Articles | Volume 20, issue 5
https://doi.org/10.5194/os-20-1187-2024
https://doi.org/10.5194/os-20-1187-2024
Research article
 | 
26 Sep 2024
Research article |  | 26 Sep 2024

Seasonal variability in the semidiurnal internal tide – a comparison between sea surface height and energetics

Harpreet Kaur, Maarten C. Buijsman, Zhongxiang Zhao, and Jay F. Shriver

Related authors

A New-Generation Internal Tide Model Based on 30 Years of Satellite Sea Surface Height Measurements
Zhongxiang Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-611,https://doi.org/10.5194/essd-2024-611, 2025
Preprint under review for ESSD
Short summary
Mode-1 N2 internal tides observed by satellite altimetry
Zhongxiang Zhao
Ocean Sci., 19, 1067–1082, https://doi.org/10.5194/os-19-1067-2023,https://doi.org/10.5194/os-19-1067-2023, 2023
Short summary
Validating the spatial variability in the semidiurnal internal tide in a realistic global ocean simulation with Argo and mooring data
Gaspard Geoffroy, Jonas Nycander, Maarten C. Buijsman, Jay F. Shriver, and Brian K. Arbic
Ocean Sci., 19, 811–835, https://doi.org/10.5194/os-19-811-2023,https://doi.org/10.5194/os-19-811-2023, 2023
Short summary
Enhanced diapycnal mixing with polarity-reversing internal solitary waves revealed by seismic reflection data
Yi Gong, Haibin Song, Zhongxiang Zhao, Yongxian Guan, Kun Zhang, Yunyan Kuang, and Wenhao Fan
Nonlin. Processes Geophys., 28, 445–465, https://doi.org/10.5194/npg-28-445-2021,https://doi.org/10.5194/npg-28-445-2021, 2021
Short summary
Accuracy assessment of global internal-tide models using satellite altimetry
Loren Carrere, Brian K. Arbic, Brian Dushaw, Gary Egbert, Svetlana Erofeeva, Florent Lyard, Richard D. Ray, Clément Ubelmann, Edward Zaron, Zhongxiang Zhao, Jay F. Shriver, Maarten Cornelis Buijsman, and Nicolas Picot
Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021,https://doi.org/10.5194/os-17-147-2021, 2021
Short summary

Related subject area

Approach: Numerical Models | Properties and processes: Internal waves, turbulence and mixing
Internal and forced ocean variability in the Mediterranean Sea
Roberta Benincasa, Giovanni Liguori, Nadia Pinardi, and Hans von Storch
Ocean Sci., 20, 1003–1012, https://doi.org/10.5194/os-20-1003-2024,https://doi.org/10.5194/os-20-1003-2024, 2024
Short summary
Non-negligible impact of Stokes drift and wave-driven Eulerian currents on simulated surface particle dispersal in the Mediterranean Sea
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1002,https://doi.org/10.5194/egusphere-2024-1002, 2024
Short summary
Numerical investigation of interaction between anticyclonic eddy and semidiurnal internal tide in the northeastern South China Sea
Liming Fan, Hui Sun, Qingxuan Yang, and Jianing Li
Ocean Sci., 20, 241–264, https://doi.org/10.5194/os-20-241-2024,https://doi.org/10.5194/os-20-241-2024, 2024
Short summary
Internal tides off the Amazon shelf – Part 1: The importance of the structuring of ocean temperature during two contrasted seasons
Fernand Assene, Ariane Koch-Larrouy, Isabelle Dadou, Michel Tchilibou, Guillaume Morvan, Jérôme Chanut, Alex Costa da Silva, Vincent Vantrepotte, Damien Allain, and Trung-Kien Tran
Ocean Sci., 20, 43–67, https://doi.org/10.5194/os-20-43-2024,https://doi.org/10.5194/os-20-43-2024, 2024
Short summary
Regional modeling of internal-tide dynamics around New Caledonia – Part 1: Coherent internal-tide characteristics and sea surface height signature
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Laurent Brodeau, Aurélie Albert, Michel Tchilibou, Florent Lyard, and Clément Vic
Ocean Sci., 19, 1315–1338, https://doi.org/10.5194/os-19-1315-2023,https://doi.org/10.5194/os-19-1315-2023, 2023
Short summary

Cited articles

Alford, M. H. and Zhao, Z.: Global Patterns of Low-Mode Internal-Wave Propagation. Part I: Energy and Energy Flux, J. Phys. Oceanogr., 37, 1829–1848, https://doi.org/10.1175/JPO3085.1, 2007. a
Ansong, J., Arbic, B. K., Buijsman, M., Richman, J., Shriver, J. F., and Wallcraft, A. J.: Indirect evidence for substantial damping of low-mode internal tides in the open ocean, J. Geophys. Res.-Ocean., 120, 6057–6071, https://doi.org/10.1002/2015JC010998, 2015. a
Arbic, B. K., Wallcraft, A. J., and Metzger, E. J.: Concurrent simulation of the eddying general circulation and tides in a global ocean model, Ocean Model., 32, 175–187, https://doi.org/10.1016/j.ocemod.2010.01.007, 2010. a
Baines, P.: On internal tide generation models, Deep-Sea Res. Pt. A., 29, 307–338, https://doi.org/10.1016/0198-0149(82)90098-X, 1982. a
Beal, L. M., Hormann, V., Lumpkin, R., and Foltz, G. R.: The Response of the Surface Circulation of the Arabian Sea to Monsoonal Forcing, J. Phys. Oceanogr., 43, 2008–2022, https://doi.org/10.1175/JPO-D-13-033.1, 2013. a
Download
Short summary
This study examines the seasonal variability in internal tide sea surface height in a global model simulation. We also compare this with altimetry and the seasonal variability in the internal tide energy terms. Georges Bank and the Arabian Sea show the strongest seasonal variability. This study also reveals that sea surface height may not be the most accurate indicator of the true seasonal variability in the internal tides because it is modulated by the seasonal variability in stratification.