Articles | Volume 20, issue 5
https://doi.org/10.5194/os-20-1281-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-1281-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The formation and ventilation of an oxygen minimum zone in a simple model for latitudinally alternating zonal jets
Eike E. Köhn
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
Richard J. Greatbatch
CORRESPONDING AUTHOR
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Faculty of Mathematics and Natural Sciences, University of Kiel, Kiel, Germany
Peter Brandt
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Faculty of Mathematics and Natural Sciences, University of Kiel, Kiel, Germany
Martin Claus
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Related authors
Eike E. Köhn, Sören Thomsen, Damian L. Arévalo-Martínez, and Torsten Kanzow
Ocean Sci., 13, 1017–1033, https://doi.org/10.5194/os-13-1017-2017, https://doi.org/10.5194/os-13-1017-2017, 2017
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302, https://doi.org/10.5194/egusphere-2024-3302, 2024
Short summary
Short summary
Key parameters representing the gravity flux in global models are the sinking speed and the vertical attenuation of the exported material. We calculate for the first time, these parameters in situ for 6 intermittent blooms followed by export events using high-resolution (3 days) time series of 0–1000 m depth profiles from imaging sensor mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, density being an important property.
Joelle Habib, Lars Stemmann, Alexandre Accardo, Alberto Baudena, Franz Philip Tuchen, Peter Brandt, and Rainer Kiko
EGUsphere, https://doi.org/10.5194/egusphere-2024-3365, https://doi.org/10.5194/egusphere-2024-3365, 2024
Short summary
Short summary
This study investigates how carbon moves from the ocean surface to the depths in the equatorial Atlantic, contributing to long-term carbon storage. Using an Argo float equipped with a camera, we captured two periods with major carbon export events. By identifying particle types and their sinking behaviors, we found that smaller, compact particles are key drivers of carbon transport. Our findings underscore the value of using imaging tools on autonomous platforms in tracking carbon sequestration.
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3320, https://doi.org/10.5194/egusphere-2024-3320, 2024
Short summary
Short summary
The West African coastal region sustains highly productive fisheries and marine ecosystems influenced by sea surface temperature. We use oceanic models to show that the freshwater input from land to ocean strengthens a surface northward (southward) coastal current north (south) of the Congo river mouth, promoting a transfer of cooler (warmer) waters to north (south) of the Congo discharge location. We highlight the significant impact of river discharge on ocean temperatures and circulation.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Swantje Bastin, Martin Claus, Richard J. Greatbatch, and Peter Brandt
Ocean Sci., 19, 923–939, https://doi.org/10.5194/os-19-923-2023, https://doi.org/10.5194/os-19-923-2023, 2023
Short summary
Short summary
Equatorial deep jets are ocean currents that flow along the Equator in the deep oceans. They are relevant for oxygen transport and tropical surface climate, but their dynamics are not yet entirely understood. We investigate different factors leading to the jets being broader than theory predicts. Mainly using an ocean model, but corroborating the results with shipboard observations, we show that loss of momentum is the main factor for the broadening but that meandering also contributes.
Peter Brandt, Gaël Alory, Founi Mesmin Awo, Marcus Dengler, Sandrine Djakouré, Rodrigue Anicet Imbol Koungue, Julien Jouanno, Mareike Körner, Marisa Roch, and Mathieu Rouault
Ocean Sci., 19, 581–601, https://doi.org/10.5194/os-19-581-2023, https://doi.org/10.5194/os-19-581-2023, 2023
Short summary
Short summary
Tropical upwelling systems are among the most productive ecosystems globally. The tropical Atlantic upwelling undergoes a strong seasonal cycle that is forced by the wind. Local wind-driven upwelling and remote effects, particularly via the propagation of equatorial and coastal trapped waves, lead to an upward and downward movement of the nitracline. Turbulent mixing results in upward supply of nutrients. Here, we review the different physical processes responsible for biological productivity.
Jufen Lai, Richard J. Greatbatch, and Martin Claus
Ocean Sci., 19, 421–430, https://doi.org/10.5194/os-19-421-2023, https://doi.org/10.5194/os-19-421-2023, 2023
Short summary
Short summary
The El Niño Southern Oscillation (ENSO) has a global influence on weather and climate. Over most of the equatorial Pacific, where ENSO is focused, variations in sea surface height, such as measured by satellite, are strongly influenced by vertical displacements of the ocean thermocline. We show that linearly removing this influence leads to a time series of sea surface height that capture ENSO dynamics in the central Pacific, where ENSO variability has become more active in recent decades.
