Articles | Volume 20, issue 5
https://doi.org/10.5194/os-20-1187-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-1187-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal variability in the semidiurnal internal tide – a comparison between sea surface height and energetics
School of Ocean Science and Engineering, University of Southern Mississippi, Stennis Space Center, Mississippi, USA
Maarten C. Buijsman
School of Ocean Science and Engineering, University of Southern Mississippi, Stennis Space Center, Mississippi, USA
Zhongxiang Zhao
Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington, USA
Jay F. Shriver
Ocean Dynamics and Prediction Branch, Naval Research Laboratory, Stennis Space Center, Mississippi, USA
Related authors
No articles found.
Zhongxiang Zhao
Ocean Sci., 19, 1067–1082, https://doi.org/10.5194/os-19-1067-2023, https://doi.org/10.5194/os-19-1067-2023, 2023
Short summary
Short summary
Satellite altimetry provides a unique technique for observing the sea surface height (SSH) signature of internal tides from space. The advances in mapping technique, combined with the accumulation of satellite altimetry data, make it possible to construct empirical models for minor internal tide constituents. This paper demonstrates that N2 internal tides, the fifth largest tidal constituent, are observed using 100 satellite years of SSH data from 1993 to 2019 by a new mapping procedure.
Gaspard Geoffroy, Jonas Nycander, Maarten C. Buijsman, Jay F. Shriver, and Brian K. Arbic
Ocean Sci., 19, 811–835, https://doi.org/10.5194/os-19-811-2023, https://doi.org/10.5194/os-19-811-2023, 2023
Short summary
Short summary
The ocean state is sensitive to the mixing originating from internal tides (ITs). To date, our knowledge of the magnitude and spatial distribution of this mixing mostly relies on uncertain modeling. Here, we use novel observations from autonomous floats to validate the spatial variability in the semidiurnal IT in a realistic ocean simulation. The numerical simulation is found to correctly reproduce the main spatial patterns of the observed tidal energy but to be biased low at the global scale.
Yi Gong, Haibin Song, Zhongxiang Zhao, Yongxian Guan, Kun Zhang, Yunyan Kuang, and Wenhao Fan
Nonlin. Processes Geophys., 28, 445–465, https://doi.org/10.5194/npg-28-445-2021, https://doi.org/10.5194/npg-28-445-2021, 2021
Short summary
Short summary
When the internal solitary wave propagates to the continental shelf and slope, the polarity reverses due to the shallower water depth. In this process, the internal solitary wave dissipates energy and enhances diapycnal mixing, thus affecting the local oceanic environment. In this study, we used reflection seismic data to evaluate the spatial distribution of the diapycnal mixing around the polarity-reversing internal solitary waves.
Loren Carrere, Brian K. Arbic, Brian Dushaw, Gary Egbert, Svetlana Erofeeva, Florent Lyard, Richard D. Ray, Clément Ubelmann, Edward Zaron, Zhongxiang Zhao, Jay F. Shriver, Maarten Cornelis Buijsman, and Nicolas Picot
Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021, https://doi.org/10.5194/os-17-147-2021, 2021
Short summary
Short summary
Internal tides can have a signature of several centimeters at the ocean surface and need to be corrected from altimeter measurements. We present a detailed validation of several internal-tide models using existing satellite altimeter databases. The analysis focuses on the main diurnal and semidiurnal tidal constituents. Results show the interest of the methodology proposed, the quality of the internal-tide models tested and their positive contribution for estimating an accurate sea level.
J. M. Magalhaes, J. C. B. da Silva, M. C. Buijsman, and C. A. E. Garcia
Ocean Sci., 12, 243–255, https://doi.org/10.5194/os-12-243-2016, https://doi.org/10.5194/os-12-243-2016, 2016
Short summary
Short summary
Satellite imagery reveals intense internal solitary waves (ISWs) seen hundreds of kilometres from the Amazon shelf and extending for 500 km into the open ocean (propagating above 3 m/s, amongst the fastest ever recorded). Seasonality is discussed in light of the North Equatorial Counter Current, and a late disintegration of the internal tide (IT) is investigated based on climatological data. A late disintegration of the IT may explain other ISW observations in the world’s oceans.
