Articles | Volume 19, issue 1
https://doi.org/10.5194/os-19-17-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-17-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regionalizing the sea-level budget with machine learning techniques
Carolina M. L. Camargo
CORRESPONDING AUTHOR
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands
Riccardo E. M. Riva
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands
Tim H. J. Hermans
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands
Eike M. Schütt
Department of Geography, Kiel University, Kiel, Germany
Marta Marcos
Mediterranean Institute for Advanced
Studies (IMEDEA), Spanish National Research Council – University of the Balearic Islands (CSIC-UIB), Esporles, Spain
Ismael Hernandez-Carrasco
Mediterranean Institute for Advanced
Studies (IMEDEA), Spanish National Research Council – University of the Balearic Islands (CSIC-UIB), Esporles, Spain
Aimée B. A. Slangen
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands
Related authors
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022, https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary
Short summary
The mass loss from Antarctica, Greenland and glaciers and variations in land water storage cause sea-level changes. Here, we characterize the regional trends within these sea-level contributions, taking into account mass variations since 1993. We take a comprehensive approach to determining the uncertainties of these sea-level changes, considering different types of errors. Our study reveals the importance of clearly quantifying the uncertainties of sea-level change trends.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Robert E. Kopp, Gregory G. Garner, Tim H. J. Hermans, Shantenu Jha, Praveen Kumar, Alexander Reedy, Aimée B. A. Slangen, Matteo Turilli, Tamsin L. Edwards, Jonathan M. Gregory, George Koubbe, Anders Levermann, Andre Merzky, Sophie Nowicki, Matthew D. Palmer, and Chris Smith
Geosci. Model Dev., 16, 7461–7489, https://doi.org/10.5194/gmd-16-7461-2023, https://doi.org/10.5194/gmd-16-7461-2023, 2023
Short summary
Short summary
Future sea-level rise projections exhibit multiple forms of uncertainty, all of which must be considered by scientific assessments intended to inform decision-making. The Framework for Assessing Changes To Sea-level (FACTS) is a new software package intended to support assessments of global mean, regional, and extreme sea-level rise. An early version of FACTS supported the development of the IPCC Sixth Assessment Report sea-level projections.
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Gotzon Basterretxea, Joan S. Font-Muñoz, Ismael Hernández-Carrasco, and Sergio A. Sañudo-Wilhelmy
Ocean Sci., 19, 973–990, https://doi.org/10.5194/os-19-973-2023, https://doi.org/10.5194/os-19-973-2023, 2023
Short summary
Short summary
We examine global ocean color data and modeling outputs of nutrients using SOM analysis to identify characteristic spatial and temporal patterns of HNLC regions and their association with different climate modes. HNLC regions in polar and subpolar areas have experienced an increase in phytoplankton biomass over the last decades, particularly in the Southern Ocean. Our study finds that chlorophyll variations in HNLC regions respond to major climate variability signals.
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023, https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Short summary
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of rifts on ocean circulation below Antarctic ice shelves has been largely unexplored as ocean models are commonly run at resolutions that are too coarse to resolve the presence of rifts. Our model simulations show that a kilometer-wide rift near the ice-shelf front modulates heat intrusion beneath the ice and inhibits basal melt. These processes are therefore worthy of further investigation.
Rafael R. Torres, Estefanía Giraldo, Cristian Muñoz, Ana Caicedo, Ismael Hernández-Carrasco, and Alejandro Orfila
Ocean Sci., 19, 685–701, https://doi.org/10.5194/os-19-685-2023, https://doi.org/10.5194/os-19-685-2023, 2023
Short summary
Short summary
A reverse seasonal ocean circulation in the Panama Bight has been assessed using 27 years of absolute dynamical topography. The mean circulation in the eastern tropical Pacific (east of 100° W) is analyzed from the mean dynamic topography (MDT) and a self-organizing-map analysis. Small differences are observed west of ~82° W. In the Panama Bight, MDT shows the cyclonic circulation when the Panama surface wind jet dominates the region. We assess ENSO effects on seasonal circulation.
Víctor Malagón-Santos, Aimée B. A. Slangen, Tim H. J. Hermans, Sönke Dangendorf, Marta Marcos, and Nicola Maher
Ocean Sci., 19, 499–515, https://doi.org/10.5194/os-19-499-2023, https://doi.org/10.5194/os-19-499-2023, 2023
Short summary
Short summary
Climate change will alter heat and freshwater fluxes as well as ocean circulation, driving local changes in sea level. This sea-level change component is known as ocean dynamic sea level (DSL), and it is usually projected using computationally expensive global climate models. Statistical models are a cheaper alternative for projecting DSL but may contain significant errors. Here, we partly remove those errors (driven by internal climate variability) by using pattern recognition techniques.
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023, https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
Short summary
Tropical cyclones (TCs) are among the potentially most hazardous phenomena affecting the coasts of the Caribbean Sea. This work simulates the coastal hazards in terms of sea surface elevation and waves that originate through the passage of these events. A set of 1000 TCs have been simulated, obtained from a set of synthetic cyclones that are consistent with present-day climate. Given the large number of hurricanes used, robust values of extreme sea levels and waves are computed along the coasts.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022, https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary
Short summary
The mass loss from Antarctica, Greenland and glaciers and variations in land water storage cause sea-level changes. Here, we characterize the regional trends within these sea-level contributions, taking into account mass variations since 1993. We take a comprehensive approach to determining the uncertainties of these sea-level changes, considering different types of errors. Our study reveals the importance of clearly quantifying the uncertainties of sea-level change trends.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
Verónica Morales-Márquez, Alejandro Orfila, Gonzalo Simarro, and Marta Marcos
Ocean Sci., 16, 1385–1398, https://doi.org/10.5194/os-16-1385-2020, https://doi.org/10.5194/os-16-1385-2020, 2020
Short summary
Short summary
This is a study of long-term changes in extreme waves and in the synoptic patterns related to them on European coasts. The interannual variability of extreme waves in the North Atlantic Ocean is controlled by the atmospheric patterns of the North Atlantic Oscillation and Scandinavian indices. In the Mediterranean Sea, it is governed by the East Atlantic and East Atlantic/Western Russia modes acting strongly during their negative phases.
