Articles | Volume 21, issue 1
https://doi.org/10.5194/os-21-261-2025
https://doi.org/10.5194/os-21-261-2025
Research article
 | 
29 Jan 2025
Research article |  | 29 Jan 2025

Dynamics of salt intrusion in complex estuarine networks: an idealised model applied to the Rhine–Meuse Delta

Bouke Biemond, Wouter M. Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra

Related authors

Physics of AMOC multistable regime shifts due to freshwater biases in an EMIC
Amber A. Boot and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-758,https://doi.org/10.5194/egusphere-2025-758, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
An idealized model for the spatial structure of the eddy-driven Ferrel cell in mid-latitudes
Woosok Moon, Seung Pyo Lee, Elian Vanderborght, Georgy Manucharyan, and Henk Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-1004,https://doi.org/10.5194/egusphere-2025-1004, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
A Saddle-Node Bifurcation is Causing the AMOC Collapse in the Community Earth System Model
René M. van Westen, Elian Vanderborght, and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-14,https://doi.org/10.5194/egusphere-2025-14, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Physical characterization of the boundary separating safe and unsafe AMOC overshoot behaviour
Aurora Faure Ragani and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-45,https://doi.org/10.5194/egusphere-2025-45, 2025
Short summary
Observation-based temperature and freshwater noise over the Atlantic Ocean
Amber A. Boot and Henk A. Dijkstra
Earth Syst. Dynam., 16, 115–150, https://doi.org/10.5194/esd-16-115-2025,https://doi.org/10.5194/esd-16-115-2025, 2025
Short summary

Related subject area

Approach: Numerical Models | Properties and processes: Coastal and near-shore processes
River discharge impacts coastal southeastern tropical Atlantic sea surface temperature and circulation: a model-based analysis
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
Ocean Sci., 21, 661–678, https://doi.org/10.5194/os-21-661-2025,https://doi.org/10.5194/os-21-661-2025, 2025
Short summary
The influence of a submarine canyon on the wind-driven downwelling circulation over the continental shelf
Pedro A. Figueroa, Gonzalo S. Saldías, and Susan E. Allen
Ocean Sci., 21, 643–659, https://doi.org/10.5194/os-21-643-2025,https://doi.org/10.5194/os-21-643-2025, 2025
Short summary
Alongshore sediment transport analysis for a semi-enclosed basin: a case study of the Gulf of Riga, the Baltic Sea
Tarmo Soomere, Mikołaj Zbigniew Jankowski, Maris Eelsalu, Kevin Ellis Parnell, and Maija Viška
Ocean Sci., 21, 619–641, https://doi.org/10.5194/os-21-619-2025,https://doi.org/10.5194/os-21-619-2025, 2025
Short summary
Anthropogenic pressures driving the salinity intrusion in the Guadalquivir estuary: insights from 1D numerical simulations
Sara Sirviente, Juan J. Gomiz-Pascual, Marina Bolado-Penagos, Sabine Sauvage, José M. Sánchez-Pérez, and Miguel Bruno
Ocean Sci., 21, 515–535, https://doi.org/10.5194/os-21-515-2025,https://doi.org/10.5194/os-21-515-2025, 2025
Short summary
Application of wave–current coupled sediment transport models with variable grain properties for coastal morphodynamics: a case study of the Changhua River, Hainan
Yuxi Wu, Enjin Zhao, Xiwen Li, and Shiyou Zhang
Ocean Sci., 21, 473–495, https://doi.org/10.5194/os-21-473-2025,https://doi.org/10.5194/os-21-473-2025, 2025
Short summary

Cited articles

Aristizábal, M. F. and Chant, R. J.: An observational study of salt fluxes in Delaware Bay, J. Geophys. Res.-Ocean., 120, 2751–2768, https://doi.org/10.1002/2014JC010680, 2015. a
Banas, N. S., Hickey, B. M., MacCready, P., and Newton, J. A.: Dynamics of Willapa Bay, Washington: A highly unsteady, partially mixed estuary, J. Phys. Oceanogr., 34, 2413–2427, https://doi.org/10.1175/JPO2637.1, 2004. a, b
Bellafiore, D., Ferrarin, C., Maicu, F., Manfè, G., Lorenzetti, G., Umgiesser, G., Zaggia, L., and Levinson, A. V.: Saltwater intrusion in a Mediterranean delta under a changing climate, J. Geophys. Res.-Ocean., 126, e2020JC016437, https://doi.org/10.1029/2020JC016437, 2021. a, b, c
Biemond, B.: Software for “Dynamics of salt intrusion in complex estuarine networks; an idealised model applied to the Rhine-Meuse Delta” (Version 4.3.6), Zenodo [code], https://doi.org/10.5281/zenodo.12793378, 2024. a, b
Biemond, B., de Swart, H. E., Dijkstra, H. A., and Díez-Minguito, M.: Estuarine salinity response to freshwater pulses, J. Geophys. Res.-Ocean., 127, e2022JC018669, https://doi.org/10.1029/2022JC018669, 2022. a
Download
Short summary
We study salinity in estuaries consisting of a network of channels. To this end, we develop a model that computes the flow and salinity in such systems. We use the model to quantify the mechanisms by which salt is transported into estuarine networks, the response to changes in river discharge, and the impact of depth changes. Results show that when changing the depth of channels, the effects on salt intrusion into other channels in the network can be larger than the effect on the channel itself.
Share