Related subject area
Approach: Numerical Models | Properties and processes: Internal waves, turbulence and mixing
Internal and forced ocean variability in the Mediterranean Sea
Numerical investigation of interaction between anticyclonic eddy and semidiurnal internal tide in the northeastern South China Sea
Internal tides off the Amazon shelf – Part 1: The importance of the structuring of ocean temperature during two contrasted seasons
Regional modeling of internal-tide dynamics around New Caledonia – Part 1: Coherent internal-tide characteristics and sea surface height signature
Roberta Benincasa, Giovanni Liguori, Nadia Pinardi, and Hans von Storch
Ocean Sci., 20, 1003–1012, https://doi.org/10.5194/os-20-1003-2024, https://doi.org/10.5194/os-20-1003-2024, 2024
Short summary
Short summary
Ocean dynamics result from the interplay of internal processes and external inputs, primarily from the atmosphere. It is crucial to discern between these factors to gauge the ocean's intrinsic predictability and to be able to attribute a signal under study to either external factors or internal variability. Employing a simple analysis, we successfully characterized this variability in the Mediterranean Sea and compared it with the oceanic response induced by atmospheric conditions.
Liming Fan, Hui Sun, Qingxuan Yang, and Jianing Li
Ocean Sci., 20, 241–264, https://doi.org/10.5194/os-20-241-2024, https://doi.org/10.5194/os-20-241-2024, 2024
Short summary
Short summary
Understanding internal tide generation and propagation is crucial for predicting large-scale circulation and climate change. Internal tides are prone to interacting with background currents with similar spatial scales during propagation. This paper investigates the physical mechanism of the interaction between semidiurnal internal tides and an anticyclonic eddy in the northeastern South China Sea using a numerical model with high spatial and temporal resolution.
Fernand Assene, Ariane Koch-Larrouy, Isabelle Dadou, Michel Tchilibou, Guillaume Morvan, Jérôme Chanut, Alex Costa da Silva, Vincent Vantrepotte, Damien Allain, and Trung-Kien Tran
Ocean Sci., 20, 43–67, https://doi.org/10.5194/os-20-43-2024, https://doi.org/10.5194/os-20-43-2024, 2024
Short summary
Short summary
Twin simulations, with and without tides, are used to assess the impact of internal tides (ITs) on ocean temperature off the Amazon mouth at a seasonal scale. We found that in the surface layers, ITs and barotropic tides cause a cooling effect on sea surface temperature, subsequently leading to an increase in the net heat flux between the atmosphere and ocean. Vertical mixing is identified as the primary driver, followed by vertical and horizontal advection.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Laurent Brodeau, Aurélie Albert, Michel Tchilibou, Florent Lyard, and Clément Vic
Ocean Sci., 19, 1315–1338, https://doi.org/10.5194/os-19-1315-2023, https://doi.org/10.5194/os-19-1315-2023, 2023
Short summary
Short summary
New Caledonia is a hot spot of internal-tide generation due to complex bathymetry. Regional modeling quantifies the coherent internal tide and shows that most energy is converted in shallow waters and on very steep slopes. The region is a challenge for observability of balanced dynamics due to strong internal-tide sea surface height (SSH) signatures at similar wavelengths. Correcting the SSH for the coherent internal tide may increase the observability of balanced motion to < 100 km.
