Articles | Volume 18, issue 1
https://doi.org/10.5194/os-18-269-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-269-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using machine learning and beach cleanup data to explain litter quantities along the Dutch North Sea coast
Mikael L. A. Kaandorp
CORRESPONDING AUTHOR
Institute for Marine and Atmospheric Research Utrecht, Department of Physics, Utrecht University, Utrecht 3584 CS, the Netherlands
Stefanie L. Ypma
Institute for Marine and Atmospheric Research Utrecht, Department of Physics, Utrecht University, Utrecht 3584 CS, the Netherlands
Marijke Boonstra
Stichting De Noordzee, Arthur van Schendelstraat 600, Utrecht 3511 MJ, the Netherlands
Henk A. Dijkstra
Institute for Marine and Atmospheric Research Utrecht, Department of Physics, Utrecht University, Utrecht 3584 CS, the Netherlands
Erik van Sebille
Institute for Marine and Atmospheric Research Utrecht, Department of Physics, Utrecht University, Utrecht 3584 CS, the Netherlands
Related authors
No articles found.
Aurora Faure Ragani and Henk A. Dijkstra
Earth Syst. Dynam., 16, 1287–1301, https://doi.org/10.5194/esd-16-1287-2025, https://doi.org/10.5194/esd-16-1287-2025, 2025
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is sensitive to changing surface forcing conditions. Under future greenhouse gas emission reductions, it was shown in a conceptual model that it may be possible to avoid a collapse of the AMOC. Using a detailed global ocean model, we clarify the physics of the collapse and recovery behaviour of the AMOC. The potential to avoid an AMOC collapse is tightly linked to a delicate balance of salt fluxes in the northern North Atlantic.
Amber A. Boot and Henk A. Dijkstra
Earth Syst. Dynam., 16, 1221–1235, https://doi.org/10.5194/esd-16-1221-2025, https://doi.org/10.5194/esd-16-1221-2025, 2025
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is a tipping element in the Earth system that affects the global climate. We often use models to understand how the AMOC tips. However, these models are flawed. Here we study the effect of these flaws on the AMOC multistable regime in a climate model. We artificially add additional flaws to the model. We find that AMOC stability can be affected by such flaws, and a reduction in such flaws in climate models is therefore thought to be essential.
Jimena Medina-Rubio, Madlene Nussbaum, Ton S. van den Bremer, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2025-3287, https://doi.org/10.5194/egusphere-2025-3287, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
We tracked the paths of novel, ultra-thin ocean drifters in the southern North Sea for over two months. By analysing their motion alongside environmental data, we identified how tides, wind, and waves each influence their movement. Using machine learning, we improved trajectory predictions, offering new insights into surface transport in coastal seas.
Erik van Sebille, Celine Weel, Rens Vliegenthart, and Mark Bos
EGUsphere, https://doi.org/10.5194/egusphere-2025-3131, https://doi.org/10.5194/egusphere-2025-3131, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Many climate scientists intuitively fear their credibility decreases when they engage in advocacy. We find that the opposite is the case. By surveying almost 1,000 Dutch adults, we found that the credibility of a fictional climate scientists who wrote an article about the greening of gardens was higher when that text included advocacy statements, compared to when it was 'neutral'. This is because personalization increases the goodwill of readers for the academic who writes a text.
Francesco Guardamagna, Claudia Wieners, and Henk A. Dijkstra
Nonlin. Processes Geophys., 32, 201–224, https://doi.org/10.5194/npg-32-201-2025, https://doi.org/10.5194/npg-32-201-2025, 2025
Short summary
Short summary
Artificial intelligence (AI) has recently shown promising results in ENSO (El Niño–Southern Oscillation) forecasting, outperforming traditional models. Yet AI models deliver accurate predictions without showing the underlying mechanisms. Our study examines a specific AI model, the reservoir computer (RC). Our results show that the RC is less sensitive to initial perturbations than the traditional Zebiak–Cane (ZC) model. This reduced sensitivity can explain the RC's superior skills.
Aike Vonk, Mark Bos, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2025-2216, https://doi.org/10.5194/egusphere-2025-2216, 2025
Short summary
Short summary
Research institutes communicate scientific findings through press releases, which journalists use to write news articles. We examined how journalists use content from press releases about ocean plastic research. Our findings show that they closely follow the press releases story, primarily quoting involved scientists without seeking external perspectives. Causing the focus to stay on researchers, personalizing science rather than addressing the broader societal dimensions of plastic pollution.
