Articles | Volume 19, issue 4
https://doi.org/10.5194/os-19-973-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-973-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global variability of high-nutrient low-chlorophyll regions using neural networks and wavelet coherence analysis
Gotzon Basterretxea
CORRESPONDING AUTHOR
Department of Marine Ecology, Instituto Mediterráneo de
Estudios Avanzados, IMEDEA (UIB-CSIC), Miquel Marqués 21, 07190
Esporles, Illes Balears, Spain
Joan S. Font-Muñoz
Department of Marine Ecology, Instituto Mediterráneo de
Estudios Avanzados, IMEDEA (UIB-CSIC), Miquel Marqués 21, 07190
Esporles, Illes Balears, Spain
Ismael Hernández-Carrasco
Department of Oceanography and Global Change, Instituto
Mediterráneo de Estudios Avanzados, IMEDEA (UIB-CSIC), Miquel
Marqués 21, 07190 Esporles, Illes Balears, Spain
Sergio A. Sañudo-Wilhelmy
Department of Biological Sciences and Department of Earth Sciences,
University of Southern California, Marine Biology and Biological
Oceanography, Los Angeles, California 90089-0371, United States
Related authors
Marine Di Stefano, David Nerini, Itziar Alvarez, Giandomenico Ardizzone, Patrick Astruch, Gotzon Basterretxea, Aurélie Blanfuné, Denis Bonhomme, Antonio Calò, Ignacio Catalan, Carlo Cattano, Adrien Cheminée, Romain Crec'hriou, Amalia Cuadros, Antonio Di Franco, Carlos Diaz-Gil, Tristan Estaque, Robin Faillettaz, Fabiana C. Félix-Hackradt, José Antonio Garcia-Charton, Paolo Guidetti, Loïc Guilloux, Jean-Georges Harmelin, Mireille Harmelin-Vivien, Manuel Hidalgo, Hilmar Hinz, Jean-Olivier Irisson, Gabriele La Mesa, Laurence Le Diréach, Philippe Lenfant, Enrique Macpherson, Sanja Matić-Skoko, Manon Mercader, Marco Milazzo, Tiffany Monfort, Joan Moranta, Manuel Muntoni, Matteo Murenu, Lucie Nunez, M. Pilar Olivar, Jérémy Pastor, Ángel Pérez-Ruzafa, Serge Planes, Nuria Raventos, Justine Richaume, Elodie Rouanet, Erwan Roussel, Sandrine Ruitton, Ana Sabatés, Thierry Thibaut, Daniele Ventura, Laurent Vigliola, Dario Vrdoljak, and Vincent Rossi
Earth Syst. Sci. Data, 16, 3851–3871, https://doi.org/10.5194/essd-16-3851-2024, https://doi.org/10.5194/essd-16-3851-2024, 2024
Short summary
Short summary
We build a compilation of early-life dispersal traits for coastal fish species. The database contains over 110 000 entries collected from 1993 to 2021 in the western Mediterranean. All observations are harmonized to provide information on dates and locations of spawning and settlement, along with pelagic larval durations. When applicable, missing data are reconstructed from dynamic energy budget theory. Statistical analyses reveal sampling biases across taxa, space and time.
Paula Maria Salgado-Hernanz, Aurore Regaudie-de-Gioux, David Antoine, and Gotzon Basterretxea
Biogeosciences, 19, 47–69, https://doi.org/10.5194/bg-19-47-2022, https://doi.org/10.5194/bg-19-47-2022, 2022
Short summary
Short summary
For the first time, this study presents the characteristics of primary production in coastal regions of the Mediterranean Sea based on satellite-borne observations for the period 2002–2016. The study concludes that there are significant spatial and temporal variations among different regions. Quantifying primary production is of special importance in the marine food web and in the sequestration of carbon dioxide from the atmosphere to the deep waters.
Marine Di Stefano, David Nerini, Itziar Alvarez, Giandomenico Ardizzone, Patrick Astruch, Gotzon Basterretxea, Aurélie Blanfuné, Denis Bonhomme, Antonio Calò, Ignacio Catalan, Carlo Cattano, Adrien Cheminée, Romain Crec'hriou, Amalia Cuadros, Antonio Di Franco, Carlos Diaz-Gil, Tristan Estaque, Robin Faillettaz, Fabiana C. Félix-Hackradt, José Antonio Garcia-Charton, Paolo Guidetti, Loïc Guilloux, Jean-Georges Harmelin, Mireille Harmelin-Vivien, Manuel Hidalgo, Hilmar Hinz, Jean-Olivier Irisson, Gabriele La Mesa, Laurence Le Diréach, Philippe Lenfant, Enrique Macpherson, Sanja Matić-Skoko, Manon Mercader, Marco Milazzo, Tiffany Monfort, Joan Moranta, Manuel Muntoni, Matteo Murenu, Lucie Nunez, M. Pilar Olivar, Jérémy Pastor, Ángel Pérez-Ruzafa, Serge Planes, Nuria Raventos, Justine Richaume, Elodie Rouanet, Erwan Roussel, Sandrine Ruitton, Ana Sabatés, Thierry Thibaut, Daniele Ventura, Laurent Vigliola, Dario Vrdoljak, and Vincent Rossi
Earth Syst. Sci. Data, 16, 3851–3871, https://doi.org/10.5194/essd-16-3851-2024, https://doi.org/10.5194/essd-16-3851-2024, 2024
Short summary
Short summary
We build a compilation of early-life dispersal traits for coastal fish species. The database contains over 110 000 entries collected from 1993 to 2021 in the western Mediterranean. All observations are harmonized to provide information on dates and locations of spawning and settlement, along with pelagic larval durations. When applicable, missing data are reconstructed from dynamic energy budget theory. Statistical analyses reveal sampling biases across taxa, space and time.