Cited articles
Alford, M. H. and Zhao, Z.: Global Patterns of Low-Mode Internal-Wave Propagation. Part I: Energy and Energy Flux, J. Phys. Oceanogr., 37, 1829–1848, https://doi.org/10.1175/JPO3085.1, 2007. a
Ansong, J., Arbic, B. K., Buijsman, M., Richman, J., Shriver, J. F., and Wallcraft, A. J.: Indirect evidence for substantial damping of low-mode internal tides in the open ocean, J. Geophys. Res.-Ocean., 120, 6057–6071, https://doi.org/10.1002/2015JC010998, 2015. a
Arbic, B. K., Wallcraft, A. J., and Metzger, E. J.: Concurrent simulation of the eddying general circulation and tides in a global ocean model, Ocean Model., 32, 175–187, https://doi.org/10.1016/j.ocemod.2010.01.007, 2010. a
Baines, P.: On internal tide generation models, Deep-Sea Res. Pt. A., 29, 307–338, https://doi.org/10.1016/0198-0149(82)90098-X, 1982. a
Beal, L. M., Hormann, V., Lumpkin, R., and Foltz, G. R.: The Response of the Surface Circulation of the Arabian Sea to Monsoonal Forcing, J. Phys. Oceanogr., 43, 2008–2022, https://doi.org/10.1175/JPO-D-13-033.1, 2013. a
Bij de Vaate, I., Vasulkar, A. N., Slobbe, D. C., and Verlaan, M.: The Influence of Arctic Landfast Ice on Seasonal Modulation of the M2 Tide, J. Geophys. Res.-Ocean., 126, e2020JC016630, https://doi.org/10.1029/2020JC016630, 2021. a
Brown, W. S. and Beardsley, R. C.: Winter Circulation in the Western Gulf of Maine: Part 1, Cooling and Water Mass Formation, J. Phys. Oceanogr., 8, 265–277, https://doi.org/10.1175/1520-0485(1978)008<0265:WCITWG>2.0.CO;2, 1978. a
Buijsman, M. C., Ansong, J., Arbic, B. K., Richman, J., Shriver, J., Timko, P., Wallcraft, A., Whalen, C., and Zhao, Z.: Impact of Parameterized Internal Wave Drag on the Semidiurnal Energy Balance in a Global Ocean Circulation Model, J. Phys. Oceanogr., 46, 1399–1419, https://doi.org/10.1175/JPO-D-15-0074.1, 2016. a, b, c, d, e
Buijsman, M. C., Stephenson, G. R., Ansong, J. K., Arbic, B. K., Green, J. A. M., Richman, J. G., Shriver, J. F., Vic, C., Wallcraft, A. J., and Zhao, Z.: On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations, Ocean Model., 152, 101656, https://doi.org/10.1016/j.ocemod.2020.101656, 2020. a, b, c, d, e, f, g, h, i, j
Chen, C., Huang, H., Beardsley, R. C., Xu, Q., Limeburner, R., Cowles, G. W., Sun, Y., Qi, J., and Lin, H.: Tidal dynamics in the Gulf of Maine and New England Shelf: An application of FVCOM, J. Geophys. Res.-Ocean., 116, C12010, https://doi.org/10.1029/2011JC007054, 2011. a, b
Clemens, S., Prell, W., Murray, D., Shimmield, G., and Weedon, G.: Forcing mechanisms of the Indian Ocean monsoon, Nature, 353, 720–725, https://doi.org/10.1038/353720a0, 1991. a
Colosi, J. and Munk, W.: Tales of the Venerable Honolulu Tide Gauge, J. Phys. Oceanogr., 36, 967–996, https://doi.org/10.1175/JPO2876.1, 2006. a
Csanady, G. and Hamilton, P.: Circulation of slopewater, Cont. Shelf Res., 8, 565–624, https://doi.org/10.1016/0278-4343(88)90068-4, 1988. a
de Lavergne, C., Falahat, S., Madec, G., Roquet, F., Nycander, J., and Vic, C.: Toward global maps of internal tide energy sinks, Ocean Model., 137, 52–75, https://doi.org/10.1016/j.ocemod.2019.03.010, 2019. a
Duda, T. F., Lin, Y.-T., Buijsman, M., and Newhall, A. E.: Internal Tidal Modal Ray Refraction and Energy Ducting in Baroclinic Gulf Stream Currents, J. Phys. Oceanogr., 48, 1969–1993, https://doi.org/10.1175/JPO-D-18-0031.1, 2018. a
Gatien, M. G.: A Study in the Slope Water Region South of Halifax, J. Fish. Res. Board Can., 33, 2213–2217, https://doi.org/10.1139/f76-270, 1976. a