Mareike Körner, Peter Brandt, and Marcus Dengler
Ocean Sci., 19, 121–139, https://doi.org/10.5194/os-19-121-2023, https://doi.org/10.5194/os-19-121-2023, 2023
Short summary
Short summary
The coastal waters off Angola host a productive ecosystem. Surface waters at the coast are colder than further offshore. We find that surface heat fluxes warm the coastal region more strongly than the offshore region and cannot explain the differences. The influence of horizontal heat advection is minor on the surface temperature change. In contrast, ocean turbulence data suggest that cooling associated with vertical mixing is an important mechanism to explain the near-coastal cooling.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Josefine Herrford, Peter Brandt, Torsten Kanzow, Rebecca Hummels, Moacyr Araujo, and Jonathan V. Durgadoo
Ocean Sci., 17, 265–284, https://doi.org/10.5194/os-17-265-2021, https://doi.org/10.5194/os-17-265-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of the climate system. Understanding its structure and variability is a key priority for many scientists. Here, we present the first estimate of AMOC variations for the tropical South Atlantic from the TRACOS array at 11° S. Over the observed period, the AMOC was dominated by seasonal variability. We investigate the respective mechanisms with an ocean model and find that different wind-forced waves play a big role.
Tim Fischer, Annette Kock, Damian L. Arévalo-Martínez, Marcus Dengler, Peter Brandt, and Hermann W. Bange
Biogeosciences, 16, 2307–2328, https://doi.org/10.5194/bg-16-2307-2019, https://doi.org/10.5194/bg-16-2307-2019, 2019
Short summary
Short summary
We investigated air–sea gas exchange in oceanic upwelling regions for the case of nitrous oxide off Peru. In this region, routine concentration measurements from ships at 5 m or 10 m depth prove to overestimate surface (bulk) concentration. Thus, standard estimates of gas exchange will show systematic error. This is due to very shallow stratified layers that inhibit exchange between surface water and waters below and can exist for several days. Maximum bias occurs in moderate wind conditions.
Yao Fu, Johannes Karstensen, and Peter Brandt
Ocean Sci., 14, 589–616, https://doi.org/10.5194/os-14-589-2018, https://doi.org/10.5194/os-14-589-2018, 2018
Short summary
Short summary
Hydrographic analysis in the Atlantic along 14.5° N and 24.5° N shows that between the periods of 1989/92 and 2013/15, the Antarctic Intermediate Water became warmer and saltier at 14.5° N, and that the Antarctic Bottom Water became lighter at both latitudes. By applying a box inverse model, the Atlantic Meridional Overturning Circulation (AMOC) was determined. Comparison among the inverse solution, GECCO2, RAPID, and MOVE shows that the AMOC has not significantly changed in the past 20 years.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Eike E. Köhn, Sören Thomsen, Damian L. Arévalo-Martínez, and Torsten Kanzow
Ocean Sci., 13, 1017–1033, https://doi.org/10.5194/os-13-1017-2017, https://doi.org/10.5194/os-13-1017-2017, 2017
Yao Fu, Johannes Karstensen, and Peter Brandt
Ocean Sci., 13, 531–549, https://doi.org/10.5194/os-13-531-2017, https://doi.org/10.5194/os-13-531-2017, 2017
Short summary
Short summary
Meridional Ekman transport in the tropical Atlantic was estimated directly by using observed ageostrophic velocity, and indirectly by using wind stress data. The direct and indirect methods agree well with each other. The top of the pycnocline represents the Ekman depth better than the mixed layer depth and a constant depth. The Ekman heat and salt fluxes calculated from sea surface temperature and salinity or from high-resolution temperature and salinity profile data differ only marginally.
Johannes Hahn, Peter Brandt, Sunke Schmidtko, and Gerd Krahmann
Ocean Sci., 13, 551–576, https://doi.org/10.5194/os-13-551-2017, https://doi.org/10.5194/os-13-551-2017, 2017
Short summary
Short summary
Recent studies have shown that the eastern tropical North Atlantic is subject to a strong decrease of the oceanic oxygen concentration in the upper 1000 m from the 1960s to today. By analyzing a broad observational data set, this study found an even stronger oxygen decrease in the upper 400 m throughout the past decade, whereas oxygen increase was found below (400–1000 m). Changes in the strength of the zonal currents are the most likely reason for the observed decadal oxygen changes.
