Articles | Volume 20, issue 5
https://doi.org/10.5194/os-20-1187-2024
https://doi.org/10.5194/os-20-1187-2024
Research article
 | 
26 Sep 2024
Research article |  | 26 Sep 2024

Seasonal variability in the semidiurnal internal tide – a comparison between sea surface height and energetics

Harpreet Kaur, Maarten C. Buijsman, Zhongxiang Zhao, and Jay F. Shriver

Related authors

Surface Kinetic Energy Distributions in the North and Equatorial Atlantic Derived from Surface Drifter Observations and High-Resolution Numerical Models with Tidal Forcing
Rémi Laxenaire, Eric P. Chassignet, Xiaobiao Xu, Alan J. Wallcraft, Luna Hiron, Brian K. Arbic, Maarten C. Buijsman, Miguel Solano, and Shane Elipot
EGUsphere, https://doi.org/10.5194/egusphere-2025-6355,https://doi.org/10.5194/egusphere-2025-6355, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
A new-generation internal tide model based on 30 years of satellite sea surface height measurements: multiwave decomposition and isolated beams
Zhongxiang Zhao
Earth Syst. Sci. Data, 17, 3949–3974, https://doi.org/10.5194/essd-17-3949-2025,https://doi.org/10.5194/essd-17-3949-2025, 2025
Short summary
Mode-1 N2 internal tides observed by satellite altimetry
Zhongxiang Zhao
Ocean Sci., 19, 1067–1082, https://doi.org/10.5194/os-19-1067-2023,https://doi.org/10.5194/os-19-1067-2023, 2023
Short summary
Validating the spatial variability in the semidiurnal internal tide in a realistic global ocean simulation with Argo and mooring data
Gaspard Geoffroy, Jonas Nycander, Maarten C. Buijsman, Jay F. Shriver, and Brian K. Arbic
Ocean Sci., 19, 811–835, https://doi.org/10.5194/os-19-811-2023,https://doi.org/10.5194/os-19-811-2023, 2023
Short summary
Enhanced diapycnal mixing with polarity-reversing internal solitary waves revealed by seismic reflection data
Yi Gong, Haibin Song, Zhongxiang Zhao, Yongxian Guan, Kun Zhang, Yunyan Kuang, and Wenhao Fan
Nonlin. Processes Geophys., 28, 445–465, https://doi.org/10.5194/npg-28-445-2021,https://doi.org/10.5194/npg-28-445-2021, 2021
Short summary

Cited articles

Alford, M. H. and Zhao, Z.: Global Patterns of Low-Mode Internal-Wave Propagation. Part I: Energy and Energy Flux, J. Phys. Oceanogr., 37, 1829–1848, https://doi.org/10.1175/JPO3085.1, 2007. a
Ansong, J., Arbic, B. K., Buijsman, M., Richman, J., Shriver, J. F., and Wallcraft, A. J.: Indirect evidence for substantial damping of low-mode internal tides in the open ocean, J. Geophys. Res.-Ocean., 120, 6057–6071, https://doi.org/10.1002/2015JC010998, 2015. a
Arbic, B. K., Wallcraft, A. J., and Metzger, E. J.: Concurrent simulation of the eddying general circulation and tides in a global ocean model, Ocean Model., 32, 175–187, https://doi.org/10.1016/j.ocemod.2010.01.007, 2010. a
Baines, P.: On internal tide generation models, Deep-Sea Res. Pt. A., 29, 307–338, https://doi.org/10.1016/0198-0149(82)90098-X, 1982. a
Beal, L. M., Hormann, V., Lumpkin, R., and Foltz, G. R.: The Response of the Surface Circulation of the Arabian Sea to Monsoonal Forcing, J. Phys. Oceanogr., 43, 2008–2022, https://doi.org/10.1175/JPO-D-13-033.1, 2013. a
Download
Short summary
This study examines the seasonal variability in internal tide sea surface height in a global model simulation. We also compare this with altimetry and the seasonal variability in the internal tide energy terms. Georges Bank and the Arabian Sea show the strongest seasonal variability. This study also reveals that sea surface height may not be the most accurate indicator of the true seasonal variability in the internal tides because it is modulated by the seasonal variability in stratification.
Share