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Supplementary material 

SOM analysis  

SOM is a subtype of artificial neural network that uses an unsupervised machine learning 
algorithm to process and extract hidden structures in large amount of data. The learning 
process seeks to identify low-dimensional features in high-dimensional data according to 
a similarity measure while preserving the topological properties of the input space. This 
technique provides some advantages as compared to other widely used statistical 
approaches such as proper orthogonal decomposition, principal component analysis or k-
means, for several reasons: i) it allows an appropriate exploratory data analysis of high 
dimensional data, such as the long time series of global Chl and nutrients maps; ii) 
identifies and extracts underlying nonlinear regressions in the data, for example using 
step-like or Gaussian functions for the neighborhood relationship; iii) it is an efficient 
method for feature extraction and afterwards classification, providing the patterns that 
explain the overall behavior of the system; and iv) because of the preservation of the 
topology, SOM has an additional benefit of ordering the patterns in the neural network 
according to their similitude, enabling an easy visualization and interpretation of large 
number of patterns (Brunton et al., 2020; Liu et al., 2006). The SOM is a powerful 
machine learning technique that has been widely used in oceanographic research 
(Richardson et al., 2003; Liu and Weisberg, 2005; Liu et al., 2006). 

The SOM algorithm is basically composed of two main steps: initialization and training. 
In the initialization the architecture of the neural network used in this study is set in a 
hexagonal map lattice of neurons, or units, in order to have equidistant neurons (to avoid 
anisotropy artifacts). Each unit is represented by a weight vector with a number of 
components equal to the dimension of the input data, i. e. number of rows or number of 
columns in the Chl and NO3 matrices, depending on whether the analysis is performed 
in the temporal or in the spatial domain. We use an initial network composed of units of 
random values. In the training process, the initial neural network is transformed by 
iteratively presenting the input data. In each successive iteration the neuron, or unit, with 
the greatest similarity (excited neuron), called Best Matching Unit (BMU) is updated by 
replacing their values with the Chl and NO3 values of the input sample data. The 
similarity is estimated by computing the Euclidean distance between components of the 
input sample and components of the weight vector of the unit. The unit most similar to 
the input sample is the one with the minimum distance. In the learning process, Chl and 
NO3 values of the neighboring neurons of the excited neuron are also updated replacing 
their values with values determined by a neighborhood function. In this way, the 
topological neighbors of the BMU are also updated through the neighborhood function. 
In this study, we use the imputation batch training algorithm (Vatanen et al., 2015) and a 
Gaussian neighboring function. After repeating the training process a number of times 
until a stable convergence of the map is achieved, we obtain a neural network with the 
final NO3:Chl patterns. Therefore, the resulting patterns will exhibit some similarity 
because the SOM process assumes that a single sample of data (input vector) contributes 



to the creation of more than one pattern, as the whole neighborhood around the best-
matching pattern is also updated in each step of training. It also results in a more detailed 
assimilation of particular features appearing on neighboring patterns, if the information 
from the original data enables to do so. 

The size of the neural network (number of neurons) depends on the number of samples 
and on the complexity of the patterns and an optimal choice is important to maximize the 
quality of the SOM. In the present study, the map size is set to be [4 x 3] with 12 neurons 
for the time domain analysis, and a [3 x 3] neural network used in the spatial domain. 
Using larger map sizes, the patterns are slightly more detailed and more regions of a 
particular variability emerge, but the occurrence of probability of the patterns decreases, 
without affecting the results noticeably (Basterretxea et al., 2018; Hernandez-Carrasco 
and Orfila, 2018). If a reduced neural map, such as [2 x 2] is used, patterns are 
concentrated together with the occurrence probability in few rough patterns but 
increasing, in this case, the topological error.  
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Wavelet coherence analysis 



