archived
Short summary

Cited articles

Aristizábal, M. F. and Chant, R. J.: An observational study of salt fluxes in Delaware Bay, J. Geophys. Res.-Ocean., 120, 2751–2768, https://doi.org/10.1002/2014JC010680, 2015. a
Banas, N. S., Hickey, B. M., MacCready, P., and Newton, J. A.: Dynamics of Willapa Bay, Washington: A highly unsteady, partially mixed estuary, J. Phys. Oceanogr., 34, 2413–2427, https://doi.org/10.1175/JPO2637.1, 2004. a, b
Bellafiore, D., Ferrarin, C., Maicu, F., Manfè, G., Lorenzetti, G., Umgiesser, G., Zaggia, L., and Levinson, A. V.: Saltwater intrusion in a Mediterranean delta under a changing climate, J. Geophys. Res.-Ocean., 126, e2020JC016437, https://doi.org/10.1029/2020JC016437, 2021. a, b, c
Biemond, B.: Software for “Dynamics of salt intrusion in complex estuarine networks; an idealised model applied to the Rhine-Meuse Delta” (Version 4.3.6), Zenodo [code], https://doi.org/10.5281/zenodo.12793378, 2024. a, b
Biemond, B., de Swart, H. E., Dijkstra, H. A., and Díez-Minguito, M.: Estuarine salinity response to freshwater pulses, J. Geophys. Res.-Ocean., 127, e2022JC018669, https://doi.org/10.1029/2022JC018669, 2022. a
Download
Short summary
We study salinity in estuaries consisting of a network of channels. To this end, we develop a model that computes the flow and salinity in such systems. We use the model to quantify the mechanisms by which salt is transported into estuarine networks, the response to changes in river discharge, and the impact of depth changes. Results show that when changing the depth of channels, the effects on salt intrusion into other channels in the network can be larger than the effect on the channel itself.
Share