Angel Amores, Marta Marcos, Diego S. Carrió, and Lluís Gómez-Pujol
Nat. Hazards Earth Syst. Sci., 20, 1955–1968, https://doi.org/10.5194/nhess-20-1955-2020, https://doi.org/10.5194/nhess-20-1955-2020, 2020
Short summary
Short summary
Storm Gloria hit the Mediterranean Spanish coastlines between 20 and 23 January 2020, causing severe damages such as flooding of the Ebro River delta. We evaluate its coastal impacts with a numerical simulation of the wind waves and the accumulated ocean water along the coastline (storm surge). The storm surge that reached values up to 1 m was mainly driven by the wind that also generated wind waves up to 8 m in height. We also determine the extent of the Ebro Delta flooded by marine water.
Long Jiang, Theo Gerkema, Déborah Idier, Aimée B. A. Slangen, and Karline Soetaert
Ocean Sci., 16, 307–321, https://doi.org/10.5194/os-16-307-2020, https://doi.org/10.5194/os-16-307-2020, 2020
Short summary
Short summary
A model downscaling approach is used to investigate the effects of sea-level rise (SLR) on local tides. Results indicate that SLR induces larger increases in tidal amplitude and stronger nonlinear tidal distortion in the bay compared to the adjacent shelf sea. SLR can also change shallow-water tidal asymmetry and influence the direction and magnitude of bed-load sediment transport. The model downscaling approach is widely applicable for local SLR projections in estuaries and coastal bays.
Yu Sun and Riccardo E. M. Riva
Earth Syst. Dynam., 11, 129–137, https://doi.org/10.5194/esd-11-129-2020, https://doi.org/10.5194/esd-11-129-2020, 2020
Short summary
Short summary
The solid Earth is still deforming because of the effect of past ice sheets through glacial isostatic adjustment (GIA). Satellite gravity observations by the Gravity Recovery and Climate Experiment (GRACE) mission are sensitive to those signals but are superimposed on the redistribution effect of water masses by the hydrological cycle. We propose a method separating the two signals, providing new constraints for forward GIA models and estimating the global water cycle's patterns and magnitude.
Carine G. van der Boog, Julie D. Pietrzak, Henk A. Dijkstra, Nils Brüggemann, René M. van Westen, Rebecca K. James, Tjeerd J. Bouma, Riccardo E. M. Riva, D. Cornelis Slobbe, Roland Klees, Marcel Zijlema, and Caroline A. Katsman
Ocean Sci., 15, 1419–1437, https://doi.org/10.5194/os-15-1419-2019, https://doi.org/10.5194/os-15-1419-2019, 2019
Short summary
Short summary
We use a model of the Caribbean Sea to study how coastal upwelling along Venezuela impacts the evolution of energetic anticyclonic eddies. We show that the anticyclones grow by the advection of the cold upwelling filaments. These filaments increase the density gradient and vertical shear of the anticyclones. Furthermore, we show that stronger upwelling results in stronger eddies, while model simulations with weaker upwelling contain weaker eddies.
Verónica Morales-Márquez, Alejandro Orfila, Gonzalo Simarro, Lluís Gómez-Pujol, Amaya Álvarez-Ellacuría, Daniel Conti, Álvaro Galán, Andrés F. Osorio, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 18, 3211–3223, https://doi.org/10.5194/nhess-18-3211-2018, https://doi.org/10.5194/nhess-18-3211-2018, 2018
Short summary
Short summary
This work analyzes the response of a beach under a series of storms using a numerical model, in situ measurements and video imaging.
Time recovery after storms is a key issue for local beach managers, who are pressed by tourism stakeholders to nourish the beach
after energetic processes in order to reach the quality standards required by beach users.
Ismael Hernández-Carrasco, Lohitzune Solabarrieta, Anna Rubio, Ganix Esnaola, Emma Reyes, and Alejandro Orfila
Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, https://doi.org/10.5194/os-14-827-2018, 2018
Short summary
Short summary
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed. Its performance is compared with other methods focusing on the propagation of errors introduced in the reconstruction of the velocity fields through the trajectories, Lagrangian flow structures and residence times. We find that even when a large number of measurements in the HFR velocity field is missing, the Lagrangian techniques still give an accurate description of oceanic transport properties.
Karen M. Simon, Riccardo E. M. Riva, Marcel Kleinherenbrink, and Thomas Frederikse
Solid Earth, 9, 777–795, https://doi.org/10.5194/se-9-777-2018, https://doi.org/10.5194/se-9-777-2018, 2018
Short summary
Short summary
This study constrains the post-glacial rebound signal in Scandinavia and northern Europe via the combined inversion of prior forward model information with GPS-measured vertical land motion data and GRACE gravity data. The best-fit model for vertical motion rates has a χ2 value of ~ 1 and a maximum uncertainty of 0.3–0.4 mm yr−1. An advantage of inverse models relative to forward models is their ability to estimate formal uncertainties associated with the post-glacial rebound process.
Marcel Kleinherenbrink, Riccardo Riva, and Thomas Frederikse
Ocean Sci., 14, 187–204, https://doi.org/10.5194/os-14-187-2018, https://doi.org/10.5194/os-14-187-2018, 2018
Short summary
Short summary
Tide gauges observe sea level changes, but are also affected by vertical land motion (VLM). Estimation of absolute sea level requires a correction for the local VLM. VLM is either estimated from GNSS observations or indirectly by subtracting tide gauge observations from satellite altimetry observations. Because altimetry and GNSS observations are often not made at the tide gauge location, the estimates vary. In this study we determine the best approach for both methods.