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Rafael R. Torres, Estefanía Giraldo, Cristian Muñoz, Ana Caicedo, Ismael Hernández-Carrasco, and Alejandro Orfila
Ocean Sci., 19, 685–701, https://doi.org/10.5194/os-19-685-2023, https://doi.org/10.5194/os-19-685-2023, 2023
Short summary
Short summary
A reverse seasonal ocean circulation in the Panama Bight has been assessed using 27 years of absolute dynamical topography. The mean circulation in the eastern tropical Pacific (east of 100° W) is analyzed from the mean dynamic topography (MDT) and a self-organizing-map analysis. Small differences are observed west of ~82° W. In the Panama Bight, MDT shows the cyclonic circulation when the Panama surface wind jet dominates the region. We assess ENSO effects on seasonal circulation.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Paula Maria Salgado-Hernanz, Aurore Regaudie-de-Gioux, David Antoine, and Gotzon Basterretxea
Biogeosciences, 19, 47–69, https://doi.org/10.5194/bg-19-47-2022, https://doi.org/10.5194/bg-19-47-2022, 2022
Short summary
Short summary
For the first time, this study presents the characteristics of primary production in coastal regions of the Mediterranean Sea based on satellite-borne observations for the period 2002–2016. The study concludes that there are significant spatial and temporal variations among different regions. Quantifying primary production is of special importance in the marine food web and in the sequestration of carbon dioxide from the atmosphere to the deep waters.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
Ismael Hernández-Carrasco, Lohitzune Solabarrieta, Anna Rubio, Ganix Esnaola, Emma Reyes, and Alejandro Orfila
Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, https://doi.org/10.5194/os-14-827-2018, 2018
Short summary
Short summary
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed. Its performance is compared with other methods focusing on the propagation of errors introduced in the reconstruction of the velocity fields through the trajectories, Lagrangian flow structures and residence times. We find that even when a large number of measurements in the HFR velocity field is missing, the Lagrangian techniques still give an accurate description of oceanic transport properties.
I. Hernández-Carrasco, J. Sudre, V. Garçon, H. Yahia, C. Garbe, A. Paulmier, B. Dewitte, S. Illig, I. Dadou, M. González-Dávila, and J. M. Santana-Casiano
Biogeosciences, 12, 5229–5245, https://doi.org/10.5194/bg-12-5229-2015, https://doi.org/10.5194/bg-12-5229-2015, 2015
Short summary
Short summary
We have reconstructed maps of air-sea CO2 fluxes at high resolution (4 km) in the offshore Benguela region using sea surface temperature and ocean colour data and CarbonTracker CO2 fluxes data at low resolution (110 km).
The inferred representation of pCO2 improves the description provided by CarbonTracker, enhancing small-scale variability.
We find that the resolution, as well as the inferred pCO2 data itself, is closer to in situ measurements of pCO2.
I. Hernández-Carrasco, C. López, A. Orfila, and E. Hernández-García
Nonlin. Processes Geophys., 20, 921–933, https://doi.org/10.5194/npg-20-921-2013, https://doi.org/10.5194/npg-20-921-2013, 2013
Cited articles
Archer, D. E. and Johnson, K.: A model of the iron cycle in the ocean,
Global Biogeochem. Cy., 14, 269–279, 2000.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Ayers, J. M. and Strutton, P. G.: Nutrient variability in subantarctic mode
waters forced by the southern annular mode and ENSO, Geophys. Res. Lett.,
40, 3419–3423, 2013.
De Baar, H. J. W., de Jong, J. T. M., Bakker, D. C. E., Löscher, B. M.,
Veth, C., Bathmann, U., and Smetacek, V.: Importance of iron for plankton
blooms and carbon dioxide drawdown in the Southern Ocean, Nature, 373,
412–415, 1995.
Basterretxea, G., Font-Muñoz, J. S., Salgado-Hernanz, P. M., Arrieta,
J., and Hernández-Carrasco, I.: Patterns of chlorophyll interannual
variability in Mediterranean biogeographical regions, Remote Sens. Environ.,
215, 7–17, https://doi.org/10.1016/j.rse.2018.05.027, 2018.
Bates, N. R. and Johnson, R. J.: Acceleration of ocean warming,
salinification, deoxygenation and acidification in the surface subtropical
North Atlantic Ocean, Commun. Earth Environ., 1, 33, https://doi.org/10.1038/s43247-020-00030-5, 2020.
Bertrand, E., Saito, M., Lee, P., Dunbar, R., Sedwick, P., and DiTullio, G.:
Iron Limitation of a Springtime Bacterial and Phytoplankton Community in the
Ross Sea: Implications for Vitamin B12 Nutrition, Front. Microbiol., 2, 160,
https://doi.org/10.3389/fmicb.2011.00160, 2011.