Rafael Abel, Claus W. Böning, Richard J. Greatbatch, Helene T. Hewitt, and Malcolm J. Roberts
Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-24, https://doi.org/10.5194/os-2017-24, 2017
Revised manuscript not accepted
Short summary
Short summary
In coupled global atmosphere ocean models a feedback from ocean surface currents to atmospheric winds was found. Surface winds are energized by about 30 % of the ocean currents. We were able to implement this feedback in uncoupled ocean models which results in a realistic surface flux coupling. Due to changes in the dissipation the kinetic energy of the time-variable flow is increased up to 10 % when this feedback is implemented. Implementation in other models should be straightforward.
Florian Schütte, Johannes Karstensen, Gerd Krahmann, Helena Hauss, Björn Fiedler, Peter Brandt, Martin Visbeck, and Arne Körtzinger
Biogeosciences, 13, 5865–5881, https://doi.org/10.5194/bg-13-5865-2016, https://doi.org/10.5194/bg-13-5865-2016, 2016
Short summary
Short summary
Mesoscale eddies with very low–oxygen concentrations at shallow depth have been recently discovered in the eastern tropical North Atlantic. Our analysis shows that low oxygen eddies occur more frequent than expected and are found even close to the equator (8° N). From budget calculations we show that an oxygen reduction of 7 µmol/kg in the depth range of 50–150 m in the eastern tropical North Atlantic (peak reduction is 16 µmol/kg at 100 m depth) can be associated with the dispersion of these eddies.
Florian Schütte, Peter Brandt, and Johannes Karstensen
Ocean Sci., 12, 663–685, https://doi.org/10.5194/os-12-663-2016, https://doi.org/10.5194/os-12-663-2016, 2016
Short summary
Short summary
We want to examine the characteristics of mesoscale eddies in the tropical northeastern Atlantic. They serve as transport agents, exporting water from the coast into the open ocean. Traditionally eddies are categorized with respect to their rotation: cyclonic and anticyclonic. But we could identify, with a combination of different satellite products, a third type called "anticyclonic mode-water eddy" transporting much larger anomalies. We propose a distinction into three classes for further studies.
L. Stramma, R. Czeschel, T. Tanhua, P. Brandt, M. Visbeck, and B. S. Giese
Ocean Sci., 12, 153–167, https://doi.org/10.5194/os-12-153-2016, https://doi.org/10.5194/os-12-153-2016, 2016
Short summary
Short summary
The subsurface circulation in the eastern tropical North Atlantic OMZ is derived from velocity, float and tracer data and data assimilation results, and shows a cyclonic flow around the Guinea Dome reaching into the oxygen minimum zone. The stronger cyclonic flow around the Guinea Dome in 2009 seem to be connected to a strong Atlantic Meridional Mode (AMM) event.
A continuous deoxygenation trend of the low oxygen layer was confirmed.
Eddy influence is weak south of the Cape Verde Islands.
J. Karstensen, B. Fiedler, F. Schütte, P. Brandt, A. Körtzinger, G. Fischer, R. Zantopp, J. Hahn, M. Visbeck, and D. Wallace
Biogeosciences, 12, 2597–2605, https://doi.org/10.5194/bg-12-2597-2015, https://doi.org/10.5194/bg-12-2597-2015, 2015
Short summary
Short summary
This study is the first report of the formation of dead zones in the open ocean. A combination of multiple ocean observing system elements (mooring, floats, satellites, ships) allowed us to reconstruct the generation of the dead zones and to connect the formation to enhanced respiration within mesoscale ocean eddies. The dead zones present specific threats to the ecosystem, such as the interruption of the diurnal migration of zooplankters.
P. Brandt, H. W. Bange, D. Banyte, M. Dengler, S.-H. Didwischus, T. Fischer, R. J. Greatbatch, J. Hahn, T. Kanzow, J. Karstensen, A. Körtzinger, G. Krahmann, S. Schmidtko, L. Stramma, T. Tanhua, and M. Visbeck
Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, https://doi.org/10.5194/bg-12-489-2015, 2015
Short summary
Short summary
Our observational study looks at the structure of the eastern tropical North Atlantic (ETNA) oxygen minimum zone (OMZ) in comparison with the less-ventilated, eastern tropical South Pacific OMZ. We quantify the OMZ’s oxygen budget composed of consumption, advection, lateral and vertical mixing. Substantial oxygen variability is observed on interannual to multidecadal timescales. The deoxygenation of the ETNA OMZ during the last decades represents a substantial imbalance of the oxygen budget.