Renske C. de Winter, Thomas J. Reerink, Aimée B. A. Slangen, Hylke de Vries, Tamsin Edwards, and Roderik S. W. van de Wal
Nat. Hazards Earth Syst. Sci., 17, 2125–2141, https://doi.org/10.5194/nhess-17-2125-2017, https://doi.org/10.5194/nhess-17-2125-2017, 2017
Short summary
Short summary
This paper provides a full range of possible future sea levels on a regional scale, since it includes extreme, but possible, contributions to sea level change from dynamical mass loss from the Greenland and Antarctica ice sheets. In contrast to the symmetric distribution used in the IPCC report, it is found that an asymmetric distribution toward high sea level change values locally can increase the mean sea level by 1.8 m this century.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Tony E. Wong, Alexander M. R. Bakker, Kelsey Ruckert, Patrick Applegate, Aimée B. A. Slangen, and Klaus Keller
Geosci. Model Dev., 10, 2741–2760, https://doi.org/10.5194/gmd-10-2741-2017, https://doi.org/10.5194/gmd-10-2741-2017, 2017
Short summary
Short summary
We present the Building blocks for Relevant Ice and Climate Knowledge (BRICK) model v0.2. BRICK is a model for hindcasting past and projecting future surface temperature and sea-level rise, resolving the sea-level contributions from glaciers and ice caps, the Greenland and Antarctic ice sheets, and thermal expansion. BRICK is specifically designed to support decision analyses through its transparency, and includes functionality to scale global sea-level estimates to regional projections.
Alejandra R. Enríquez, Marta Marcos, Amaya Álvarez-Ellacuría, Alejandro Orfila, and Damià Gomis
Nat. Hazards Earth Syst. Sci., 17, 1075–1089, https://doi.org/10.5194/nhess-17-1075-2017, https://doi.org/10.5194/nhess-17-1075-2017, 2017
Short summary
Short summary
In this work we assess the impacts in reshaping coastlines as a result of sea level rise and changes in wave climate. The methodology proposed combines two wave models to resolve the wave processes in two micro-tidal sandy beaches in Mallorca island, western Mediterranean. The modelling approach is validated with observations. Our results indicate that the studied beaches would suffer a coastal retreat of between 7 and up to 50 m, equivalent to half of the present-day aerial beach surface.
Riccardo E. M. Riva, Thomas Frederikse, Matt A. King, Ben Marzeion, and Michiel R. van den Broeke
The Cryosphere, 11, 1327–1332, https://doi.org/10.5194/tc-11-1327-2017, https://doi.org/10.5194/tc-11-1327-2017, 2017
Short summary
Short summary
The reduction of ice masses stored on land has made an important contribution to sea-level rise over the last century, as well as changed the Earth's shape. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have varied strongly throughout the last century, which affects the interpretation and extrapolation of recent observations of vertical land motion and sea-level change.
Marcel Kleinherenbrink, Riccardo Riva, and Yu Sun
Ocean Sci., 12, 1179–1203, https://doi.org/10.5194/os-12-1179-2016, https://doi.org/10.5194/os-12-1179-2016, 2016
Short summary
Short summary
Satellite altimetry measures changes in sea level, while satellite gravimetry measures mass changes, and one can infer steric sea level from Argo temperature and salinity profiles. For the first time, it is shown that in most cases the mass and steric components match the total sea level measured by altimetry on a sub-basin scale in terms of trend, annual amplitude and interannual variability. We also find that the choice of gravity field filter is essential to close the budget.
I. Hernández-Carrasco, J. Sudre, V. Garçon, H. Yahia, C. Garbe, A. Paulmier, B. Dewitte, S. Illig, I. Dadou, M. González-Dávila, and J. M. Santana-Casiano
Biogeosciences, 12, 5229–5245, https://doi.org/10.5194/bg-12-5229-2015, https://doi.org/10.5194/bg-12-5229-2015, 2015
Short summary
Short summary
We have reconstructed maps of air-sea CO2 fluxes at high resolution (4 km) in the offshore Benguela region using sea surface temperature and ocean colour data and CarbonTracker CO2 fluxes data at low resolution (110 km).
The inferred representation of pCO2 improves the description provided by CarbonTracker, enhancing small-scale variability.
We find that the resolution, as well as the inferred pCO2 data itself, is closer to in situ measurements of pCO2.
A. B. A. Slangen, R. S. W. van de Wal, Y. Wada, and L. L. A. Vermeersen
Earth Syst. Dynam., 5, 243–255, https://doi.org/10.5194/esd-5-243-2014, https://doi.org/10.5194/esd-5-243-2014, 2014
B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban
The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014, https://doi.org/10.5194/tc-8-743-2014, 2014
I. Hernández-Carrasco, C. López, A. Orfila, and E. Hernández-García
Nonlin. Processes Geophys., 20, 921–933, https://doi.org/10.5194/npg-20-921-2013, https://doi.org/10.5194/npg-20-921-2013, 2013
A. B. A. Slangen and R. S. W. van de Wal
The Cryosphere, 5, 673–686, https://doi.org/10.5194/tc-5-673-2011, https://doi.org/10.5194/tc-5-673-2011, 2011
Related subject area
Approach: Remote Sensing | Properties and processes: Sea level | Depth range: Surface | Geographical range: All Geographic Regions | Challenges: Oceans and climate
Global submesoscale diagnosis using along-track satellite altimetry
Oscar Vergara, Rosemary Morrow, Marie-Isabelle Pujol, Gérald Dibarboure, and Clément Ubelmann
Ocean Sci., 19, 363–379, https://doi.org/10.5194/os-19-363-2023, https://doi.org/10.5194/os-19-363-2023, 2023
Short summary
Short summary
Recent advances allow us to observe the ocean from space with increasingly higher detail, challenging our knowledge of the ocean's surface height signature. We use a statistical approach to determine the spatial scale at which the sea surface height signal is no longer dominated by geostrophic turbulence but in turn becomes dominated by wave-type motions. This information helps us to better use the data provided by ocean-observing satellites and to gain knowledge on climate-driving processes.