Bertrand, E. M., Allen, A. E., Dupont, C. L., Norden-Krichmar, T. M., Bai,
J., Valas, R. E., and Saito, M. A.: Influence of cobalamin scarcity on
diatom molecular physiology and identification of a cobalamin acquisition
protein, P. Natl. Acad. Sci. USA, 109, E1762–E1771, 2012.
Birchill, A. J., Hartner, N. T., Kunde, K., Siemering, B., Daniels, C.,
Gonzalez-Santana, D., Milne, A., Ussher, S. J., Worsfold, P. J., and
Leopold, K.: The eastern extent of seasonal iron limitation in the high
latitude North Atlantic Ocean, Sci. Rep.-UK, 9, 1–12, 2019.
Bordbar, M. H., Martin, T., Latif, M., and Park, W.: Role of internal
variability in recent decadal to multidecadal tropical Pacific climate
changes, Geophys. Res. Lett., 44, 4246–4255, 2017.
Bordbar, M. H., England, M. H., Sen Gupta, A., Santoso, A., Taschetto, A.
S., Martin, T., Park, W., and Latif, M.: Uncertainty in near-term global
surface warming linked to tropical Pacific climate variability, Nat.
Commun., 10, 1990, https://doi.org/10.1038/s41467-019-09761-2, 2019.
Boyce, D. G., Lewis, M. R., and Worm, B.: Global phytoplankton decline over
the past century, Nature, 466, 591–596, 2010.
Boyce, D. G., Dowd, M., Lewis, M. R., and Worm, B.: Estimating global
chlorophyll changes over the past century, Prog. Oceanogr., 122, 163–173,
2014.
Boyd, P. W. and Ellwood, M. J.: The biogeochemical cycle of iron in the
ocean, Nat. Geosci., 3, 675–682, 2010.
Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch,
R., Bakker, D. C. E., Bowie, A. R., Buesseler, K. O., and Chang, H.: A
mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron
fertilization, Nature, 407, 695–702, 2000.
Boyd, P. W., Law, C. S., Wong, C. S., Nojiri, Y., Tsuda, A., Levasseur, M.,
Takeda, S., Rivkin, R., Harrison, P. J., Strzepek, R., Gower, J., McKay, M.,
Abraham, E., Arychuk, M., Barwell-Clarke, J., Crawford, W., Crawford, D.,
Hale, M., Harada, K., Johnson, K., Kiyosawa, H., Kudo, I., Marchetti, A.,
Miller, W., Needoba, J., Nishioka, J., Ogawa, H., Page, J., Robert, M.,
Saito, H., Sastri, A., Sherry, N., Soutar, T., Sutherland, N., Taira, Y.,
Whitney, F., Wong, S.-K. E., and Yoshimura, T.: The decline and fate of an
iron-induced subarctic phytoplankton bloom, Nature, 428, 549–553,
https://doi.org/10.1038/nature02437, 2004.
Boyd, P. W., Strzepek, R., Takeda, S., Jackson, G., Wong, C. S., McKay, R.
M., Law, C., Kiyosawa, H., Saito, H., and Sherry, N.: The evolution and
termination of an iron-induced mesoscale bloom in the northeast subarctic
Pacific, Limnol. Oceanogr., 50, 1872–1886, 2005.
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler,
K. O., Coale, K. H., Cullen, J. J., de Baar, H. J. W., Follows, M., Harvey,
M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R.
B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A.,
Turner, S., and Watson, A. J.: Mesoscale Iron Enrichment Experiments
1993–2005: Synthesis and Future Directions, Science, 315, 612–617, https://doi.org/10.1126/science.1131669, 2007.
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Locarnini, R. A., Mishonov, A. V., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., Weathers, K. W., and Zweng, M. M.: World Ocean Database 2018, A. V. Mishonov, Technical Editor, NOAA Atlas NESDIS 87, https://www.ncei.noaa.gov/products/world-ocean-database (last access: 12 June 2023), 2018.
Browning, T. J., Bouman, H. A., and Moore, C. M.: Satellite-detected
fluorescence: Decoupling nonphotochemical quenching from iron stress signals
in the South Atlantic and Southern Ocean, Global Biogeochem. Cy., 28,
510–524, 2014.
Browning, T. J., Achterberg, E. P., Rapp, I., Engel, A., Bertrand, E. M.,
Tagliabue, A., and Moore, C. M.: Nutrient co-limitation at the boundary of
an oceanic gyre, Nature, 551, 242–246, 2017.
Bryant, D. A.: The beauty in small things revealed, P. Natl. Acad. Sci. USA,
100, 9647–9649, 2003.
Burls, N. J., Fedorov, A. V, Sigman, D. M., Jaccard, S. L., Tiedemann, R.,
and Haug, G. H.: Active Pacific meridional overturning circulation (PMOC)
during the warm Pliocene, Sci. Adv., 3, e1700156, https://doi.org/10.1126/sciadv.1700156, 2017.
Chavez, F. P., Buck, K. R., Coale, K. H., Martin, J. H., DiTullio, G. R.,
Welschmeyer, N. A., Jacobson, A. C., and Barber, R. T.: Growth rates,
grazing, sinking, and iron limitation of equatorial Pacific phytoplankton,
Limnol. Oceanogr., 36, 1816–1833, 1991.