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
Ocean Sci., 21, 945–964, https://doi.org/10.5194/os-21-945-2025, https://doi.org/10.5194/os-21-945-2025, 2025
Short summary
Short summary
This study explores ocean currents around Curaçao and how land-derived substances like pollutants and nutrients travel in the water. Most substances move northwest, following the main current, but at times, ocean eddies spread them in other directions. This movement may link polluted areas to pristine coral reefs, impacting marine ecosystems. Understanding these patterns helps inform conservation and pollution management around Curaçao.
Swinda K. J. Falkena, Henk A. Dijkstra, and Anna S. von der Heydt
EGUsphere, https://doi.org/10.48550/arXiv.2408.16541, https://doi.org/10.48550/arXiv.2408.16541, 2025
Short summary
Short summary
The subpolar gyre is a wind-driven circulation in the North Atlantic Ocean, which enables the mixing of water between the surface and deeper layers. We investigate the interactions between the strength of the gyre circulation, salinity, temperature and mixing in climate models. We find that most models capture an increase in salinity or a decrease in temperature leading to mixing. However, the feedback from the density in the gyre centre to the strength of its circulation is poorly represented.
Woosok Moon, Seung Pyo Lee, Elian Vanderborght, Georgy Manucharyan, and Henk Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-1004, https://doi.org/10.5194/egusphere-2025-1004, 2025
Preprint archived
Short summary
Short summary
As the climate warms, extreme weather is becoming more frequent in mid-latitudes. A key factor is the jet stream, shaped by atmospheric waves that influence wind and storm patterns. This study presents a simplified model showing how swirling air currents (eddies) maintain the jet stream and impact weather. As global warming alters these patterns, this research helps improve predictions of future weather changes.
Nieske Vergunst, Tugce Varol, and Erik van Sebille
Geosci. Commun., 8, 67–80, https://doi.org/10.5194/gc-8-67-2025, https://doi.org/10.5194/gc-8-67-2025, 2025
Short summary
Short summary
We developed and evaluated a board game about sea level rise to engage young adults. We found that the game positively influenced participants' perceptions of their impact on sea level rise, regardless of their prior familiarity with science. This study suggests that interactive and relatable activities can effectively engage audiences on climate issues, highlighting the potential for similar approaches in public science communication.
Mark V. Elbertsen, Erik van Sebille, and Peter K. Bijl
Clim. Past, 21, 441–464, https://doi.org/10.5194/cp-21-441-2025, https://doi.org/10.5194/cp-21-441-2025, 2025
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris on the South Orkney Microcontinent. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Bouke Biemond, Wouter M. Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra
Ocean Sci., 21, 261–281, https://doi.org/10.5194/os-21-261-2025, https://doi.org/10.5194/os-21-261-2025, 2025
Short summary
Short summary
We study salinity in estuaries consisting of a network of channels. To this end, we develop a model that computes the flow and salinity in such systems. We use the model to quantify the mechanisms by which salt is transported into estuarine networks, the response to changes in river discharge, and the impact of depth changes. Results show that when changing the depth of channels, the effects on salt intrusion into other channels in the network can be larger than the effect on the channel itself.
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
Ocean Sci., 21, 217–240, https://doi.org/10.5194/os-21-217-2025, https://doi.org/10.5194/os-21-217-2025, 2025
Short summary
Short summary
Simulating the transport of floating particles on the ocean surface is crucial for solving many societal issues. Here, we investigate how the representation of wind-generated surface waves impacts particle transport simulations. We find that different wave-driven processes can alter transport patterns and that commonly adopted approximations are not always adequate. This suggests that ideally coupled ocean–wave models should be used for surface particle transport simulations.
René M. van Westen, Elian Vanderborght, and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-14, https://doi.org/10.5194/egusphere-2025-14, 2025
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is a tipping element in the fully-coupled Community Earth System Model (CESM). Under varying freshwater flux forcing parameters or climate change, the AMOC may collapse from a relatively strong state to a substantially weaker state. It is important to understand the dynamics of the AMOC collapse in the CESM. We show that the stability of the AMOC in the CESM is controlled by only a few feedback processes.