Cited articles
Akaike, H.: A New Look at the Statistical Model Identification, IEEE
T. Automat. Contr., 19, 716–723,
https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antarctica
component of postglacial rebound model ICE-6G_C (VM5a) based on GPS
positioning, exposure age dating of ice thicknesses, and relative sea level
histories, Geophys. J. Int., 198, 537–563,
https://doi.org/10.1093/gji/ggu140, 2014. a
Barnoud, A., Pfeffer, J., Guérou, A., Frery, M. L., Siméon, M.,
Cazenave, A., Chen, J., Llovel, W., Thierry, V., Legeais, J. F., and Ablain,
M.: Contributions of Altimetry and Argo to Non-Closure of the Global Mean
Sea Level Budget Since 2016, Geophys. Res. Lett., 48, 1–10,
https://doi.org/10.1029/2021GL092824, 2021. a, b
Bilbao, R. A. F., Gregory, J. M., and Bouttes, N.: Analysis of the regional
pattern of sea level change due to ocean dynamics and density change for
1993–2099 in observations and CMIP5 AOGCMs, Clim. Dynam., 45,
2647–2666, https://doi.org/10.1007/s00382-015-2499-z, 2015. a
Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters, J., Lea, D. J., Mirouze, I., Peterson, K. A., Sellar, A., and Storkey, D.: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts, Geosci. Model Dev., 7, 2613–2638, https://doi.org/10.5194/gmd-7-2613-2014, 2014. a, b, c
Bos, M. S., Fernandes, R. M., Williams, S. D., and Bastos, L.: Fast error
analysis of continuous GNSS observations with missing data, J. Geodesy, 87, 351–360, https://doi.org/10.1007/s00190-012-0605-0, 2013. a
Bos, M. S., Williams, S. D., Araújo, I. B., and Bastos, L.: The effect
of temporal correlated noise on the sea level rate and acceleration
uncertainty, Geophys. J. Int., 196, 1423–1430,
https://doi.org/10.1093/gji/ggt481, 2014. a
Bracco, A., Falasca, F., Nenes, A., Fountalis, I., and Dovrolis, C.: Advancing
climate science with knowledge-discovery through data mining, npj Clim. Atmos. Sci., 1, 1–6, https://doi.org/10.1038/s41612-017-0006-4, 2018. a
Cabanes, C., Grouazel, A., von Schuckmann, K., Hamon, M., Turpin, V., Coatanoan, C., Paris, F., Guinehut, S., Boone, C., Ferry, N., de Boyer Montégut, C., Carval, T., Reverdin, G., Pouliquen, S., and Le Traon, P.-Y.: The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements, Ocean Sci., 9, 1–18, https://doi.org/10.5194/os-9-1-2013, 2013. a
Calafat, F. M., Chambers, D. P., and Tsimplis, M. N.: Mechanisms of decadal
sea level variability in the eastern North Atlantic and the Mediterranean
Sea, J. Geophys. Res.-Oceans, 117, 1–14,
https://doi.org/10.1029/2012JC008285, 2012. a
Calafat, F. M., Chambers, D. P., and Tsimplis, M. N.: Inter-annual to decadal
sea-level variability in the coastal zones of the Norwegian and Siberian
Seas: The role of atmospheric forcing, J. Geophys. Res.-Oceans,, 118, 1287–1301, https://doi.org/10.1002/jgrc.20106, 2013. a
Camargo, C. M. L.: Interactive maps for the regional sea-level budget, https://carocamargo.github.io/resources/regional-SLB-domains/, last access 9 January 2023. a
Camargo, C. M., Riva, R. E., Hermans, T. H., and Slangen, A. B.: Exploring
Sources of Uncertainty in Steric Sea-Level Change Estimates, J. Geophys. Res.-Oceans, 125, 1–18, https://doi.org/10.1029/2020JC016551, 2020. a, b, c, d
Camargo, C. M. L., Riva, R. E. M., Hermans, T. H. J., Schütt, E. M., Marcos, M., Hernandez-Carrasco, I., and Slangen, A. B. A.: Regional Sea-level Budget from 1993–2016 (1.1), Zenodo, [data set], https://doi.org/10.5281/zenodo.7385561 (last access: 9 January 2023), 2022b. a
carocamargo: carocamargo/regionalSLB: code for regional sea-level budget manuscript (publish), Zenodo, [code], https://doi.org/10.5281/zenodo.7515755, last access 9 January 2023. a
Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A new ocean climate
reanalysis, J. Climate, 31, 6967–6983,
https://doi.org/10.1175/jcli-d-18-0149.1, 2018. a, b, c
Cazenave, A. and Moreira, L.: Contemporary sea-level changes from global to
local scales: a review, Philos. T. Roy. Soc. A, 478, 1–30, https://doi.org/10.1098/rspa.2022.0049,
2022. a, b
Chafik, L., Nilsen, J. E. Ø., Dangendorf, S., Reverdin, G., and Frederikse,
T.: North Atlantic Ocean Circulation and Decadal Sea Level Change During the
Altimetry Era, Sci. Rep., 9, 1–9,
https://doi.org/10.1038/s41598-018-37603-6, 2019. a, b, c
Chambers, D. P., Wahr, J., and Nerem, R. S.: Preliminary observations of
global ocean mass variations with GRACE, Geophys. Res. Lett., 31,
1–4, https://doi.org/10.1029/2004GL020461, 2004. a
Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H., Llovel, W.,
Forsberg, R., von Schuckmann, K., and Wada, Y.: Evaluation of the Global
Mean Sea Level Budget between 1993 and 2014, Surv. Geophys., 38,
309–327, https://doi.org/10.1007/s10712-016-9381-3, 2017. a
