Articles | Volume 19, issue 1
https://doi.org/10.5194/os-19-17-2023
https://doi.org/10.5194/os-19-17-2023
Research article
 | Highlight paper
 | 
16 Jan 2023
Research article | Highlight paper |  | 16 Jan 2023

Regionalizing the sea-level budget with machine learning techniques

Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen

Related authors

Trends and uncertainties of mass-driven sea-level change in the satellite altimetry era
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022,https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary

Related subject area

Approach: Remote Sensing | Properties and processes: Sea level | Depth range: Surface | Geographical range: All Geographic Regions | Challenges: Oceans and climate
Global submesoscale diagnosis using along-track satellite altimetry
Oscar Vergara, Rosemary Morrow, Marie-Isabelle Pujol, Gérald Dibarboure, and Clément Ubelmann
Ocean Sci., 19, 363–379, https://doi.org/10.5194/os-19-363-2023,https://doi.org/10.5194/os-19-363-2023, 2023
Short summary

Cited articles

Akaike, H.: A New Look at the Statistical Model Identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories, Geophys. J. Int., 198, 537–563, https://doi.org/10.1093/gji/ggu140, 2014. a
Barnoud, A., Pfeffer, J., Guérou, A., Frery, M. L., Siméon, M., Cazenave, A., Chen, J., Llovel, W., Thierry, V., Legeais, J. F., and Ablain, M.: Contributions of Altimetry and Argo to Non-Closure of the Global Mean Sea Level Budget Since 2016, Geophys. Res. Lett., 48, 1–10, https://doi.org/10.1029/2021GL092824, 2021. a, b
Bilbao, R. A. F., Gregory, J. M., and Bouttes, N.: Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs, Clim. Dynam., 45, 2647–2666, https://doi.org/10.1007/s00382-015-2499-z, 2015. a
Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters, J., Lea, D. J., Mirouze, I., Peterson, K. A., Sellar, A., and Storkey, D.: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts, Geosci. Model Dev., 7, 2613–2638, https://doi.org/10.5194/gmd-7-2613-2014, 2014. a, b, c
Download
Co-editor-in-chief
Closing the sea level budget (between observed rise and the sum of its causes) has been a challenge, is an ongoing effort and has primarily concerned the global mean. Here, the authors use machine learning to identify sub-areas with similar trends to close the sea level budget on a regional level, with much reduced errors compared with 1-degree grid points.
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.