Chavez, F. P., Strutton, P. G., Friederich, G. E., Feely, R. A., Feldman, G.
C., Foley, D. G., and McPhaden, M. J.: Biological and chemical response of
the equatorial Pacific Ocean to the 1997–98 El Niño, Science,
286, 2126–2131, 1999.
Chisholm, S. W. and Morel, F. M. M.: What controls
phytoplankton production in nutrient-rich areas of the open sea?, Am.
Soc. Limnol. Oceanogr. Symp., 36, U1507–U1511, 1991.
Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S.,
Chavez, F. P., Ferioli, L., Sakamoto, C., Rogers, P., and Millero, F.: A
massive phytoplankton bloom induced by an ecosystem-scale iron fertilization
experiment in the equatorial Pacific Ocean, Nature, 383, 495–501, 1996.
Coale, K. H., Johnson, K. S., Chavez, F. P., Buesseler, K. O., Barber, R.
T., Brzezinski, M. A., Cochlan, W. P., Millero, F. J., Falkowski, P. G., and
Bauer, J. E.: Southern Ocean iron enrichment experiment: carbon cycling in
high-and low-Si waters, Science, 304, 408–414, 2004.
Cohen, N. R., A. Ellis, K., Burns, W. G., Lampe, R. H., Schuback, N.,
Johnson, Z., Sañudo-Wilhelmy, S., and Marchetti, A.: Iron and vitamin
interactions in marine diatom isolates and natural assemblages of the
Northeast Pacific Ocean, Limnol. Oceanogr., 62, 2076–2096, 2017.
Cullen, J. J.: Status of the iron hypothesis after the
open ocean enrichment experiment, Limnol. Oceanogr., 40, 1336–1343,
https://doi.org/10.4319/lo.1995.40.7.1336, 1995.
Cullen, J. T., Chong, M., and Ianson, D.: British Columbian continental
shelf as a source of dissolved iron to the subarctic northeast Pacific
Ocean, Global Biogeochem. Cy., 23, GB4012, https://doi.org/10.1029/2008GB003326, 2009.
Cummins, P. F. and Freeland, H. J.: Variability of the North Pacific Current
and its bifurcation, Prog. Oceanogr., 75, 253–265, 2007.
Di Lorenzo, E., Schneider, N., Cobb, K. M., Franks, P. J. S., Chhak, K.,
Miller, A. J., McWilliams, J. C., Bograd, S. J., Arango, H., and Curchitser,
E.: North Pacific Gyre Oscillation links ocean climate and ecosystem change,
Geophys. Res. Lett., 35, L08607, https://doi.org/10.1029/2007GL032838, 2008.
Di Lorenzo, E., Combes, V., Keister, J. E., Strub, P. T., Thomas, A. C.,
Franks, P. J. S., Ohman, M. D., Furtado, J. C., Bracco, A., and Bograd, S.
J.: Synthesis of Pacific Ocean climate and ecosystem dynamics, Oceanography, 26, 68–81,
2013.
Dong, B. and Sutton, R. T.: Enhancement of ENSO variability by a weakened
Atlantic thermohaline circulation in a coupled GCM, J. Climate, 20,
4920–4939, 2007.
Dong, B., Sutton, R. T., and Scaife, A. A.: Multidecadal modulation of El
Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface
temperatures, Geophys. Res. Lett., 33, L08705, https://doi.org/10.1029/2006GL025766, 2006.
Dugdale, R. C. and Wilkerson, F. P.: Silicate regulation of new production
in the equatorial Pacific upwelling, Nature, 391, 270–273, 1998.
Dugdale, R. C., Wischmeyer, A. G., Wilkerson, F. P., Barber, R. T., Chai,
F., Jiang, M.-S., and Peng, T.-H.: Meridional asymmetry of source nutrients
to the equatorial Pacific upwelling ecosystem and its potential impact on
ocean–atmosphere CO2 flux; a data and modeling approach, Deep Sea Res. Pt.
II, 49, 2513–2531, 2002.
Eldridge, M. L., Trick, C. G., Alm, M. B., DiTullio, G. R., Rue, E. L.,
Bruland, K. W., Hutchins, D. A., and Wilhelm, S. W.: Phytoplankton community
response to a manipulation of bioavailable iron in HNLC waters of the
subtropical Pacific Ocean, Aquat. Microb. Ecol., 35, 79–91, 2004.
England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai,
W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A.: Recent
intensification of wind-driven circulation in the Pacific and the ongoing
warming hiatus, Nat. Clim. Change, 4, 222–227, 2014.
Falkowski, P. G., Barber, R. T., and Smetacek, V.: Biogeochemical Controls
and Feedbacks on Ocean Primary Production, Science, 281, 200–206,
https://doi.org/10.1126/science.281.5374.200, 1998.
Firme, G. F., Rue, E. L., Weeks, D. A., Bruland, K. W., and Hutchins, D. A.:
Spatial and temporal variability in phytoplankton iron limitation along the
California coast and consequences for Si, N, and C biogeochemistry, Global
Biogeochem. Cy., 17, 1016, https://doi.org/10.1029/2001GB001824, 2003.