Gerkema, T., Lam, F. P. A., and Maas, L. R. M.: Internal tides in the Bay of Biscay: conversion rates and seasonal effects, Deep-Sea Res. Pt. II, 51, 2995–3008, https://doi.org/10.1016/j.dsr2.2004.09.012, 2004. a, b, c
Godin, G.: Rapid evolution of the tide in the Bay of Fundy, Cont. Shelf Res., 15, 369–372, https://doi.org/10.1016/0278-4343(93)E0005-S, 1995. a
Hallberg, R.: A thermobaric instability of Lagrangian vertical coordinate ocean models, Ocean Model., 8, 279–300, https://doi.org/10.1016/j.ocemod.2004.01.001, 2005. a
Hendershott, M. C.: The Effects of Solid Earth Deformation on Global Ocean Tides, Geophys. J. Int., 29, 389–402, https://doi.org/10.1111/j.1365-246X.1972.tb06167.x, 1972. a, b
Hogan, T., Liu, M., Ridout, J., Peng, M., Whitcomb, T., Ruston, B., Reynolds, C., Eckermann, S., Moskaitis, J., Baker, N., McCormack, J., Viner, K., McLay, J., Flatau, M., Xu, L., Chen, C., and Chang, S.: The Navy Global Environmental Model, Oceanography, 27, 116–125, https://doi.org/10.5670/oceanog.2014.73, 2014. a
Huess, V. and Andersen, O.: Seasonal variation in the main tidal constituent from Altimetry, Geophys. Res. Lett., 28, 567–570, https://doi.org/10.1029/2000GL011921, 2001. a
Huthnance, J. M.: Waves and currents near the continental shelf edge, Prog. Oceanogr., 10, 193–226, https://doi.org/10.1016/0079-6611(81)90004-5, 1981. a
Jan, S., Lien, R.-C., and Ting, C.-H.: Numerical Study of Baroclinic Tides in Luzon Strait, J. Oceanogr., 64, 789–802, https://doi.org/10.1007/s10872-008-0066-5, 2008. a
Jayne, S. R. and St. Laurent, L. C.: Parameterizing tidal dissipation over rough topography, Geophys. Res. Lett., 28, 811–814, https://doi.org/10.1029/2000GL012044, 2001. a
Kang, D. and Fringer, O.: Energetics of Barotropic and Baroclinic Tides in the Monterey Bay Area, J. Phys. Oceanogr., 42, 272–290, https://doi.org/10.1175/JPO-D-11-039.1, 2012. a, b
Kang, S. K., Foreman, M. G. G., Lie, H.-J., Lee, J.-H., Cherniawsky, J., and Yum, K.-D.: Two-layer tidal modeling of the Yellow and East China Seas with application to seasonal variability of the M2 tide, J. Geophys. Res.-Ocean., 107, 6-1–6-18, https://doi.org/10.1029/2001JC000838, 2002. a
Katavouta, A., Thompson, K. R., Lu, Y., and Loder, J. W.: Interaction between the Tidal and Seasonal Variability of the Gulf of Maine and Scotian Shelf Region, J. Phys. Oceanogr., 46, 3279–3298, https://doi.org/10.1175/JPO-D-15-0091.1, 2016. a, b, c
Kaur, H. and Buijsman, M.: The Seasonal Variability in the Semidiurnal Internal Tide; A Comparison between Sea Surface Height and Energetics, Zenodo [data set], https://doi.org/10.5281/zenodo.10871038, 2024. a
Kelly, S. M., Nash, J. D., Martini, K. I., Alford, M. H., and Kunze, E.: The Cascade of Tidal Energy from Low to High Modes on a Continental Slope, J. Phys. Oceanogr., 42, 1217–1232, https://doi.org/10.1175/JPO-D-11-0231.1, 2012. a
Liu, J., He, Y., Wang, D., Liu, T., and Cai, S.: Observed enhanced internal tides in winter near the Luzon Strait, J. Geophys. Res.-Ocean., 120, 6637–6652, https://doi.org/10.1002/2015JC011131, 2015. a
Löb, J., Köhler, J., Mertens, C., Walter, M., Li, Z., Storch, J.-S., Zhao, Z., and Rhein, M.: Observations of the Low‐Mode Internal Tide and Its Interaction With Mesoscale Flow South of the Azores, J. Geophys. Res.-Ocean., 125, e2019JC015879, https://doi.org/10.1029/2019JC015879, 2020. a
Ma, J., Guo, D., Zhan, P., and Hoteit, I.: Seasonal M2 Internal Tides in the Arabian Sea, Remote Sens., 13, 2823, https://doi.org/10.3390/rs13142823, 2021. a
McLellan, H. J.: On the Distinctness and Origin of the Slope Water off the Scotian Shelf and its Easterly Flow South of the Grand Banks, J. Fish. Res. Board Can., 14, 213–239, https://doi.org/10.1139/f57-011, 1957. a