Amber A. Boot and Henk A. Dijkstra
Earth Syst. Dynam., 16, 115–150, https://doi.org/10.5194/esd-16-115-2025, https://doi.org/10.5194/esd-16-115-2025, 2025
Short summary
Short summary
The ocean is forced at the surface by a heat flux and a freshwater flux. This noise can influence long-term ocean variability and large-scale circulation. Here we study noise characteristics in reanalysis data for these fluxes. We try to capture the noise characteristics by using several noise models and compare these to state-of-the-art climate models. A pointwise noise model performs better than the climate models and can be used as forcing in ocean-only models.
Claudio M. Pierard, Siren Rühs, Laura Gómez-Navarro, Michael C. Denes, Florian Meirer, Thierry Penduff, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3847, https://doi.org/10.5194/egusphere-2024-3847, 2024
Short summary
Short summary
Particle-tracking simulations compute how ocean currents transport material. However, initialising these simulations is often ad-hoc. Here, we explore how two different strategies (releasing particles over space or over time) compare. Specifically, we compare the variability in particle trajectories to the variability of particles computed in a 50-member ensemble simulation. We find that releasing the particles over 20 weeks gives variability that is most like that in the ensemble.
Amber A. Boot, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1567–1590, https://doi.org/10.5194/esd-15-1567-2024, https://doi.org/10.5194/esd-15-1567-2024, 2024
Short summary
Short summary
We investigate the multiple equilibria window (MEW) of the Atlantic Meridional Overturning Circulation (AMOC) within a box model. We find that increasing the total carbon content of the system widens the MEW of the AMOC. The important mechanisms at play are the balance between the source and sink of carbon and the sensitivity of the AMOC to freshwater forcing over the Atlantic Ocean. Our results suggest that changes in the marine carbon cycle can influence AMOC stability in future climates.
Anna Leerink, Mark Bos, Daan Reijnders, and Erik van Sebille
Geosci. Commun., 7, 201–214, https://doi.org/10.5194/gc-7-201-2024, https://doi.org/10.5194/gc-7-201-2024, 2024
Short summary
Short summary
Climate scientists who communicate to a broad audience may be reluctant to write in a more personal style, as they assume that it hurts their credibility. To test this assumption, we asked 100 Dutch people to rate the credibility of a climate scientist. We varied how the author of the article addressed the reader and found that the degree of personalization did not have a measurable impact on the credibility of the author. Thus, we conclude that personalization may not hurt credibility.
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Frank M. Selten, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1037–1054, https://doi.org/10.5194/esd-15-1037-2024, https://doi.org/10.5194/esd-15-1037-2024, 2024
Short summary
Short summary
We might be able to constrain uncertainty in future climate projections by investigating variations in the climate of the past. In this study, we investigate the interactions of climate variability between the tropical Pacific (El Niño) and the North Pacific in a warm past climate – the mid-Pliocene, a period roughly 3 million years ago. Using model simulations, we find that, although the variability in El Niño was reduced, the variability in the North Pacific atmosphere was not.
Sacha Sinet, Peter Ashwin, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 859–873, https://doi.org/10.5194/esd-15-859-2024, https://doi.org/10.5194/esd-15-859-2024, 2024
Short summary
Short summary
Some components of the Earth system may irreversibly collapse under global warming. Among them, the Atlantic Meridional Overturning Circulation (AMOC), the Greenland Ice Sheet, and West Antarctica Ice Sheet are of utmost importance for maintaining the present-day climate. In a simplified model, we show that both the rate of ice melting and the natural variability linked to freshwater fluxes over the Atlantic Ocean drastically affect how an ice sheet collapse impacts the AMOC stability.
Julia E. Weiffenbach, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Wing-Le Chan, Deepak Chandan, Ran Feng, Alan M. Haywood, Stephen J. Hunter, Xiangyu Li, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, Ning Tan, Julia C. Tindall, and Zhongshi Zhang
Clim. Past, 20, 1067–1086, https://doi.org/10.5194/cp-20-1067-2024, https://doi.org/10.5194/cp-20-1067-2024, 2024
Short summary
Short summary
Elevated atmospheric CO2 concentrations and a smaller Antarctic Ice Sheet during the mid-Pliocene (~ 3 million years ago) cause the Southern Ocean surface to become fresher and warmer, which affects the global ocean circulation. The CO2 concentration and the smaller Antarctic Ice Sheet both have a similar and approximately equal impact on the Southern Ocean. The conditions of the Southern Ocean in the mid-Pliocene could therefore be analogous to those in a future climate with smaller ice sheets.
