Articles | Volume 18, issue 1
https://doi.org/10.5194/os-18-269-2022
https://doi.org/10.5194/os-18-269-2022
Research article
 | Highlight paper
 | 
03 Mar 2022
Research article | Highlight paper |  | 03 Mar 2022

Using machine learning and beach cleanup data to explain litter quantities along the Dutch North Sea coast

Mikael L. A. Kaandorp, Stefanie L. Ypma, Marijke Boonstra, Henk A. Dijkstra, and Erik van Sebille

Related authors

A Saddle-Node Bifurcation is Causing the AMOC Collapse in the Community Earth System Model
René M. van Westen, Elian Vanderborght, and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-14,https://doi.org/10.5194/egusphere-2025-14, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Physical characterization of the boundary separating safe and unsafe AMOC overshoot behaviour
Aurora Faure Ragani and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-45,https://doi.org/10.5194/egusphere-2025-45, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Observation-based temperature and freshwater noise over the Atlantic Ocean
Amber A. Boot and Henk A. Dijkstra
Earth Syst. Dynam., 16, 115–150, https://doi.org/10.5194/esd-16-115-2025,https://doi.org/10.5194/esd-16-115-2025, 2025
Short summary
Quantifying Variability in Lagrangian Particle Dispersal in Ocean Ensemble Simulations: an Information Theory Approach
Claudio M. Pierard, Siren Rühs, Laura Gómez-Navarro, Michael C. Denes, Florian Meirer, Thierry Penduff, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3847,https://doi.org/10.5194/egusphere-2024-3847, 2024
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Potential effect of the marine carbon cycle on the multiple equilibria window of the Atlantic Meridional Overturning Circulation
Amber A. Boot, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1567–1590, https://doi.org/10.5194/esd-15-1567-2024,https://doi.org/10.5194/esd-15-1567-2024, 2024
Short summary

Cited articles

Alsina, J. M., Jongedijk, C. E., and van Sebille, E.: Laboratory Measurements of the Wave-Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density, J. Geophys. Res.-Oceans, 125, e2020JC016294, https://doi.org/10.1029/2020JC016294, 2020. a
Andrades, R., Santos, R. G., Joyeux, J. C., Chelazzi, D., Cincinelli, A., and Giarrizzo, T.: Marine debris in Trindade Island, a remote island of the South Atlantic, Mar. Pollut. Bull., 137, 180–184, https://doi.org/10.1016/j.marpolbul.2018.10.003, 2018. a
Andrady, A. L.: Microplastics in the marine environment, Mar. Pollut. Bull., 62, 1596–1605, https://doi.org/10.1016/j.marpolbul.2011.05.030, 2011. a
Bachmaier, M. and Backes, M.: Variogram or Semivariogram? Variance or Semivariance? Allan Variance or Introducing a New Term?, Math. Geosci., 43, 735–740, https://doi.org/10.1007/s11004-011-9348-3, 2011. a
Balas, C. E., Ergin, A., Williams, A. T., and Koc, L.: Marine litter prediction by artificial intelligence, Mar. Pollut. Bull., 48, 449–457, https://doi.org/10.1016/j.marpolbul.2003.08.020, 2004. a
Download
Short summary
A large amount of marine litter, such as plastics, is located on or around beaches. Both the total amount of this litter and its transport are poorly understood. We investigate this by training a machine learning model with data of cleanup efforts on Dutch beaches between 2014 and 2019, obtained by about 14 000 volunteers. We find that Dutch beaches contain up to 30 000 kg of litter, largely depending on tides, oceanic transport, and how exposed the beaches are.