Wavelet transform of a time series xn (WX) performs a time-frequency domain 
decomposition of the time series by estimating its spectral characteristics as a function of 
time (Torrence and Compo, 1998). It is preferred to classical Fourier analysis (Brockwell 
and Davis, 1987; Priestley, 1992) since it resolves non-stationary signals, therefore being 
well suited for identifying periodic phenomena with changing spectra. Here we used a 
Morlet wavelet transform with an adimensional frequency w0=6 (i.e. it contains 6 
complete cycles of the temporal scale that is being analyzed), as the wavelet base function 
because it is adequate to be localized in both time and frequency space and therefore to 
properly assess changes in the wavelet amplitude over time (Torrence and Compo, 1998). 
To distinguish a signal from noise a threshold above the 95% confidence interval of a red‐
noise spectrum was used. 

Using the cross-wavelet transform (XWT) we determine the cyclic changes at each of the 
HNLC regions and their relationship with global forcings mentioned above. The XWT of 
two time-series xn and yn indicates common power and relative phase in the frequency-
time domain and is given by: 

𝑊!" = 𝑊!𝑊"∗,           Eq. 1 

where * represents the complex conjugate. |WXY| is the cross-wavelet power and arg (WXY) 
is the relative phase between the two series (shown in the figures as arrows). 

Finally the wavelet coherence value at each time point was calculated as the absolute 
value squared of the smoothed cross-wavelet spectrum, normalized by the product of the 
smoothed wavelet individual spectra, for each scale (Torrence and Compo, 1998). To 
quantify the degree of coherence of cross wavelet transform in time-frequency space we 
use the wavelet coherence coefficient defined as follows (Torrence and Webster, 1999; 
Grinsted et al., 2004): 
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where R2 takes values between 0 (no correlation) and 1 (perfect correlation). R2 can be 
interpreted as a localized correlation coefficient in the frequency-time domain. S is a 
smoothing operator in the time-frequency (scale) domain. The smoothing process is 
necessary to remove the singularities in the wavelet power spectra of the time series.  In 
the time domain, the smoothing was implemented as a weighted moving average function, 
with weights defined by a Gaussian function, and a width equal to the wavelet size in the 
time domain. In the frequency domain, a boxcar filter with a width equal to the scale 
decorrelation length was used; for the Morlet wavelet this is 0.6 (Torrence and Compo, 
1998). 

Monte Carlo simulations based on two uniform white noise time series are used to 
determine the significance level for the wavelet coherence.  In this study we use the 
MATLAB software package (Grinsted et al., 2004) for wavelet coherence analysis. It 
should be noted that cross-wavelet analysis does not establish causative relationships but 



only allows identifying possible linkages between variables through the synchrony of 
their time series.   
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Supplementary figures 

 

 

Fig. S1. Mean global surface NO3 concentrations obtained from PISCES model (Aumont, 
2015) and mean measured vertical temperature, salinity and NO3 profiles (0-250m) for 
each HNLC region from WOD18 (Boyer et al., 2018; https://www.nodc.noaa.gov/). 

 



 

 

Figure S2. a) Regionalization obtained from coupled [4 x 3] SOM analysis applied to 
NO3:Chl values (in mmol/mg)  and b) associated characteristic time series of NO3:  Chl 
variability. The black line corresponds to the time series obtained from the SOM analysis. 
The red, green, and blue lines are the averages of the NO3:  Chl  values over the northern, 
equatorial, and southern sub-regions. Note that some HNLC regions have been renamed 
for the simplified map shown in figure 3. 



 

 

 

 

 

 

 

Fig. S3a. Time evolution of the total number of pixels covering each area:  Whole 
equatorial region (in red). Pixels in the equatorial region which is located in the northern 
hemisphere are shown in black and those in the southern hemisphere in green. Note that 
while the mean value in the Southern hemisphere is larger, the northern region is more 
variable. 

 

Fig. S3b. Time evolution of the total number of pixels covering each area scaled to the 
same range of values for better comparison:  Whole equatorial (in red). Pixels in the 
equatorial region which is located in the northern hemisphere are shown in black and 
those in the southern hemisphere in green. 

 