Fu, W. and Wang, W.: Biogeochemical Equilibrium Responses to Maximal
Productivity in High Nutrient Low Chlorophyll Regions, J. Geophys. Res.-Biogeo., 127, e2021JG006636, https://doi.org/10.1029/2021JG006636, 2022.
Fu, W., Randerson, J. T., and Moore, J. K.: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models, Biogeosciences, 13, 5151–5170, https://doi.org/10.5194/bg-13-5151-2016, 2016.
Garnesson, P., Mangin, A., Fanton d'Andon, O., Demaria, J., and Bretagnon, M.: The CMEMS GlobColour chlorophyll a product based on satellite observation: multi-sensor merging and flagging strategies, Ocean Sci., 15, 819–830, https://doi.org/10.5194/os-15-819-2019, 2019.
GEOTRACES, Intermediate Data Product Group: The GEOTRACES
Intermediate Data Product 2021 (IDP2021), NERC EDS British
Oceanographic Data Centre NOC [data set],
https://doi.org/10.5285/cf2d9ba9-d51d-3b7c-e053-8486abc0f5fd, 2021.
Gordon, R. M., Coale, K. H., and Johnson, K. S.: Iron distributions in the
equatorial Pacific: Implications for new production, Limnol. Oceanogr., 42,
419–431, 1997.
Green, B., Marshall, J., and Donohoe, A.: Twentieth century correlations
between extratropical SST variability and ITCZ shifts, Geophys. Res. Lett.,
44, 9039–9047, 2017.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Hammond, M. L., Beaulieu, C., Sahu, S. K., and Henson, S. A.: Assessing
trends and uncertainties in satellite-era ocean chlorophyll using space-time
modeling, Global Biogeochem. Cy., 31, 1103–1117, 2017.
Harrison, P. J., Whitney, F. A., Tsuda, A., Saito, H., and Tadokoro, K.:
Nutrient and plankton dynamics in the NE and NW gyres of the subarctic
Pacific Ocean, J. Oceanogr., 60, 93–117, 2004.
Hauck, J., Völker, C., Wolf-Gladrow, D. A., Laufkötter, C., Vogt,
M., Aumont, O., Bopp, L., Buitenhuis, E. T., Doney, S. C., and Dunne, J.: On
the Southern Ocean CO2 uptake and the role of the biological carbon pump in
the 21st century, Global Biogeochem. Cy., 29, 1451–1470, 2015.
Hernández-Carrasco, I. and Orfila, A.: The Role of an Intense Front on
the Connectivity of the Western Mediterranean Sea: The Cartagena-Tenes
Front, J. Geophys. Res.-Ocean., 123, 4398–4422, 2018.
Holzer, M., DeVries, T., and de Lavergne, C.: Diffusion controls the
ventilation of a Pacific Shadow Zone above abyssal overturning, Nat.
Commun., 12, 4348, https://doi.org/10.1038/s41467-021-24648-x, 2021.
Hutchins, D. A., DiTullio, G. R., Zhang, Y., and Bruland, K. W.: An iron
limitation mosaic in the California upwelling regime, Limnol. Oceanogr., 43,
1037–1054, 1998.
Hutchins, D. A., Hare, C. E., Weaver, R. S., Zhang, Y., Firme, G. F.,
DiTullio, G. R., Alm, M. B., Riseman, S. F., Maucher, J. M., and Geesey, M.
E.: Phytoplankton iron limitation in the Humboldt Current and Peru
Upwelling, Limnol. Oceanogr., 47, 997–1011, 2002.
Ibánhez, J. S. P., Flores, M., and Lefèvre, N.: Collapse of the
tropical and subtropical North Atlantic CO2 sink in boreal spring of 2010,
Sci. Rep., 7, 1–9, 2017.
Imai, K., Nojiri, Y., Tsurushima, N., and Saino, T.: Time series of seasonal
variation of primary productivity at station KNOT (44∘ N, 155∘ E) in the
sub-arctic western North Pacific, Deep-Sea Res. Pt. II, 49, 5395–5408, 2002.
Ishizaki, H.: A simulation of the abyssal circulation in the North Pacific
Ocean. Part II: Theoretical rationale, J. Phys. Oceanogr., 24, 1941–1954,
1994.
Key, R. M., Tanhua, T., Olsen, A., Hoppema, M., Jutterström, S.,
Schirnick, C., van Heuven, S., Kozyr, A., Lin, X., Velo, A., Wallace,
D. W. R., and Mintrop, L.: The CARINA data synthesis project:
introduction and overview, Earth Syst. Sci. Data, 2, 105–121,
https://doi.org/10.5194/essd-2-105-2010, 2010 (data available at: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/CARINA/about_carina.html, last access: 12 June 2023).
Koch, F., Marcoval, M. A., Panzeca, C., Bruland, K. W., Sañudo-Wilhelmy,
S. A., and Gobler, C. J.: The effect of vitamin B12 on phytoplankton growth
and community structure in the Gulf of Alaska, Limnol. Oceanogr., 56,
1023–1034, 2011.
Kohonen, T.: Analysis of a simple self-organizing process, Biol. Cybern.,
44, 135–140, 1982.
