Articles | Volume 18, issue 1
https://doi.org/10.5194/os-18-269-2022
https://doi.org/10.5194/os-18-269-2022
Research article
 | Highlight paper
 | 
03 Mar 2022
Research article | Highlight paper |  | 03 Mar 2022

Using machine learning and beach cleanup data to explain litter quantities along the Dutch North Sea coast

Mikael L. A. Kaandorp, Stefanie L. Ypma, Marijke Boonstra, Henk A. Dijkstra, and Erik van Sebille

Related authors

Explaining the high skill of Reservoir Computing methods in El Niño prediction
Francesco Guardamagna, Claudia Wieners, and Henk Dijkstra
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-24,https://doi.org/10.5194/npg-2024-24, 2024
Preprint under review for NPG
Short summary
Flow patterns, hotspots and connectivity of land-derived substances at the sea surface of Curaçao in the Southern Caribbean
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3112,https://doi.org/10.5194/egusphere-2024-3112, 2024
Short summary
The (non)effect of personalization in climate texts on the credibility of climate scientists: a case study on sustainable travel
Anna Leerink, Mark Bos, Daan Reijnders, and Erik van Sebille
Geosci. Commun., 7, 201–214, https://doi.org/10.5194/gc-7-201-2024,https://doi.org/10.5194/gc-7-201-2024, 2024
Short summary
Dynamics of salt intrusion in complex estuarine networks; an idealised model applied to the Rhine-Meuse Delta
Bouke Biemond, Wouter Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2024-2322,https://doi.org/10.5194/egusphere-2024-2322, 2024
Short summary
Similar North Pacific variability despite suppressed El Niño variability in the warm mid-Pliocene climate
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Frank M. Selten, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1037–1054, https://doi.org/10.5194/esd-15-1037-2024,https://doi.org/10.5194/esd-15-1037-2024, 2024
Short summary

Cited articles

Alsina, J. M., Jongedijk, C. E., and van Sebille, E.: Laboratory Measurements of the Wave-Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density, J. Geophys. Res.-Oceans, 125, e2020JC016294, https://doi.org/10.1029/2020JC016294, 2020. a
Andrades, R., Santos, R. G., Joyeux, J. C., Chelazzi, D., Cincinelli, A., and Giarrizzo, T.: Marine debris in Trindade Island, a remote island of the South Atlantic, Mar. Pollut. Bull., 137, 180–184, https://doi.org/10.1016/j.marpolbul.2018.10.003, 2018. a
Andrady, A. L.: Microplastics in the marine environment, Mar. Pollut. Bull., 62, 1596–1605, https://doi.org/10.1016/j.marpolbul.2011.05.030, 2011. a
Bachmaier, M. and Backes, M.: Variogram or Semivariogram? Variance or Semivariance? Allan Variance or Introducing a New Term?, Math. Geosci., 43, 735–740, https://doi.org/10.1007/s11004-011-9348-3, 2011. a
Balas, C. E., Ergin, A., Williams, A. T., and Koc, L.: Marine litter prediction by artificial intelligence, Mar. Pollut. Bull., 48, 449–457, https://doi.org/10.1016/j.marpolbul.2003.08.020, 2004. a
Download
Short summary
A large amount of marine litter, such as plastics, is located on or around beaches. Both the total amount of this litter and its transport are poorly understood. We investigate this by training a machine learning model with data of cleanup efforts on Dutch beaches between 2014 and 2019, obtained by about 14 000 volunteers. We find that Dutch beaches contain up to 30 000 kg of litter, largely depending on tides, oceanic transport, and how exposed the beaches are.