Chen, J., Tapley, B., Wilson, C., Cazenave, A., Seo, K. W., and Kim, J. S.:
Global Ocean Mass Change From GRACE and GRACE Follow-On and Altimeter and
Argo Measurements, Geophys. Res. Lett., 47, 1–9,
https://doi.org/10.1029/2020GL090656, 2020. a, b
Chen, J. L., Wilson, C. R., Tapley, B. D., and Grand, S.: GRACE detects
coseismic and postseismic deformation from the Sumatra-Andaman earthquake,
Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2007GL030356, 2007. a
Cheng, L., Abraham, J., Hausfather, Z., and Trenberth, K. E.: How fast are the
oceans warming?, Sci. Clim. Change, 128, 1–8,
https://doi.org/10.1126/science.aav7619, 2019. a
CMEMS: Global ocean gridded l4 sea surface heights and derived variables
reprocessed (1993-Ongoing) SEALEVEL_GLO_PHY_L4_MY_008_047,
https://doi.org/10.48670/moi-00148, 2022. a, b, c
Dangendorf, S., Calafat, F. M., Arns, A., Wahl, T., Haigh, I. D., and Jensen,
J.: Mean sea level variability in the North Sea: processes and
implications, J. Geophys. Res.-Oceans, 119, 6820–6841,
https://doi.org/10.1002/2014JC009901, 2014. a
Falasca, F., Crétat, J., Braconnot, P., and Bracco, A.: Spatiotemporal
complexity and time-dependent networks in sea surface temperature from mid-
to late Holocene, Europ. Phys. J. Plus, 135, 1–21,
https://doi.org/10.1140/epjp/s13360-020-00403-x, 2020. a, b, c
Farrell, W. E. and Clark, J. A.: On Postglacial Sea Level, Geophys. J. Roy. Astro. Soc., 46, 647–667, 1976. a
Feng, M., Li, Y., and Meyers, G.: Multidecadal variations of Fremantle sea
level: Footprint of climate variability in the tropical Pacific, Geophys. Res. Lett., 31, 2–5, https://doi.org/10.1029/2004GL019947, 2004. a
Fountalis, I., Dovrolis, C., Bracco, A., Dilkina, B., and Keilholz, S.:
δ-MAPS: from spatio-temporal data to a weighted and lagged network
between functional domains, Appl. Net. Sci., 3, 3–21,
https://doi.org/10.1007/s41109-018-0078-z, 2018. a, b
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout,
S. S., Edwards, T. L., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz,
D., Nowicki, S., Nurhati, I., Ruiz, L., Sallée, J.-B., Slangen, A.
B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud,
N., Chen, Y., Goldfard, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy,
E., Matthews, J. B. R., Maaycock, T. K., Waterfield, T., Yeleçi, O.,
Yu, R., and Zhou, B., September, chap. 9, Cambridge
University Press, Cambridge, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021. a
Frederikse, T., Riva, R., Kleinherenbrink, M., Wada, Y., van den Broeke, M.,
and Marzeion, B.: Closing the sea level budget on a regional scale: Trends
and variability on the Northwestern European continental shelf, Geophys.
Res. Lett., 43, 10810–864872, https://doi.org/10.1002/2016GL070750, 2016. a
Frederikse, T., Simon, K., Katsman, C. A., and Riva, R.: The sea-level budget
along the Northwest Atlantic coast: GIA, mass changes, and large-scale ocean
dynamics., J. Geophys. Res.-Oceans, 122, 5486–5501,
https://doi.org/10.1002/2016JC012335, 2017. a
Frederikse, T., Jevrejeva, S., Riva, R. E., and Dangendorf, S.: A consistent
sea-level reconstruction and its budget on basin and global scales over
1958-2014, J. Climate, 31, 1267–1280,
https://doi.org/10.1175/JCLI-D-17-0502.1, 2018. a, b
Gaillard, F., Reynaud, T., Thierry, V., Kolodziejczyk, N., and Von
Schuckmann, K.: In situ-based reanalysis of the global ocean temperature
and salinity with ISAS: Variability of the heat content and steric height,
J. Climate, 29, 1305–1323, https://doi.org/10.1175/JCLI-D-15-0028.1, 2016. a, b
Garric, G. and Parent, L.: Quality Information Document For products
GLOBAL-REANALYSIS-PHY-001-025, Tech. Rep., Copernicus Marine Environment
Monitoring Service, https://doi.org/10.48670/moi-00024, 2017. a, b, c
Ghobadi-Far, K., Han, S. C., Allgeyer, S., Tregoning, P., Sauber, J.,
Behzadpour, S., Mayer-Gürr, T., Sneeuw, N., and Okal, E.: GRACE
gravitational measurements of tsunamis after the 2004, 2010, and 2011 great
earthquakes, J. Geodesy, 94, 1–9, https://doi.org/10.1007/s00190-020-01395-3,
2020. a, b
Gill, A. E. and Niller, P. P.: The theory of the seasonal variability in the
ocean, Deep Sea Res., 20, 141–177,
https://doi.org/10.1016/0011-7471(73)90049-1, 1973. a
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118,
6704–6716, https://doi.org/10.1002/2013JC009067, 2013. a
Gregory, J. M., White, N. J., Church, J. A., Bierkens, M. F., Box, J. E., Van
Den Broeke, M. R., Cogley, J. G., Fettweis, X., Hanna, E., Huybrechts, P.,
Konikow, L. F., Leclercq, P. W., Marzeion, B., Oerlemans, J., Tamisiea,
M. E., Wada, Y., Wake, L. M., and Van De Wal, R. S.: Twentieth-century