Frances Wijnen, Madelijn Strick, Mark Bos, and Erik van Sebille
Geosci. Commun., 7, 91–100, https://doi.org/10.5194/gc-7-91-2024, https://doi.org/10.5194/gc-7-91-2024, 2024
Short summary
Short summary
Climate scientists are urged to communicate climate science; there is very little evidence about what types of communication work well for which audiences. We have performed a systematic literature review to analyze what is known about the efficacy of climate communication by scientists. While we have found more than 60 articles in the last 10 years about climate communication activities by scientists, only 7 of these included some form of evaluation of the impact of the activity.
René M. van Westen and Henk A. Dijkstra
Ocean Sci., 20, 549–567, https://doi.org/10.5194/os-20-549-2024, https://doi.org/10.5194/os-20-549-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component in the global climate system. Observations of the present-day AMOC indicate that it may weaken or collapse under global warming, with profound disruptive effects on future climate. However, AMOC weakening is not correctly represented because an important feedback is underestimated due to biases in the Atlantic's freshwater budget. Here we address these biases in several state-of-the-art climate model simulations.
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Aarnout J. van Delden, and Henk A. Dijkstra
Weather Clim. Dynam., 5, 395–417, https://doi.org/10.5194/wcd-5-395-2024, https://doi.org/10.5194/wcd-5-395-2024, 2024
Short summary
Short summary
The mid-Pliocene, a geological period around 3 million years ago, is sometimes considered the best analogue for near-future climate. It saw similar CO2 concentrations to the present-day but also a slightly different geography. In this study, we use climate model simulations and find that the Northern Hemisphere winter responds very differently to increased CO2 or to the mid-Pliocene geography. Our results weaken the potential of the mid-Pliocene as a future climate analogue.
Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille
Ocean Sci., 20, 31–41, https://doi.org/10.5194/os-20-31-2024, https://doi.org/10.5194/os-20-31-2024, 2024
Short summary
Short summary
Tuna fisheries in the Pacific often use drifting fish aggregating devices (dFADs) to attract fish that are advected by subsurface flow through underwater appendages. Using a particle advection model, we find that virtual particles advected by surface flow are displaced farther than virtual dFADs. We find a relation between El Niño–Southern Oscillation and circular motion in some areas, influencing dFAD densities. This information helps us to understand processes that drive dFAD distribution.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023, https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary
Short summary
We describe and compare two common methods, Eulerian and Lagrangian models, used to simulate the vertical transport of material in the ocean. They both solve the same transport problems but use different approaches for representing the underlying equations on the computer. The main focus of our study is on the numerical accuracy of the two approaches. Our results should be useful for other researchers creating or using these types of transport models.
Valérian Jacques-Dumas, René M. van Westen, Freddy Bouchet, and Henk A. Dijkstra
Nonlin. Processes Geophys., 30, 195–216, https://doi.org/10.5194/npg-30-195-2023, https://doi.org/10.5194/npg-30-195-2023, 2023
Short summary
Short summary
Computing the probability of occurrence of rare events is relevant because of their high impact but also difficult due to the lack of data. Rare event algorithms are designed for that task, but their efficiency relies on a score function that is hard to compute. We compare four methods that compute this function from data and measure their performance to assess which one would be best suited to be applied to a climate model. We find neural networks to be most robust and flexible for this task.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Stefanie L. Ypma, Quinten Bohte, Alexander Forryan, Alberto C. Naveira Garabato, Andy Donnelly, and Erik van Sebille
Ocean Sci., 18, 1477–1490, https://doi.org/10.5194/os-18-1477-2022, https://doi.org/10.5194/os-18-1477-2022, 2022
Short summary
Short summary
In this research we aim to improve cleanup efforts on the Galapagos Islands of marine plastic debris when resources are limited and the distribution of the plastic on shorelines is unknown. Using a network that describes the flow of macroplastic between the islands we have identified the most efficient cleanup locations, quantified the impact of targeting these locations and showed that shorelines where the plastic is unlikely to leave are likely efficient cleanup locations.