Kumar, N., Anderson, R. F., Mortlock, R. A., Froelich, P. N., Kubik, P.,
Dittrich-Hannen, B., and Suter, M.: Increased biological productivity and
export production in the glacial Southern Ocean, Nature, 378, 675–680,
1995.
Lam, P. J., Bishop, J. K. B., Henning, C. C., Marcus, M. A., Waychunas, G.
A., and Fung, I. Y.: Wintertime phytoplankton bloom in the subarctic Pacific
supported by continental margin iron, Global Biogeochem. Cy., 20, GB1006,
https://doi.org/10.1029/2005GB002557, 2006.
Landry, M. R., Selph, K. E., Taylor, A. G., Décima, M., Balch, W. M.,
and Bidigare, R. R.: Phytoplankton growth, grazing and production balances
in the HNLC equatorial Pacific, Deep-Sea Res. Pt. II,
58, 524–535, 2011.
Lauderdale, J. M., Braakman, R., Forget, G., Dutkiewicz, S., and Follows, M.
J.: Microbial feedbacks optimize ocean iron availability, P. Natl. Acad.
Sci. USA, 117, 4842–4849, 2020.
Liu, Y., Weisberg, R. H., Vignudelli, S., and Mitchum, G. T.: Patterns of
the loop current system and regions of sea surface height variability in the
eastern Gulf of Mexico revealed by the self-organizing maps, J. Geophys.
Res.-Ocean., 121, 2347–2366, 2016.
Lumpkin, R. and Speer, K.: Global ocean meridional overturning, J. Phys.
Oceanogr., 37, 2550–2562, 2007.
Maritorena, S. and Siegel, D. A.: Consistent merging of satellite ocean
color data sets using a bio-optical model, Remote Sens. Environ., 94,
429–440, 2005.
Maritorena, S., Hembise Fanton d'Andon, O., Mangin, A., and Siegel, D. A.:
Merged satellite ocean color data products using a bio-optical model:
Characteristics, benefits and issues, Remote Sens. Environ., 114, 1791–1804, https://doi.org/10.1016/j.rse.2010.04.002, 2010 (data available at: https://hermes.acri.fr/, last access: 12 June 2023).
Martin, J. H.: Glacial-interglacial CO2 change: The iron hypothesis,
Paleoceanography, 5, 1–13, 1990.
Martin, J. H. and Fitzwater, S. E.: Iron deficiency limits phytoplankton
growth in the north-east Pacific subarctic, Nature, 331, 341–343,
https://doi.org/10.1038/331341a0, 1988.
Martin, J. H., Fitzwater, S. E., and Gordon, R. M.: Iron deficiency limits
phytoplankton growth in Antarctic waters, Global Biogeochem. Cy., 4,
5–12, 1990.
Martin, J. H., Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R.
M., Tanner, S. J., Hunter, C. N., Elrod, V. A., Nowicki, J. L., and Coley,
T. L.: Testing the iron hypothesis in ecosystems of the equatorial Pacific
Ocean, Nature, 371, 123–129, 1994.
Martinez, E., Gorgues, T., Lengaigne, M., Fontana, C., Sauzède, R.,
Menkes, C., Uitz, J., Di Lorenzo, E., and Fablet, R.: Reconstructing global
chlorophyll-a variations using a non-linear statistical approach, Front.
Mar. Sci., 7, 464, https://doi.org/10.3389/fmars.2020.00464, 2020.
Martínez-Garcia, A., Rosell-Melé, A., Geibert, W., Gersonde, R.,
Masqué, P., Gaspari, V., and Barbante, C.: Links between iron supply,
marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma,
Paleoceanography, 24, PA1207, https://doi.org/10.1029/2008PA001657, 2009.
McConnell, J. R., Aristarain, A. J., Banta, J. R., Edwards, P. R., and
Simões, J. C.: 20th-Century doubling in dust archived in an Antarctic
Peninsula ice core parallels climate change and desertification in South
America, P. Natl. Acad. Sci. USA, 104, 5743–5748, 2007.
McPhaden, M. J.: Trade wind fetch-related variations in equatorial
undercurrent depth, speed, and transport, J. Geophys. Res.-Ocean., 98,
2555–2559, 1993.
McPhaden, M. J. and Zhang, D.: Slowdown of the meridional overturning
circulation in the upper Pacific Ocean, Nature, 415, 603–608, 2002.
Mélin, F., Vantrepotte, V., Chuprin, A., Grant, M., Jackson, T., and
Sathyendranath, S.: Assessing the fitness-for-purpose of satellite
multi-mission ocean color climate data records: A protocol applied to OC-CCI
chlorophyll-a data, Remote Sens. Environ., 203, 139–151, 2017.
Mercator-Ocean: Global Ocean Biogeochemistry Hindcast product:
GLOBAL_MULTIYEAR_BGC_001_029, E.U. Copernicus Marine Service [data set], https://doi.org/10.48670/moi-00019
last access: 12 June 2023.
Minas, H. J., Minas, M., and Packard, T. T.: Productivity in upwelling areas
deduced from hydrographic and chemical fields 1, Limnol. Oceanogr., 31,
1182–1206, 1986.