global-mean sea level rise: Is the whole greater than the sum of the parts?,
J. Climate, 26, 4476–4499, https://doi.org/10.1175/JCLI-D-12-00319.1, 2013. a
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A.,
Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte,
R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S.: Concepts and
Terminology for Sea Level: Mean, Variability and Change, Both Local and
Global, Surv. Geophys., 40, 1251–1289,
https://doi.org/10.1007/s10712-019-09525-z, 2019. a, b, c, d, e, f, g, h, i
Griffies, S. M. and Greatbatch, R. J.: Physical processes that impact the
evolution of global mean sea level in ocean climate models, Ocean Modell.,
51, 37–72, https://doi.org/10.1016/j.ocemod.2012.04.003, 2012. a
Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y.: High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Sci., 8, 845–857, https://doi.org/10.5194/os-8-845-2012, 2012. a
Hamlington, B. D., Gardner, A. S., Ivins, E., Lenaerts, J. T., Reager, J. T.,
Trossman, D. S., Zaron, E. D., Adhikari, S., Arendt, A., Aschwanden, A.,
Beckley, B. D., Bekaert, D. P., Blewitt, G., Caron, L., Chambers, D. P.,
Chandanpurkar, H. A., Christianson, K., Csatho, B., Cullather, R. I.,
DeConto, R. M., Fasullo, J. T., Frederikse, T., Freymueller, J. T., Gilford,
D. M., Girotto, M., Hammond, W. C., Hock, R., Holschuh, N., Kopp, R. E.,
Landerer, F., Larour, E., Menemenlis, D., Merrifield, M., Mitrovica, J. X.,
Nerem, R. S., Nias, I. J., Nieves, V., Nowicki, S., Pangaluru, K., Piecuch,
C. G., Ray, R. D., Rounce, D. R., Schlegel, N. J., Seroussi, H., Shirzaei,
M., Sweet, W. V., Velicogna, I., Vinogradova, N., Wahl, T., Wiese, D. N., and
Willis, M. J.: Understanding of Contemporary Regional Sea-Level Change and
the Implications for the Future, Rev. Geophys., 58, 1–39,
https://doi.org/10.1029/2019RG000672, 2020. a
Han, W., Meehl, G. A., Stammer, D., Hu, A., Hamlington, B., Kenigson, J.,
Palanisamy, H., and Thompson, P.: Spatial Patterns of Sea Level Variability
Associated with Natural Internal Climate Modes, Surv. Geophys., 38,
217–250, https://doi.org/10.1007/s10712-016-9386-y, 2017. a
Hardman-Mountford, N. J., Richardson, A. J., Boyer, D. C., Kreiner, A., and
Boyer, H. J.: Relating sardine recruitment in the Northern Benguela to
satellite-derived sea surface height using a neural network pattern
recognition approach, Prog. Oceanogr., 59, 241–255,
https://doi.org/10.1016/j.pocean.2003.07.005, 2003. a
Hermans, T. H., Le Bars, D., Katsman, C. A., Camargo, C. M., Gerkema, T.,
Calafat, F. M., Tinker, J., and Slangen, A. B.: Drivers of Interannual Sea
Level Variability on the Northwestern European Shelf, J. Geophys. Res.-Oceans, 125, 1–18, https://doi.org/10.1029/2020JC016325, 2020. a, b
Hernández-Carrasco, I. and Orfila, A.: The Role of an Intense Front on
the Connectivity of the Western Mediterranean Sea: The Cartagena-Tenes
Front, J. Geophys. Res.-Oceans, 123, 4398–4422,
https://doi.org/10.1029/2017JC013613, 2018. a, b
Hughes, C. W. and Williams, S. D.: The color of sea level: Importance of
spatial variations in spectral shape for assessing the significance of
trends, J. Geophys. Res.-Oceans, 115, 1–18,
https://doi.org/10.1029/2010JC006102, 2010. a
Hughes, C. W., Fukumori, I., Griffies, S. M., Huthnance, J. M., Minobe, S.,
Spence, P., Thompson, K. R., and Wise, A.: Sea Level and the Role of Coastal
Trapped Waves in Mediating the Influence of the Open Ocean on the Coast,
Surv. Geophys., 40, 1467–1492, https://doi.org/10.1007/s10712-019-09535-x,
2019. a, b, c
Ishii, M. and Kimoto, M.: Reevaluation of historical ocean heat content
variations with time-varying XBT and MBT depth bias corrections, J.
Oceanogr., 65, 287–299, https://doi.org/10.1007/s10872-009-0027-7, 2009. a
Ishii, M., Yasui, S., Fukuda, Y., Sato, K., Hirahara, S., and Suzuki, T.:
Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present
Observational Data Sets, Sola, 13, 163–167, https://doi.org/10.2151/sola.2017-030,
2017. a
Iskandar, I.: Variability of Satellite-Observed Sea Surface Height in the
Tropical Indian Ocean: Comparison of Eof and Som Analysis, Makara J. Sci., 13, 173–179, https://doi.org/10.7454/mss.v13i2.421, 2009. a
Kleinherenbrink, M., Riva, R., Frederikse, T., Merrifield, M., and Wada, Y.:
Trends and interannual variability of mass and steric sea level in the
Tropical Asian Seas, J. Geophys. Res.-Oceans, 122,
6254–6276, https://doi.org/10.1002/2017JC012792, 2017. a, b
Kohonen, T.: Self-organized formation of topologically correct feature maps,
Biol. Cybernet., 43, 59–69, https://doi.org/10.1007/BF00337288, 1982. a
Landerer, F. W., Jungclaus, J. H., and Marotzke, J.: Ocean bottom pressure
changes lead to a decreasing length-of-day in a warming climate, Geophys.