M. Thoma, R. Gerdes, R. J. Greatbatch, and H. Ding
Geosci. Model Dev., 8, 51–68, https://doi.org/10.5194/gmd-8-51-2015, https://doi.org/10.5194/gmd-8-51-2015, 2015
T. Fischer, D. Banyte, P. Brandt, M. Dengler, G. Krahmann, T. Tanhua, and M. Visbeck
Biogeosciences, 10, 5079–5093, https://doi.org/10.5194/bg-10-5079-2013, https://doi.org/10.5194/bg-10-5079-2013, 2013
Related subject area
Approach: Numerical Models | Properties and processes: Overturning circulation, gyres and water masses
North Atlantic Subtropical Mode Water properties: intrinsic and atmospherically forced interannual variability
Long-term Variability and Trends of Agulhas Leakage and its Impacts on the Global Overturning
Persistent climate model biases in the Atlantic Ocean's freshwater transport
Surface factors controlling the volume of accumulated Labrador Sea Water
Dependency of simulated tropical Atlantic current variability on the wind forcing
Altered Weddell Sea warm- and dense-water pathways in response to 21st-century climate change
Assessing the drift of fish aggregating devices in the tropical Pacific Ocean
Assessment of Indonesian Throughflow transports from ocean reanalyses with mooring-based observations
Olivier Narinc, Thierry Penduff, Guillaume Maze, Stéphanie Leroux, and Jean-Marc Molines
Ocean Sci., 20, 1351–1365, https://doi.org/10.5194/os-20-1351-2024, https://doi.org/10.5194/os-20-1351-2024, 2024
Short summary
Short summary
This study examines how the ocean's chaotic variability and atmospheric fluctuations affect yearly changes in North Atlantic Subtropical Mode Water (STMW) properties, using an ensemble of realistic ocean simulations. Results show that while yearly changes in STMW properties are mostly paced by the atmosphere, a notable part of these changes are random in phase. This study also illustrates the value of ensemble simulations over single runs in understanding oceanic fluctuations and their causes.
Hendrik Grosselindemann, Frederic S. Castruccio, Gokhan Danabasoglu, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2288, https://doi.org/10.5194/egusphere-2024-2288, 2024
Short summary
Short summary
This study investigates Agulhas Leakage and examines its role in the global ocean circulation. It utilises a high-resolution earth system model and a pre-industrial climate to look at the response of Agulhas Leakage to the wind field and the Atlantic Meridional Overturning Circulation (AMOC) as well as its evolution under climate change. Agulhas Leakage influences the stability of the AMOC whose possible collapse would impact the global climate on the Northern Hemisphere.
René M. van Westen and Henk A. Dijkstra
Ocean Sci., 20, 549–567, https://doi.org/10.5194/os-20-549-2024, https://doi.org/10.5194/os-20-549-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component in the global climate system. Observations of the present-day AMOC indicate that it may weaken or collapse under global warming, with profound disruptive effects on future climate. However, AMOC weakening is not correctly represented because an important feedback is underestimated due to biases in the Atlantic's freshwater budget. Here we address these biases in several state-of-the-art climate model simulations.
Yavor Kostov, Marie-José Messias, Herlé Mercier, David P. Marshall, and Helen L. Johnson
Ocean Sci., 20, 521–547, https://doi.org/10.5194/os-20-521-2024, https://doi.org/10.5194/os-20-521-2024, 2024
Short summary
Short summary
We examine factors affecting variability in the volume of Labrador Sea Water (LSW), a water mass that is important for the uptake and storage of heat and carbon in the Atlantic Ocean. We find that LSW accumulated in the Labrador Sea exhibits a lagged response to remote conditions: surface wind stress, heat flux, and freshwater flux anomalies, especially along the pathways of the North Atlantic Current branches. We use our results to reconstruct and attribute historical changes in LSW volume.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Cara Nissen, Ralph Timmermann, Mathias van Caspel, and Claudia Wekerle
Ocean Sci., 20, 85–101, https://doi.org/10.5194/os-20-85-2024, https://doi.org/10.5194/os-20-85-2024, 2024
Short summary
Short summary
The southeastern Weddell Sea is important for global ocean circulation due to the cross-shelf-break exchange of Dense Shelf Water and Warm Deep Water, but their exact circulation pathways remain elusive. Using Lagrangian model experiments in an eddy-permitting ocean model, we show how present circulation pathways and transit times of these water masses on the continental shelf are altered by 21st-century climate change, which has implications for local ice-shelf basal melt rates and ecosystems.
Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille
Ocean Sci., 20, 31–41, https://doi.org/10.5194/os-20-31-2024, https://doi.org/10.5194/os-20-31-2024, 2024
Short summary
Short summary
Tuna fisheries in the Pacific often use drifting fish aggregating devices (dFADs) to attract fish that are advected by subsurface flow through underwater appendages. Using a particle advection model, we find that virtual particles advected by surface flow are displaced farther than virtual dFADs. We find a relation between El Niño–Southern Oscillation and circular motion in some areas, influencing dFAD densities. This information helps us to understand processes that drive dFAD distribution.
Magdalena Fritz, Michael Mayer, Leopold Haimberger, and Susanna Winkelbauer
Ocean Sci., 19, 1203–1223, https://doi.org/10.5194/os-19-1203-2023, https://doi.org/10.5194/os-19-1203-2023, 2023
Short summary
Short summary
The interaction between the Indonesian Throughflow (ITF) and regional climate phenomena indicates the high relevance for monitoring the ITF. Observations remain temporally and spatially limited; hence near-real-time monitoring is only possible with reanalyses. We assess how well ocean reanalyses depict the intensity of the ITF via comparison to observations. The results show that reanalyses agree reasonably well with in situ observations; however, some aspects require higher-resolution products.
Cited articles
Anderson, D. L. and Killworth, P. D.: Non-linear propagation of long Rossby waves, Deep-Sea Res., 26, 1033–1049, 1979. a
Arakawa, A.: Design of the UCLA general circulation model, Tech. Rep. No 7, Dep. of Meteorology, UCLA, USA, https://ntrs.nasa.gov/citations/19730012781 (last access: 21 October 2024), 1972. a
Ascani, F., Firing, E., McCreary, J. P., Brandt, P., and Greatbatch, R. J.: The deep equatorial ocean circulation in wind-forced numerical solutions, J. Phys. Oceanogr., 45, 1709–1734, 2015. a
Brandt, P., Greatbatch, R. J., Claus, M., Didwischus, S.-H., Hormann, V., Funk, A., Hahn, J., Krahmann, G., Fischer, J., and Körtzinger, A.: Ventilation of the equatorial Atlantic by the equatorial deep jets, J. Geophys. Res.-Oceans, 117, https://doi.org/10.1029/2012JC008118, 2012. a
Brandt, P., Bange, H. W., Banyte, D., Dengler, M., Didwischus, S.-H., Fischer, T., Greatbatch, R. J., Hahn, J., Kanzow, T., Karstensen, J., Körtzinger, A., Krahmann, G., Schmidtko, S., Stramma, L., Tanhua, T., and Visbeck, M.: On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic, Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, 2015. a, b, c, d, e, f, g, h, i
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018. a
Calil, P. H.: High-Resolution, Basin-Scale Simulations Reveal the Impact of Intermediate Zonal Jets on the Atlantic Oxygen Minimum Zones, J. Adv. Model. Earth Sy., 15, e2022MS003158, https://doi.org/10.1029/2022MS003158, 2023. a, b, c
Chang, P., Zhang, R., Hazeleger, W., Wen, C., Wan, X., Ji, L., Haarsma, R. J., Breugem, W.-P., and Seidel, H.: Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon, Nat. Geosci., 1, 444–448, 2008. a
Chelton, D. B., DeSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.: Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28, 433–460, 1998. a
Claus, M. and Köhn, E.: Model output and code for the publication “The formation and ventilation of an oxygen minimum zone in a simple model for latitudinally alternating zonal jets”, GEOMAR Helmholtz Centre for Ocean Research Kiel [data set], https://hdl.handle.net/20.500.12085/dd331654-413c-4157-8796-6edf4c4be207 (last access: 22 January 2024), 2024.