Melet, A., Legg, S., and Hallberg, R.: Climatic Impacts of Parameterized Local and Remote Tidal Mixing, J. Clim., 29, 3473–3500, https://doi.org/10.1175/JCLI-D-15-0153.1, 2016. a
Metzger, E., Hurlburt, H., Xu, X., Shriver, J. F., Gordon, A., Sprintall, J., Susanto, R., and van Aken, H.: Simulated and observed circulation in the Indonesian Seas: ° global HYCOM and the INSTANT observations, Dynam. Atmos. Ocean., 50, 275–300, https://doi.org/10.1016/j.dynatmoce.2010.04.002, 2010. a
Mukherjee, S., Wilson, D., Jobsis, P., and Habtes, S.: Numerical modeling of internal tides and submesoscale turbulence in the US Caribbean regional ocean, Sci. Rep., 13, 1091, https://doi.org/10.1038/s41598-023-27944-2, 2023. a
Munk, W. and Wunsch, C.: Abyssal recipes II: energetics of tidal and wind mixing, Deep-Sea Res. Pt. I, 45, 1977–2010, https://doi.org/10.1016/S0967-0637(98)00070-3, 1998. a
Müller, M., Cherniawsky, J., Foreman, M., and Storch, J.-S.: Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling, Geophys. Res. Lett., 39, L19607, https://doi.org/10.1029/2012GL053320, 2012. a, b, c
Nash, J. D., Alford, M. H., and Kunze, E.: Estimating Internal Wave Energy Fluxes in the Ocean, J. Atmos. Ocean. Technol., 22, 1551–1570, https://doi.org/10.1175/JTECH1784.1, 2005. a
Nelson, A., Arbic, B. K., Zaron, E., Savage, A., Richman, J., Buijsman, M., and Shriver, J.: Toward Realistic Nonstationarity of Semidiurnal Baroclinic Tides in a Hydrodynamic Model, J. Geophys. Res.-Ocean., 124, 6632–6642, https://doi.org/10.1029/2018JC014737, 2019. a, b
Ngodock, H. E., Souopgui, I., Wallcraft, A. J., Richman, J. G., Shriver, J. F., and Arbic, B. K.: On improving the accuracy of the M2 barotropic tides embedded in a high-resolution global ocean circulation model, Ocean Model., 97, 16–26, https://doi.org/10.1016/j.ocemod.2015.10.011, 2016. a
Osborne, J. J., Kurapov, A. L., Egbert, G. D., and Kosro, P. M.: Spatial and Temporal Variability of the M2 Internal Tide Generation and Propagation on the Oregon Shelf, J. Phys. Oceanogr., 41, 2037–2062, https://doi.org/10.1175/JPO-D-11-02.1, 2011. a
Petrie, B. and Drinkwater, K.: Temperature and salinity variability on the Scotian Shelf and in the Gulf of Maine 1945–1990, J. Geophys. Res.-Ocean., 98, 20079–20089, https://doi.org/10.1029/93JC02191, 1993. a
Ponte, A. L. and Klein, P.: Incoherent signature of internal tides on sea level in idealized numerical simulations, Geophys. Res. Lett., 42, 1520–1526, https://doi.org/10.1002/2014GL062583, 2015. a, b
Qu, T. and Melnichenko, O.: Steric Changes Associated With the Fast Sea Level Rise in the Upper South Indian Ocean, Geophys. Res. Lett., 50, e2022GL100635, https://doi.org/10.1029/2022GL100635, 2023. a
Rainville, L. and Pinkel, R.: Propagation of Low-Mode Internal Waves through the Ocean, J. Phys. Oceanogr., 36, 1220–1236, https://doi.org/10.1175/JPO2889.1, 2006. a
Raja, K. J., Buijsman, M. C., Shriver, J. F., Arbic, B. K., and Siyanbola, O.: Near-Inertial Wave Energetics Modulated by Background Flows in a Global Model Simulation, J. Phys. Oceanogr., 52, 823–840, https://doi.org/10.1175/JPO-D-21-0130.1, 2022. a, b
Ray, R. D.: Ocean self‐attraction and loading in numerical tidal models, Mar. Geod., 21, 181–192, https://doi.org/10.1080/01490419809388134, 1998. a, b
Ray, R. D. and Zaron, E.: Non-Stationary Internal Tides Observed Using Dual-Satellite Altimetry, Geophys. Res. Lett., 38, L17609, https://doi.org/10.1029/2011GL048617, 2011. a
