Articles | Volume 19, issue 6
https://doi.org/10.5194/os-19-1791-2023
https://doi.org/10.5194/os-19-1791-2023
Research article
 | 
14 Dec 2023
Research article |  | 14 Dec 2023

Southern Weddell Sea surface freshwater flux modulated by icescape and atmospheric forcing

Lukrecia Stulic, Ralph Timmermann, Stephan Paul, Rolf Zentek, Günther Heinemann, and Torsten Kanzow

Related authors

Coupling framework (1.0) for the Úa (2023b) ice sheet model and the FESOM-1.4 z-coordinate ocean model in an Antarctic domain
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
Geosci. Model Dev., 18, 2945–2960, https://doi.org/10.5194/gmd-18-2945-2025,https://doi.org/10.5194/gmd-18-2945-2025, 2025
Short summary
The system of atmosphere, land, ice and ocean in the region near the 79N Glacier in northeast Greenland: synthesis and key findings from the Greenland Ice Sheet–Ocean Interaction (GROCE) experiment
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Maria Kappelsberger, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
The Cryosphere, 19, 1789–1824, https://doi.org/10.5194/tc-19-1789-2025,https://doi.org/10.5194/tc-19-1789-2025, 2025
Short summary
Internal-wave-induced dissipation rates in the Weddell Sea Bottom Water gravity current
Ole Pinner, Friederike Pollmann, Markus Janout, Gunnar Voet, and Torsten Kanzow
Ocean Sci., 21, 701–726, https://doi.org/10.5194/os-21-701-2025,https://doi.org/10.5194/os-21-701-2025, 2025
Short summary
A new dataset of Southern Ocean sea-ice leads: First insights into regional lead patterns, seasonality and trends, 2003–2023
Umesh Dubey, Sascha Willmes, and Günther Heinemann
EGUsphere, https://doi.org/10.5194/egusphere-2025-736,https://doi.org/10.5194/egusphere-2025-736, 2025
Short summary
Realistic ice-shelf/ocean state estimates (RISE) of Antarctic basal melting and drivers
Benjamin Keith Galton-Fenzi, Richard Porter-Smith, Sue Cook, Eva Cougnon, David E. Gwyther, Wilma G. C. Huneke, Madelaine G. Rosevear, Xylar Asay-Davis, Fabio Boeira Dias, Michael S. Dinniman, David Holland, Kazuya Kusahara, Kaitlin A. Naughten, Keith W. Nicholls, Charles Pelletier, Ole Richter, Helene L. Seroussi, and Ralph Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4047,https://doi.org/10.5194/egusphere-2024-4047, 2025
Short summary

Related subject area

Approach: Numerical Models | Properties and processes: Interactions with the atmosphere or cryosphere
Regime shift caused by accelerated density reorganization on the Weddell Sea continental shelf with high-resolution atmospheric forcing
Vanessa Teske, Ralph Timmermann, Cara Nissen, Rolf Zentek, Tido Semmler, and Günther Heinemann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2873,https://doi.org/10.5194/egusphere-2024-2873, 2024
Short summary
An evaluation of the Arabian Sea Mini Warm Pool's advancement during its mature phase using a coupled atmosphere-ocean numerical model
Sankar Prasad Lahiri, Kumar Ravi Prakash, and Vimlesh Pant
EGUsphere, https://doi.org/10.5194/egusphere-2024-2848,https://doi.org/10.5194/egusphere-2024-2848, 2024
Short summary
Response of the Arctic sea ice–ocean system to meltwater perturbations based on a one-dimensional model study
Haohao Zhang, Xuezhi Bai, and Kaiwen Wang
Ocean Sci., 19, 1649–1668, https://doi.org/10.5194/os-19-1649-2023,https://doi.org/10.5194/os-19-1649-2023, 2023
Short summary
Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario
Pierre Mathiot and Nicolas C. Jourdain
Ocean Sci., 19, 1595–1615, https://doi.org/10.5194/os-19-1595-2023,https://doi.org/10.5194/os-19-1595-2023, 2023
Short summary
On the drivers of regime shifts in the Antarctic marginal seas, exemplified by the Weddell Sea
Verena Haid, Ralph Timmermann, Özgür Gürses, and Hartmut H. Hellmer
Ocean Sci., 19, 1529–1544, https://doi.org/10.5194/os-19-1529-2023,https://doi.org/10.5194/os-19-1529-2023, 2023
Short summary

Cited articles

Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M., and Talley, L. D.: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning, Nat. Geosci., 9, 596, https://doi.org/10.1038/ngeo2749, 2016. a, b
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616–620, 2020. a, b, c, d
Batrak, Y. and Müller, M.: On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice, Nat. Commun., 10, 1–8, 2019. a
Budge, J. S. and Long, D. G.: A comprehensive database for Antarctic iceberg tracking using scatterometer data, IEEE J. Sel. Top. Appl., 11, 434–442, https://doi.org/10.1109/JSTARS.2017.2784186, 2018. a, b
Christie, F. D., Benham, T. J., Batchelor, C. L., Rack, W., Montelli, A., and Dowdeswell, J. A.: Antarctic ice-shelf advance driven by anomalous atmospheric and sea-ice circulation, Nat. Geosci., 15, 356–362, https://doi.org/10.1038/s41561-022-00938-x, 2022. a, b
Download
Short summary
In the southern Weddell Sea, the strong sea ice growth in coastal polynyas drives formation of dense shelf water. By using a sea ice–ice shelf–ocean model with representation of the changing icescape based on satellite data, we find that polynya sea ice growth depends on both the regional atmospheric forcing and the icescape. Not just strength but also location of the sea ice growth in polynyas affects properties of the dense shelf water and the basal melting of the Filchner–Ronne Ice Shelf.
Share