Amber Boot, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 1041–1058, https://doi.org/10.5194/esd-13-1041-2022, https://doi.org/10.5194/esd-13-1041-2022, 2022
Short summary
Short summary
Atmospheric pCO2 of the past shows large variability on different timescales. We focus on the effect of the strength of Atlantic Meridional Overturning Circulation (AMOC) on this variability and on the AMOC–pCO2 relationship. We find that climatic boundary conditions and the representation of biology in our model are most important for this relationship. Under certain conditions, we find internal oscillations, which can be relevant for atmospheric pCO2 variability during glacial cycles.
Reint Fischer, Delphine Lobelle, Merel Kooi, Albert Koelmans, Victor Onink, Charlotte Laufkötter, Linda Amaral-Zettler, Andrew Yool, and Erik van Sebille
Biogeosciences, 19, 2211–2234, https://doi.org/10.5194/bg-19-2211-2022, https://doi.org/10.5194/bg-19-2211-2022, 2022
Short summary
Short summary
Since current estimates show that only about 1 % of the all plastic that enters the ocean is floating at the surface, we look at subsurface processes that can cause vertical movement of (micro)plastic. We investigate how modelled algal attachment and the ocean's vertical movement can cause particles to sink and oscillate in the open ocean. Particles can sink to depths of > 5000 m in regions with high wind intensity and mainly remain close to the surface with low winds and biological activity.
Victor Onink, Erik van Sebille, and Charlotte Laufkötter
Geosci. Model Dev., 15, 1995–2012, https://doi.org/10.5194/gmd-15-1995-2022, https://doi.org/10.5194/gmd-15-1995-2022, 2022
Short summary
Short summary
Turbulent mixing is a vital process in 3D modeling of particle transport in the ocean. However, since turbulence occurs on very short spatial scales and timescales, large-scale ocean models generally have highly simplified turbulence representations. We have developed parametrizations for the vertical turbulent transport of buoyant particles that can be easily applied in a large-scale particle tracking model. The predicted vertical concentration profiles match microplastic observations well.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
André Jüling, Anna von der Heydt, and Henk A. Dijkstra
Ocean Sci., 17, 1251–1271, https://doi.org/10.5194/os-17-1251-2021, https://doi.org/10.5194/os-17-1251-2021, 2021
Short summary
Short summary
On top of forced changes such as human-caused global warming, unforced climate variability exists. Most multidecadal variability (MV) involves the oceans, but current climate models use non-turbulent, coarse-resolution oceans. We investigate the effect of resolving important turbulent ocean features on MV. We find that ocean heat content, ocean–atmosphere heat flux, and global mean surface temperature MV is more pronounced in the higher-resolution model relative to higher-frequency variability.
Johannes Lohmann, Daniele Castellana, Peter D. Ditlevsen, and Henk A. Dijkstra
Earth Syst. Dynam., 12, 819–835, https://doi.org/10.5194/esd-12-819-2021, https://doi.org/10.5194/esd-12-819-2021, 2021
Short summary
Short summary
Tipping of one climate subsystem could trigger a cascade of subsequent tipping points and even global-scale climate tipping. Sequential shifts of atmosphere, sea ice and ocean have been recorded in proxy archives of past climate change. Based on this we propose a conceptual model for abrupt climate changes of the last glacial. Here, rate-induced tipping enables tipping cascades in systems with relatively weak coupling. An early warning signal is proposed that may detect such a tipping.
C. Kehl, R. P. B. Fischer, and E. van Sebille
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2021, 217–224, https://doi.org/10.5194/isprs-annals-V-4-2021-217-2021, https://doi.org/10.5194/isprs-annals-V-4-2021-217-2021, 2021
André Jüling, Xun Zhang, Daniele Castellana, Anna S. von der Heydt, and Henk A. Dijkstra
Ocean Sci., 17, 729–754, https://doi.org/10.5194/os-17-729-2021, https://doi.org/10.5194/os-17-729-2021, 2021
Short summary
Short summary
We investigate how the freshwater budget of the Atlantic changes under climate change, which has implications for the stability of the Atlantic Meridional Overturning Circulation. We compare the effect of ocean model resolution in a climate model and find many similarities between the simulations, enhancing trust in the current generation of climate models. However, ocean biases are reduced in the strongly eddying simulation, and significant local freshwater budget differences exist.