Rosmond, T., Teixeira, J., Peng, M., Hogan, T., and Pauley, R.: Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for Ocean Models, Oceanography, 15, 99–108, https://doi.org/10.5670/oceanog.2002.40, 2002. a
Rudnick, D. L., Weller, R. A., Eriksen, C. C., Dickey, T. D., Marra, J., and Langdon, C.: Moored instruments weather Arabian Sea monsoons, yield data, Eos, Transactions American Geophysical Union, 78, 117–121, https://doi.org/10.1029/97EO00073, 1997. a
Savage, A., Arbic, B. K., Richman, J., Shriver, J., Alford, M., Buijsman, M., Farrar, J., Sharma, H., Voet, G., Wallcraft, A., and Zamudio, L.: Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies, J. Geophys. Res.-Ocean., 122, 2519–2538, https://doi.org/10.1002/2016JC012331, 2017. a
Schindelegger, M., Kotzian, D. P., Ray, R. D., Green, J. A. M., and Stolzenberger, S.: Interannual Changes in Tidal Conversion Modulate M2 Amplitudes in the Gulf of Maine, Geophys. Res. Lett., 49, e2022GL101671, https://doi.org/10.1029/2022GL101671, 2022. a, b, c
Shen, H., Perrie, W., and Johnson, C. L.: Predicting Internal Solitary Waves in the Gulf of Maine, J. Geophys. Res.-Ocean., 125, e2019JC015941, https://doi.org/10.1029/2019JC015941, 2020. a
Shetye, S., Gouveia, A., Shenoi, S., Sundar, D., Michael, G. S., Almeida, A., and Santanam, K.: Hydrography and circulation off the west coast of India during the Southwest Monsoon 1987, J. Mar. Res., 48, 21 pp., https://elischolar.library.yale.edu/journal_of_marine_research/1973 (last access: 1 April 2024), 1990. a
Shetye, S., Gouveia, A., Shenoi, S., Michael, G., Sundar, D., Almeida, A., and Santanam, K.: The coastal current off western India during the northeast monsoon, Deep-Sea Res. Pt. A, 38, 1517–1529, https://doi.org/10.1016/0198-0149(91)90087-V, 1991. a
Shriver, J., Arbic, B. K., Richman, J., Ray, R., Metzger, E., Wallcraft, A., and Timko, P.: An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model, J. Geophys. Res., 117, C10024, https://doi.org/10.1029/2012JC008170, 2012. a
Shriver, J., Richman, J., and Arbic, B. K.: How stationary are the internal tides in a high-resolution global ocean circulation model?, J. Geophys. Res.-Ocean., 119, 2769–2787, https://doi.org/10.1002/2013JC009423, 2014. a, b, c, d
Sinnett, G., Feddersen, F., Lucas, A. J., Pawlak, G., and Terrill, E.: Observations of Nonlinear Internal Wave Run-Up to the Surfzone, J. Phys. Oceanogr., 48, 531–554, https://doi.org/10.1175/JPO-D-17-0210.1, 2018. a
Siyanbola, O. Q., Buijsman, M. C., Delpech, A., Renault, L., Barkan, R., Shriver, J. F., Arbic, B. K., and McWilliams, J. C.: Remote internal wave forcing of regional ocean simulations near the U.S. West Coast, Ocean Model., 181, 102154, https://doi.org/10.1016/j.ocemod.2022.102154, 2023. a
Siyanbola, O. Q., Buijsman, M. C., Delpech, A., Barkan, R., Pan, Y., and Arbic, B. K.: Interactions of Remotely Generated Internal Tides With the U.S. West Coast Continental Margin, J. Geophys. Res.-Ocean., 129, e2023JC020859, https://doi.org/10.1029/2023JC020859, 2024. a
Solano, M. S., Buijsman, M. C., Shriver, J. F., Magalhaes, J., da Silva, J., Jackson, C., Arbic, B. K., and Barkan, R.: Nonlinear Internal Tides in a Realistically Forced Global Ocean Simulation, J. Geophys. Res.-Ocean., 128, e2023JC019913, https://doi.org/10.1029/2023JC019913, 2023. a
St Laurent, L. and Garrett, C.: The Role of Internal Tides in Mixing the Deep Ocean, J. Phys. Oceanogr., 32, 2882–2899, https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2, 2002. a
St. Laurent, P., Saucier, F. J., and Dumais, J.-F.: On the modification of tides in a seasonally ice-covered sea, J. Geophys. Res.-Ocean., 113, C11014, https://doi.org/10.1029/2007JC004614, 2008. a