Moat B. I., Frajka-Williams E., Smeed D. A., Rayner D., Johns, W. E.,
Baringer, M. O., Volkov, D., and Collins, J.: Atlantic meridional
overturning circulation observed by the RAPID-MOCHA-WBTS
(RAPID-Meridional Overturning Circulation and Heatflux Array-Western
Boundary Time Series) array at 26N from 2004 to 2020 (v2020.2),
British Oceanographic Data Centre – Natural Environment Research
Council, UK [data set], https://doi.org/10.5285/e91b10af-6f0a-7fa7-e053-6c86abc05a09, 2022.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., and Jaccard, S. L.:
Processes and patterns of oceanic nutrient limitation, Nat. Geosci., 6,
701–710, 2013.
Moore, J. K. and Doney, S. C.: Iron availability limits the ocean nitrogen
inventory stabilizing feedbacks between marine denitrification and nitrogen
fixation, Global Biogeochem. Cy., 21, GB2001, https://doi.org/10.1029/2006GB002762, 2007.
Moore, J. K., Fu, W., Primeau, F., Britten, G. L., Lindsay, K., Long, M.,
Doney, S. C., Mahowald, N., Hoffman, F., and Randerson, J. T.: Sustained
climate warming drives declining marine biological productivity, Science, 359, 1139–1143, 2018.
Moradi, M.: Evaluation of merged multi-sensor ocean-color chlorophyll
products in the Northern Persian Gulf, Cont. Shelf Res., 221, 104415, https://doi.org/10.1016/j.csr.2021.104415, 2021.
Muglia, J., Skinner, L. C., and Schmittner, A.: Weak overturning circulation
and high Southern Ocean nutrient utilization maximized glacial ocean carbon,
Earth Planet. Sc. Lett., 496, 47–56, 2018.
Nielsdóttir, M. C., Moore, C. M., Sanders, R., Hinz, D. J., and
Achterberg, E. P.: Iron limitation of the postbloom phytoplankton
communities in the Iceland Basin, Global Biogeochem. Cy., 23, GB3001, https://doi.org/10.1029/2008GB003410, 2009.
Nishioka, J., Ono, T., Saito, H., Nakatsuka, T., Takeda, S., Yoshimura, T.,
Suzuki, K., Kuma, K., Nakabayashi, S., and Tsumune, D.: Iron supply to the
western subarctic Pacific: Importance of iron export from the Sea of
Okhotsk, J. Geophys. Res.-Ocean., 112, C10012, https://doi.org/10.1029/2006JC004055, 2007.
Nishioka, J., Obata, H., Ogawa, H., Ono, K., Yamashita, Y., Lee, K., Takeda,
S., and Yasuda, I.: Subpolar marginal seas fuel the North Pacific through
the intermediate water at the termination of the global ocean circulation,
P. Natl. Acad. Sci. USA, 117, 12665–12673, 2020.
Nishioka, J., Obata, H., Hirawake, T., Kondo, Y., Yamashita, Y., Misumi, K.,
and Yasuda, I.: A review: iron and nutrient supply in the subarctic Pacific
and its impact on phytoplankton production, J. Oceanogr., 77, 561–587,
2021.
Oliver, M. J. and Irwin, A. J.: Objective global ocean biogeographic
provinces, Geophys. Res. Lett., 35, L15601, https://doi.org/10.1029/2008GL034238, 2008.
Ono, T., Shiomoto, A., and Saino, T.: Recent decrease of summer nutrients
concentrations and future possible shrinkage of the subarctic North Pacific
high-nutrient low-chlorophyll region, Global Biogeochem. Cy., 22, GB3027,
https://doi.org/10.1029/2007GB003092, 2008.
Orsi, A. H., Whitworth III, T., and Nowlin Jr., W. D.: On the meridional
extent and fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42, 641–673, 1995.
Parekh, P., Follows, M. J., and Boyle, E. A.: Decoupling of iron and
phosphate in the global ocean, Global Biogeochem. Cy., 19, GB2020, https://doi.org/10.1029/2004GB002280, 2005.
Philander, S. G. H. and Chao, Y.: On the contrast between the seasonal
cycles of the equatorial Atlantic and Pacific Oceans, J. Phys. Oceanogr.,
21, 1399–1406, 1991.
Pollard, R. T., Salter, I., Sanders, R. J., Lucas, M. I., Moore, C. M.,
Mills, R. A., Statham, P. J., Allen, J. T., Baker, A. R., and Bakker, D. C.
E.: Southern Ocean deep-water carbon export enhanced by natural iron
fertilization, Nature, 457, 577–580, 2009.
Polovina, J. J., Howell, E. A., and Abecassis, M.: Ocean's least productive
waters are expanding, Geophys. Res. Lett., 35, L03618, https://doi.org/10.1029/2007GL031745, 2008.
Qiu, B.: Large-scale variability in the midlatitude subtropical and subpolar
North Pacific Ocean: Observations and causes, J. Phys. Oceanogr., 32,
353–375, 2002.
Radenac, M., Léger, F., Singh, A., and Delcroix, T.: Sea surface
chlorophyll signature in the tropical Pacific during eastern and central
Pacific ENSO events, J. Geophys. Res.-Ocean., 117, C04007, https://doi.org/10.1029/2011JC007841, 2012.
Rafter, P. A., Sigman, D. M., and Mackey, K. R. M.: Recycled iron fuels new
production in the eastern equatorial Pacific Ocean, Nat. Commun., 8, 1100, https://doi.org/10.1038/s41467-017-01219-7,
2017.