Rebeca de la Fuente, Gábor Drótos, Emilio Hernández-García, Cristóbal López, and Erik van Sebille
Ocean Sci., 17, 431–453, https://doi.org/10.5194/os-17-431-2021, https://doi.org/10.5194/os-17-431-2021, 2021
Short summary
Short summary
Plastic pollution is a major environmental issue affecting the oceans. The number of floating and sedimented pieces has been quantified by several studies. But their abundance in the water column remains mostly unknown. To fill this gap we model the dynamics of a particular type of particle, rigid microplastics sinking rapidly in open sea in the Mediterranean. We find they represent a small but appreciable fraction of the total sea plastic and discuss characteristics of their sinking motion.
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151, https://doi.org/10.5194/npg-28-135-2021, https://doi.org/10.5194/npg-28-135-2021, 2021
Short summary
Short summary
This paper proposes two improvements to the use of Trajectory-Adaptive Multilevel Sampling, a rare-event algorithm which computes noise-induced transition probabilities. The first improvement uses locally linearised dynamics in order to reduce the arbitrariness associated with defining what constitutes a transition. The second improvement uses empirical transition paths accumulated at high noise in order to formulate the score function which determines the performance of the algorithm.
Amber Boot, René M. van Westen, and Henk A. Dijkstra
Ocean Sci., 17, 335–350, https://doi.org/10.5194/os-17-335-2021, https://doi.org/10.5194/os-17-335-2021, 2021
Short summary
Short summary
The Maud Rise polynya is a hole in the sea ice surrounding Antarctica that occurs during winter. It appeared in 2016 and 2017. Our study concludes that heat and salt accumulation around 1000 m depth are likely to be important for polynya formation. The heat is mixed upward to the surface where it is able to melt the sea ice and, thus, create a polynya. How often the polynya forms depends largely on the variation in the time of the heat and salt accumulation.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 28, 43–59, https://doi.org/10.5194/npg-28-43-2021, https://doi.org/10.5194/npg-28-43-2021, 2021
Short summary
Short summary
Fluid parcels transported in complicated flows often contain subsets of particles that stay close over finite time intervals. We propose a new method for detecting finite-time coherent sets based on the density-based clustering technique of ordering points to identify the clustering structure (OPTICS). Unlike previous methods, our method has an intrinsic notion of coherent sets at different spatial scales. OPTICS is readily implemented in the SciPy sklearn package, making it easy to use.
Carine G. van der Boog, J. Otto Koetsier, Henk A. Dijkstra, Julie D. Pietrzak, and Caroline A. Katsman
Earth Syst. Sci. Data, 13, 43–61, https://doi.org/10.5194/essd-13-43-2021, https://doi.org/10.5194/essd-13-43-2021, 2021
Short summary
Short summary
Thermohaline staircases are stepped structures in the ocean that contain enhanced diapycnal salt and heat transport. In this study, we present a global dataset of thermohaline staircases derived from 487 493 observations of Argo profiling floats and Ice-Tethered Profilers using a novel detection algorithm.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
René M. van Westen and Henk A. Dijkstra
Ocean Sci., 16, 1443–1457, https://doi.org/10.5194/os-16-1443-2020, https://doi.org/10.5194/os-16-1443-2020, 2020
Short summary
Short summary
During the mid-1970s and quite recently in 2017, a large open-water area appeared in the Antarctic sea-ice pack, the so-called Maud Rise polynya. From several model studies, the reoccurrence time of this polynya seems arbitrary. In this study, we address the reoccurrence time of the polynya using a high-resolution climate model. We find a preferred multidecadal return time in polynya formation. The return time of the polynya is associated with a large-scale ocean mode in the Southern Ocean.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 27, 501–518, https://doi.org/10.5194/npg-27-501-2020, https://doi.org/10.5194/npg-27-501-2020, 2020
Short summary
Short summary
The surface transport of heat, nutrients and plastic in the North Atlantic Ocean is organized into large-scale flow structures. We propose a new and simple method to detect such features in ocean drifter data sets by identifying groups of trajectories with similar dynamical behaviour using network theory. We successfully detect well-known regions such as the Subpolar and Subtropical gyres, the Western Boundary Current region and the Caribbean Sea.