Res. Lett., 34, 1–5, https://doi.org/10.1029/2006GL029106,
2007. a, b
Li, H., Xu, F., Zhou, W., Wang, D., Wright, J. S., Liu, Z., and Lin, Y.:
Development of a global gridded Argo data set with Barnes successive
corrections, J. Geophys. Res.-Oceans, 122, 866–889,
https://doi.org/10.1002/2016JC012285, 2017. a
Liu, Y. and Weisberg, R. H.: Patterns of ocean current variability on the West
Florida Shelf using the self-organizing map, J. Geophys. Res.-Oceans, 110, 1–12, https://doi.org/10.1029/2004JC002786, 2005. a
Liu, Y. and Weisberg, R. H.: Ocean currents and sea surface heights estimated
across the west Florida shelf, J. Phys. Ocean., 37,
1697–1713, https://doi.org/10.1175/JPO3083.1, 2007. a
Liu, Y., Weisberg, R. H., and Yuan, Y.: Patterns of upper layer circulation
variability in the South China Sea from satellite altimetry using the
self-organizing map, Acta Ocean. Sin., 27, 129–144, 2008. a
Liu, Y., Weisberg, R. H., Vignudelli, S., and Mitchum, G. T.: Patterns of the
loop current system and regions of sea surface height variability in the
eastern Gulf of Mexico revealed by the self-organizing maps, J. Geophys. Res.-Oceans, 121, 2347–2366, https://doi.org/10.1002/2015JC011493,
2016. a, b, c, d
Lu, S., Liu, Z., Li, H., Li, Z., Wu, X., and Sun, C.: Manual of Global Ocean
Argo gridded data set (BOA_Argo) (Version 2019), Tech. Rep., Second
Institue of Oceanography SOA, https://doi.org/10.1002/2016JC012285.6, 2019. a
Ma, F., Diao, Y. N., and Luo, D. H.: Spatiotemporal characteristics of the sea
level anomaly in the Kuroshio Extension using a self-organizing map,
Atmos. Ocean. Sci. Lett., 9, 471–478,
https://doi.org/10.1080/16742834.2016.1235462, 2016. a
MacIntosh, C. R., Merchant, C. J., and von Schuckmann, K.: Uncertainties in
Steric Sea Level Change Estimation During the Satellite Altimeter Era:
Concepts and Practices, Surv. Geophys., 38, 59–87,
https://doi.org/10.1007/s10712-016-9387-x, 2017. a
Maclachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife,
A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp, J.,
Xavier, P., Madec, G., and National, F.: Global Seasonal forecast system
version 5 (GloSea5): a high-resolution seasonal forecast system, Q. J. Roy. Meteor. Soc., 5, 1072–1084,
https://doi.org/10.1002/qj.2396, 2015. a, b, c
Marcos, M. and Amores, A.: Quantifying anthropogenic and natural contributions
to thermosteric sea level rise, Geophys. Res. Lett., 41,
2502–2507, https://doi.org/10.1002/2014GL059766, 2014. a
Nickerson, A. K., Weisberg, R. H., and Liu, Y.: On the Evolution of the Gulf
of Mexico Loop Current Through Its Penetrative, Ring Shedding and Retracted
States, Adv. Space Res., 69, 4058–4077,
https://doi.org/10.1016/j.asr.2022.03.039, 2022. a
Novi, L., Bracco, A., and Falasca, F.: Uncovering marine connectivity through
sea surface temperature, Sci. Rep., 11, 1–9,
https://doi.org/10.1038/s41598-021-87711-z, 2021. a, b
Pattiaratchi, C. and Siji, P.: Variability in ocean currents around
Australia, in: State and Trends of Australia's Ocean Report, edited by:
Richardson, A., Eriksen, R., Moltmann, T., Hodgson-Johnston, I., and Wallis,
J., January 2020, Chap. 1.4 Variab, Integrated Marine Observing
System (IMOS), 1–6, https://doi.org/10.26198/5e16a2ae49e76, 2020. a
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice
age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys. Res.-Sol. Ea., 120, 450–487,
https://doi.org/10.1002/2014JB011176.Received, 2015. a
Purkey, S. G. and Johnson, G. C.: Warming of Global Abyssal and Deep Southern
Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and
Sea Level Rise Budgets, J. Climate, 23, 6336–6351,
https://doi.org/10.1175/2010JCLI3682.1, 2010. a, b
Purkey, S. G., Johnson, G. C., and Chambers, D. P.: Sea contributions of ocean
mass and deep steric changes to sea level rise between 1993 and 2013,
J. Geophys. Res.-Oceans, 119, 7509–7522,
https://doi.org/10.1002/2014JC010180, 2014. a, b
Purkey, S. G., Johnson, G. C., Talley, L. D., Sloyan, B. M., Wijffels, S. E.,
Smethie, W., Mecking, S., and Katsumata, K.: Unabated Bottom Water Warming
and Freshening in the South Pacific Ocean, J. Geophys. Res.-Oceans, 124, 1778–1794, https://doi.org/10.1029/2018JC014775, 2019. a
Richardson, A. J., Risi En, C., and Shillington, F. A.: Using
self-organizing maps to identify patterns in satellite imagery, Prog.
Oceanogr., 59, 223–239, https://doi.org/10.1016/j.pocean.2003.07.006, 2003. a, b
Rietbroek, R., Brunnabend, S.-E., Kusche, J., Schröter, J., and Dahle,
C.: Revisiting the contemporary sea-level budget on global and regional
scales, P. Natl. Acad. Sci. USA, 113, 1504–1509,
https://doi.org/10.1073/pnas.1519132113, 2016. a, b
Roemmich, D. and Gilson, J.: The 2004–2008 mean and annual cycle of
temperature, salinity, and steric height in the global ocean from the Argo
Program, Prog. Oceanogr., 82, 81–100,
https://doi.org/10.1016/j.pocean.2009.03.004, 2009. a
Rougier, J.: Ensemble averaging and mean squared error, J. Climate,
29, 8865–8870, https://doi.org/10.1175/JCLI-D-16-0012.1, 2016. a, b
Royston, S., Watson, C. S., Legresy, B., King, M. A., Church, J. A., and Bos,
M. S.: Sea-Level Trend Uncertainty With Pacific Climatic Variability and
Temporally-Correlated Noise, J. Geophys. Res.-Oceans, 123,
1–16, https://doi.org/10.1002/2017JC013655, 2018. a
Save, H.: CSR GRACE and GRACE-FO RL06 Mascon Solutions v02, CSR, 2,
https://doi.org/10.15781/cgq9-nh24, 2020. a