Riebesell, U., Körtzinger, A., and Oschlies, A.: Sensitivities of marine
carbon fluxes to ocean change, P. Natl. Acad. Sci. USA, 106, 20602–20609,
2009.
Schmidt, K., Schlosser, C., Atkinson, A., Fielding, S., Venables, H. J.,
Waluda, C. M., and Achterberg, E. P.: Zooplankton gut passage mobilizes
lithogenic iron for ocean productivity, Curr. Biol., 26, 2667–2673, 2016.
Schneider, N., Miller, A. J., Alexander, M. A., and Deser, C.: Subduction of
decadal North Pacific temperature anomalies: Observations and dynamics, J.
Phys. Oceanogr., 29, 1056–1070, 1999.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389, 1968.
Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I.,
Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., and Bryden,
H. L.: The North Atlantic Ocean is in a state of reduced overturning,
Geophys. Res. Lett., 45, 1527–1533, 2018.
Smeed, D., Moat, B. I., Rayner, D., Johns, W. E., Baringer, M. O., Volkov, D. L., and
Frajka-Williams, E.: Atlantic meridional overturning circulation observed by
the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux
Array-Western Boundary Time Series) array at 26N from 2004 to 2018, British
Oceanographic Data Centre, National Oceanography Centre, NERC, UK [data set],
https://doi.org/10.5285/8cd7e7bb-9a20-05d8-e053-6c86abc012c2, 2019.
Strutton, P. G. and Chavez, F. P.: Primary productivity in the equatorial
Pacific during the 1997–1998 El Niño, J. Geophys. Res.-Ocean., 105,
26089–26101, 2000.
Tagliabue, A., Aumont, O., and Bopp, L.: The impact of different external
sources of iron on the global carbon cycle, Geophys. Res. Lett., 41,
920–926, 2014.
Takeda, S.: Iron and phytoplankton growth in the subarctic North Pacific,
Terrapub, 4, 41–93, 2011.
Timmermann, A., Okumura, Y., An, S.-I., Clement, A., Dong, B., Guilyardi,
E., Hu, A., Jungclaus, J. H., Renold, M., and Stocker, T. F.: The influence
of a weakening of the Atlantic meridional overturning circulation on ENSO,
J. Climate, 20, 4899–4919, 2007.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B.
Am. Meteorol. Soc., 79, 61–78, 1998.
Torrence, C. and Webster, P. J.: Interdecadal changes in the ENSO–monsoon
system, J. Climate, 12, 2679–2690, 1999.
Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y., Kudo, I.,
Kiyosawa, H., Shiomoto, A., Imai, K., and Ono, T.: A mesoscale iron
enrichment in the western subarctic Pacific induces a large centric diatom
bloom, Science, 300, 958–961, 2003.
Vatanen, T., Osmala, M., Raiko, T., Lagus, K., Sysi-Aho, M., Orešič,
M., Honkela, T., and Lähdesmäki, H.: Self-organization and missing
values in SOM and GTM, Neurocomputing, 147, 60–70, 2015.
Vesanto, J., Himberg, J., Alhoniemi, E., and Parhankangas, J.:
Self-Organizing Map in Matlab: the SOM Toolbox, in: Matlab DSP
Conference 1999, Espoo, Finland, 16–17 November 1999, 35–40,
http://lib.tkk.fi/Diss/2002/isbn951226093X/article2.pdf (last access: 12 June 2023), 1999.
Warren, B. A.: Why is no deep water formed in the North Pacific?, J. Mar.
Res., 41, 327–347, 1983.
Winckler, G., Anderson, R. F., Jaccard, S. L., and Marcantonio, F.: Ocean
dynamics, not dust, have controlled equatorial Pacific productivity over the
past 500,000 years, P. Natl. Acad. Sci. USA, 113, 6119–6124, 2016.
Yaremchuk, M., Bindoff, N. L., Schröter, J., Nechaev, D., and Rintoul,
S. R.: On the zonal and meridional circulation and ocean transports between
Tasmania and Antarctica, J. Geophys. Res.-Ocean., 106, 2795–2814, 2001.
Yasunaka, S., Nojiri, Y., Nakaoka, S., Ono, T., Whitney, F. A., and
Telszewski, M.: Mapping of sea surface nutrients in the N orth P acific:
Basin-wide distribution and seasonal to interannual variability, J. Geophys.
Res.-Ocean., 119, 7756–7771, 2014.
Yasunaka, S., Ono, T., Nojiri, Y., Whitney, F. A., Wada, C., Murata, A.,
Nakaoka, S., and Hosoda, S.: Long-term variability of surface nutrient
concentrations in the North Pacific, Geophys. Res. Lett., 43, 3389–3397,
2016.
Short summary
We examine global ocean color data and modeling outputs of nutrients using SOM analysis to identify characteristic spatial and temporal patterns of HNLC regions and their association with different climate modes. HNLC regions in polar and subpolar areas have experienced an increase in phytoplankton biomass over the last decades, particularly in the Southern Ocean. Our study finds that chlorophyll variations in HNLC regions respond to major climate variability signals.
We examine global ocean color data and modeling outputs of nutrients using SOM analysis to...