Mirjam van der Mheen, Erik van Sebille, and Charitha Pattiaratchi
Ocean Sci., 16, 1317–1336, https://doi.org/10.5194/os-16-1317-2020, https://doi.org/10.5194/os-16-1317-2020, 2020
Short summary
Short summary
A large percentage of global ocean plastic enters the Indian Ocean through rivers, but the fate of these plastics is generally unknown. In this paper, we use computer simulations to show that floating plastics
beachand end up on coastlines throughout the Indian Ocean. Coastlines where a lot of plastic enters the ocean are heavily affected by beaching plastic, but plastics can also beach far from the source on remote islands and countries that contribute little plastic pollution of their own.
Cited articles
Alsina, J. M., Jongedijk, C. E., and van Sebille, E.: Laboratory Measurements
of the Wave-Induced Motion of Plastic Particles: Influence of Wave Period,
Plastic Size and Plastic Density, J. Geophys. Res.-Oceans,
125, e2020JC016294, https://doi.org/10.1029/2020JC016294, 2020. a
Andrades, R., Santos, R. G., Joyeux, J. C., Chelazzi, D., Cincinelli, A., and
Giarrizzo, T.: Marine debris in Trindade Island, a remote island of the
South Atlantic, Mar. Pollut. Bull., 137, 180–184,
https://doi.org/10.1016/j.marpolbul.2018.10.003, 2018. a
Andrady, A. L.: Microplastics in the marine environment, Mar. Pollut. Bull., 62, 1596–1605, https://doi.org/10.1016/j.marpolbul.2011.05.030, 2011. a
Bachmaier, M. and Backes, M.: Variogram or Semivariogram? Variance or
Semivariance? Allan Variance or Introducing a New Term?, Math. Geosci., 43, 735–740, https://doi.org/10.1007/s11004-011-9348-3, 2011. a
Balas, C. E., Ergin, A., Williams, A. T., and Koc, L.: Marine litter
prediction by artificial intelligence, Mar. Pollut. Bull., 48,
449–457, https://doi.org/10.1016/j.marpolbul.2003.08.020, 2004. a
Bortnik, J. and Camporeale, E.: Ten Ways to Apply Machine Learning in Earth
and Space Sciences, Eos, 102, https://doi.org/10.1029/2021EO160257, 2021. a
Børve, E., Isachsen, P. E., and Nøst, O. A.: Rectified tidal transport in Lofoten–Vesterålen, northern Norway, Ocean Sci., 17, 1753–1773, https://doi.org/10.5194/os-17-1753-2021, 2021. a
Brennan, E., Wilcox, C., and Denise, B.: Science of the Total Environment
Connecting flux , deposition and resuspension in coastal debris surveys,
Sci. Total Environ., 644, 1019–1026,
https://doi.org/10.1016/j.scitotenv.2018.06.352, 2018. a, b
Cope, T. E., Wilson, B., Robson, H., Drinkall, R., Dean, L., Grube, M., Jones,
P. S., Patterson, K., Griffiths, T. D., Rowe, J. B., and Petkov, C. I.:
Artificial grammar learning in vascular and progressive non-fluent
aphasias, Neuropsychol., 104, 201–213,
https://doi.org/10.1016/j.neuropsychologia.2017.08.022, 2017. a, b
Critchell, K. and Lambrechts, J.: Modelling accumulation of marine plastics in
the coastal zone; what are the dominant physical processes?, Eastuar. Coast. Shelf S., 171, 111–122, https://doi.org/10.1016/j.ecss.2016.01.036,
2016. a
Critchell, K., Grech, A., Schlaefer, J., Andutta, F., Lambrechts, J., Wolanski,
E., and Hamann, M.: Modelling the fate of marine debris along a complex
shoreline: Lessons from the Great Barrier Reef, Eastuar. Coast. Shelf S., 167, 414–426, https://doi.org/10.1016/j.ecss.2015.10.018, 2015. a
De Ruijter, W. P., Visser, A. W., and Bos, W. G.: The Rhine outflow: A
prototypical pulsed discharge plume in a high energy shallow sea, J. Mar. Syst., 12, 263–276, https://doi.org/10.1016/S0924-7963(96)00102-9, 1997. a