Subeesh, M., Unnikrishnan, A., and Francis, P.: Generation, propagation and dissipation of internal tides on the continental shelf and slope off the west coast of India, Cont. Shelf Res., 214, 104321, https://doi.org/10.1016/j.csr.2020.104321, 2021. a, b
Tuerena, R. E., Williams, R. G., Mahaffey, C., Vic, C., Green, J. A. M., Naveira-Garabato, A., Forryan, A., and Sharples, J.: Internal Tides Drive Nutrient Fluxes Into the Deep Chlorophyll Maximum Over Mid-ocean Ridges, Global Biogeochem. Cy., 33, 995–1009, https://doi.org/10.1029/2019GB006214, 2019. a
Waterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E., Simmons, H. L., Polzin, K. L., Laurent, L. C. S., Sun, O. M., Pinkel, R., Talley, L. D., Whalen, C. B., Huussen, T. N., Carter, G. S., Fer, I., Waterman, S., Garabato, A. C. N., Sanford, T. B., and Lee, C. M.: Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate, J. Phys. Oceanogr., 44, 1854–1872, https://doi.org/10.1175/JPO-D-13-0104.1, 2014. a
Yadidya, B., Arbic, B. K., Shriver, J. F., Nelson, A. D., Zaron, E. D., Buijsman, M. C., and Thakur, R.: Phase-Accurate Internal Tides in a Global Ocean Forecast Model: Potential Applications for Nadir and Wide-Swath Altimetry, Geophys. Res. Lett., 51, e2023GL107232, https://doi.org/10.1029/2023GL107232, 2024. a
Yan, T., Qi, Y., Jing, Z., and Cai, S.: Seasonal and Spatial Features of Barotropic and Baroclinic Tides in the Northwestern South China Sea, J. Geophys. Res.-Ocean., 125, e14860, https://doi.org/10.1029/2018JC014860, 2020. a
Zaron, E. D.: Mapping the Nonstationary Internal Tide with Satellite Altimetry, J. Geophys. Res., 122, 539–554, https://doi.org/10.1002/2016JC012487, 2017. a, b
Zaron, E. D.: Baroclinic Tidal Sea Level from Exact-Repeat Mission Altimetry, J. Phys. Oceanogr., 49, 193–210, https://doi.org/10.1175/JPO-D-18-0127.1, 2019. a, b, c
Zaron, E. D. and Egbert, G. D.: Time-Variable Refraction of the Internal Tide at the Hawaiian Ridge, J. Phys. Oceanogr., 44, 538–557, https://doi.org/10.1175/JPO-D-12-0238.1, 2014. a, b, c
Zaron, E. D. and Ray, R. D.: Clarifying the Distinction between Steric and Baroclinic Sea Surface Height, J. Phys. Oceanogr., 53, 2591–2596, https://doi.org/10.1175/JPO-D-23-0073.1, 2023. a
Zhao, Z.: Mapping Internal Tides From Satellite Altimetry Without Blind Directions, J. Geophys. Res., 124, 8605–8625, https://doi.org/10.1029/2019JC015507, 2019. a
Zhao, Z. and Qiu, B.: Seasonal West‐East Seesaw of M2 Internal Tides From the Luzon Strait, J. Geophys. Res.-Ocean., 128, e2022JC019281, https://doi.org/10.1029/2022JC019281, 2023. a, b
Zhao, Z., Wang, J., Menemenlis, D., Fu, L.-L., Chen, S., and Qiu, B.: Decomposition of the Multimodal Multidirectional M2 Internal Tide Field, J. Atmos. Ocean. Technol., 36, 1157–1173, https://doi.org/10.1175/JTECH-D-19-0022.1, 2019. a
Zhao, Z.: Seasonal mode-1 M2 internal tide models, figshare [data set], https://doi.org/10.6084/m9.figshare.14759094.v1, 2021. a
Short summary
This study examines the seasonal variability in internal tide sea surface height in a global model simulation. We also compare this with altimetry and the seasonal variability in the internal tide energy terms. Georges Bank and the Arabian Sea show the strongest seasonal variability. This study also reveals that sea surface height may not be the most accurate indicator of the true seasonal variability in the internal tides because it is modulated by the seasonal variability in stratification.
This study examines the seasonal variability in internal tide sea surface height in a global...