CMEMS: Global Ocean Physics Reanalysis (GLORYS12v1), Copernicus Marine Service [data set], https://doi.org/10.48670/moi-00021, 2023. a
De Szoeke, R. A. and Bennett, A. F.: Microstructure fluxes across density surfaces, J. Phys. Oceanogr., 23, https://doi.org/10.1175/1520-0485(1993)023<2254:MFADS>2.0.CO;2, 1993. a
Delpech, A., Cravatte, S., Marin, F., Ménesguen, C., and Morel, Y.: Deep eddy kinetic energy in the tropical Pacific from Lagrangian floats, J. Geophys. Res.-Oceans, 125, e2020JC016313, https://doi.org/10.1029/2020JC016313, 2020. a
Fratantoni, D. M. and Richardson, P. L.: The evolution and demise of North Brazil Current rings, J. Phys. Oceanogr., 36, 1241–1264, 2006. a
Garcia, H. E., Weathers, K. W., Paver, C. R., Smolyar, I., Boyer, T. P., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D., and Reagan, J. R.: World Ocean Atlas 2018, Vol. 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Dissolved Oxygen Saturation, edited by: Mishonov, A., NOAA Atlas NESDIS 83, 38 pp., https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last access: 15 April 2020), 2019. a
Hahn, J., Brandt, P., Schmidtko, S., and Krahmann, G.: Decadal oxygen change in the eastern tropical North Atlantic, Ocean Sci., 13, 551–576, https://doi.org/10.5194/os-13-551-2017, 2017. a, b, c
James, I. and James, P.: Ultra-low-frequency variability in a simple atmospheric circulation model, Nature, 342, 53–55, 1989. a
Kirchner, K., Rhein, M., Hüttl-Kabus, S., and Böning, C. W.: On the spreading of South Atlantic Water into the northern hemisphere, J. Geophys. Res.-Oceans, 114, https://doi.org/10.1029/2008JC005165, 2009. a
Köhn, E. E.: Data Analysis scripts for OMZ ventilation by LAZJs publication, Zenodo [code], https://doi.org/10.5281/zenodo.11447769, 2024.
Leetmaa, A. and Bunker, A. F.: Updated charts of the mean annual wind stress, convergences in the Ekman layers, and Sverdrup transports in the North Atlantic, J. Mar. Res., 36, 311–322, 1978. a
Maximenko, N. A., Bang, B., and Sasaki, H.: Observational evidence of alternating zonal jets in the world ocean, Geophys. Res. Lett., 32, https://doi.org/10.1029/2005GL022728, 2005. a
Maximenko, N. A., Melnichenko, O. V., Niiler, P. P., and Sasaki, H.: Stationary mesoscale jet-like features in the ocean, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL033267, 2008. a
Ménesguen, C., Delpech, A., Marin, F., Cravatte, S., Schopp, R., and Morel, Y.: Observations and mechanisms for the formation of deep equatorial and tropical circulation, Earth and Space Science, 6, 370–386, 2019. a
Peña-Izquierdo, J., van Sebille, E., Pelegrí, J. L., Sprintall, J., Mason, E., Llanillo, P. J., and Machín, F.: Water mass pathways to the North Atlantic oxygen minimum zone, J. Geophys. Res.-Oceans, 120, 3350–3372, 2015. a
Risien, C. M. and Chelton, D. B.: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data, J. Phys. Oceanogr., 38, 2379–2413, 2008. a
Shchepetkin, A. F. and O'Brien, J. J.: A physically consistent formulation of lateral friction in shallow-water equation ocean models, Mon. Weather Rev., 124, 1285–1300, 1996. a
Stokes, G. G.: On the theory of oscillatory waves, Trans. Cam. Philos. Soc., 8, 441–455, 1847. a
Van Geen, A., Smethie Jr., W., Horneman, A., and Lee, H.: Sensitivity of the North Pacific oxygen minimum zone to changes in ocean circulation: A simple model calibrated by chlorofluorocarbons, J. Geophys. Res.-Oceans, 111, https://doi.org/10.1029/2005JC003192, 2006. a
Short summary
The latitudinally alternating zonal jets are a ubiquitous feature of the ocean. We use a simple model to illustrate the potential role of these jets in the formation, maintenance, and multidecadal variability in the oxygen minimum zones, using the eastern tropical North Atlantic oxygen minimum zone as an example.
The latitudinally alternating zonal jets are a ubiquitous feature of the ocean. We use a simple...