Save, H., Bettadpur, S., and Tapley, B. D.: High-resolution CSR GRACE RL05
mascons, J. Geophys. Res.-Sol. Ea., 121, 7547–7569,
https://doi.org/10.1002/2017JB015312, 2016. a
Schwarz, G.: Estimating the dimension of a model, Ann. Stat., 6,
461–464, https://doi.org/10.1214/aos/1176344136, 1978. a
Slangen, A. B. A., van de Wal, R. S. W., Wada, Y., and Vermeersen, L. L. A.: Comparing tide gauge observations to regional patterns of sea-level change (1961–2003), Earth Syst. Dynam., 5, 243–255, https://doi.org/10.5194/esd-5-243-2014, 2014. a, b, c
Slangen, A. B., Church, J. A., Agosta, C., Fettweis, X., Marzeion, B., and
Richter, K.: Anthropogenic forcing dominates global mean sea-level rise
since 1970, Nat. Clim. Change, 6, 701–705, https://doi.org/10.1038/nclimate2991,
2016. a
Slangen, A. B. A., Adloff, F., Jevrejeva, S., Leclercq, P. W., Marzeion, B.,
Wada, Y., and Winkelmann, R.: A Review of Recent Updates of Sea-Level
Projections at Global and Regional Scales, Surv. Geophys., 38,
385–406, https://doi.org/10.1007/s10712-016-9374-2, 2017. a
Sonnewald, M., Wunsch, C., and Heimbach, P.: Linear predictability: A sea
surface height case study, J. Climate, 31, 2599–2611,
https://doi.org/10.1175/JCLI-D-17-0142.1, 2018. a
Sonnewald, M., Wunsch, C., and Heimbach, P.: Unsupervised Learning Reveals
Geography of Global Ocean Dynamical Regions, Earth Space Sci., 6,
784–794, https://doi.org/10.1029/2018EA000519, 2019. a
Stammer, D., Cazenave, A., Ponte, R. M., and Tamisiea, M. E.: Causes for
Contemporary Regional Sea Level Changes, Annu. Rev. Mar. Sci., 5, 21–46,
https://doi.org/10.1146/annurev-marine-121211-172406, 2013. a
Storto, A. and Masina, S.: C-GLORSv5: an improved multipurpose global ocean eddy-permitting physical reanalysis, Earth Syst. Sci. Data, 8, 679–696, https://doi.org/10.5194/essd-8-679-2016, 2016. a, b, c
Storto, A., Masina, S., Balmaseda, M., Guinehut, S., Xue, Y., Szekely, T.,
Fukumori, I., Forget, G., Chang, Y. S., Good, S. A., Köhl, A.,
Vernieres, G., Ferry, N., Peterson, K. A., Behringer, D., Ishii, M., Masuda,
S., Fujii, Y., Toyoda, T., Yin, Y., Valdivieso, M., Barnier, B., Boyer, T.,
Lee, T., Gourrion, J., Wang, O., Heimback, P., Rosati, A., Kovach, R.,
Hernandez, F., Martin, M. J., Kamachi, M., Kuragano, T., Mogensen, K., Alves,
O., Haines, K., and Wang, X.: Steric sea level variability (1993–2010) in
an ensemble of ocean reanalyses and objective analyses, Clim. Dynam.,
49, 709–729, https://doi.org/10.1007/s00382-015-2554-9, 2017. a
Szekely, T., Gourrion, J., Pouliquen, S., and Reverdin, G.: The CORA 5.2 dataset for global in situ temperature and salinity measurements: data description and validation, Ocean Sci., 15, 1601–1614, https://doi.org/10.5194/os-15-1601-2019, 2019. a
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The Gravity
Recovery and Climate Experiment: Mission Overview and Early Results,
Geophys. Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL019920, 2004. a, b
Thompson, P. R. and Merrifield, M. A.: A unique asymmetry in the pattern of
recent sea level change, Geophys. Res. Lett., 41, 7675–7683,
https://doi.org/10.1002/2014GL061263, 2014. a, b, c
Vesanto, J., Himberg, J., Alhoniemi, E., and Parhankangaas, J.: SOM Toolbox
for Matlab 5, Tech. Rep., Helsinki University of Technology, ISBN 951-22-4951-0, 2000. a
Wagner, P. and Böning, C. W.: Decadal sea-level variability in the Australasian Mediterranean Sea, Ocean Sci., 17, 1473–1487, https://doi.org/10.5194/os-17-1473-2021, 2021. a
Wang, J., Church, J. A., Zhang, X., Gregory, J. M., Zanna, L., and Chen, X.:
Evaluation of the Local Sea-Level Budget at Tide Gauges Since 1958,
Geophys. Res. Lett., 48, 1–12, https://doi.org/10.1029/2021GL094502, 2021. a, b, c
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass distribution with
GRACE using spherical cap mascons, J. Geophys. Res.-Sol. Ea., 120, 1648–2671, https://doi.org/10.1002/2014JB011547, 2015.
a
WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present, Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, 2018. a, b, c
Weisberg, R. H. and Liu, Y.: On the Loop Current Penetration into the Gulf of
Mexico, J. Geophys. Res.-Oceans, 122, 9679–9694,
https://doi.org/10.1002/2017JC013330, 2017. a
Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W., and Watkins, M.:. JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height RL06 CRI Filtered Version 02. Ver. 02. PO.DAAC, CA, USA, [data set], https://doi.org/10.5067/TEMSC-3JC62, 2019. a
Wöppelmann, G. and Marcos, M.: Vertical land motion as a key to
understanding sea level change and variability, Rev. Geophys., 54,
64–92, https://doi.org/10.1002/2015RG000502, 2015. a
Zlotnicki, V., Qu, Z., Willis, J. K., Ray, R., and Hausman, J.: JPL MEASURES
Gridded Sea Surface Height Anomalies Version JPL1812, Tech. Rep., PO.DAAC,
CA, USA, https://doi.org/10.5067/SLREF-CDRV2, 2019. a, b
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019. a, b, c
Co-editor-in-chief
Closing the sea level budget (between observed rise and the sum of its causes) has been a challenge, is an ongoing effort and has primarily concerned the global mean. Here, the authors use machine learning to identify sub-areas with similar trends to close the sea level budget on a regional level, with much reduced errors compared with 1-degree grid points.
Closing the sea level budget (between observed rise and the sum of its causes) has been a...
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and...