Delandmeter, P. and van Sebille, E.: The Parcels v2.0 Lagrangian framework: new field interpolation schemes, Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, 2019. a
Eriksson, C., Burton, H., Fitch, S., Schulz, M., and van den Hoff, J.: Daily
accumulation rates of marine debris on sub-Antarctic island beaches, Mar. Pollut. Bull., 66, 199–208, https://doi.org/10.1016/j.marpolbul.2012.08.026,
2013. a, b, c, d
Global Monitoring and Forecasting Center: Global Ocean Waves Reanalysis
WAVERYS product, E.U. Copernicus Marine Service Information [data set],
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_WAV_001_032 (last access: 10 February 2021),
2020. a
Global Monitoring and Forecasting Center: Atlantic-European North West Shelf
Ocean Physics Reanalysis product, E.U. Copernicus Marine Service Information
[data set],
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=NWSHELF_MULTIYEAR_PHY_004_009 (last access: 8 March 2021),
2021. a, b, c, d
Granado, I., Basurko, O. C., Rubio, A., Ferrer, L.,
Hernández-González, J., Epelde, I., and Fernandes, J. A.: Beach
litter forecasting on the south-eastern coast of the Bay of Biscay: A
bayesian networks approach, Cont. Shelf Res., 180, 14–23,
https://doi.org/10.1016/j.csr.2019.04.016, 2019. a
Gräwe, U., Burchard, H., Müller, M., and Schuttelaars, H. M.:
Seasonal variability in M2 and M4 tidal constituents and its implications
for the coastal residual sediment transport, Geophys. Res. Lett.,
41, 5563–5570, https://doi.org/10.1002/2014GL060517, 2014. a, b
Haarr, M. L., Westerveld, L., Fabres, J., Iversen, K. R., and Busch, K. E. T.:
A novel GIS-based tool for predicting coastal litter accumulation and
optimising coastal cleanup actions, Mar. Pollut. Bull., 139,
117–126, https://doi.org/10.1016/j.marpolbul.2018.12.025, 2019. a, b, c, d
Haarr, M. L., Pantalos, M., Hartviksen, M. K., and Gressetvold, M.: Citizen
science data indicate a reduction in beach litter in the Lofoten archipelago
in the Norwegian Sea, Mar. Pollut. Bull., 153, 111000,
https://doi.org/10.1016/j.marpolbul.2020.111000, 2020. a
Hardesty, B. D., Lawson, T. J., van der Velde, T., Lansdell, M., and Wilcox,
C.: Estimating quantities and sources of marine debris at a continental
scale, Front. Ecol. Environ., 15, 18–25,
https://doi.org/10.1002/fee.1447, 2017. a, b, c, d
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical
Learning, Springer, 2 Edn., ISBN 978-0-387-84857-0, 2008. a
Hengstmann, E., Gräwe, D., Tamminga, M., and Fischer, E. K.: Marine
litter abundance and distribution on beaches on the Isle of Rügen
considering the influence of exposition, morphology and recreational
activities, Mar. Pollut. Bull., 115, 297–306,
https://doi.org/10.1016/j.marpolbul.2016.12.026, 2017. a
Heo, N. W., Hong, S. H., Han, G. M., Hong, S., Lee, J., Song, Y. K., Jang, M.,
and Shim, W. J.: Distribution of small plastic debris in cross-section and
high strandline on Heungnam beach, South Korea, Ocean Sci. J., 48,
225–233, https://doi.org/10.1007/s12601-013-0019-9, 2013. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b, c
Hidalgo-Ruz, V. and Thiel, M.: Distribution and abundance of small plastic
debris on beaches in the SE Pacific (Chile): A study supported by a citizen
science project, Mar. Environ. Res., 87, 12–18,
https://doi.org/10.1016/j.marenvres.2013.02.015, 2013. a
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady,
A., Narayan, R., and Law, K. L.: Plastic waste inputs from land into the
ocean, Science, 347, 768–771, https://doi.org/10.1126/science.1260352, 2015. a
Kaandorp, M. L. A., Dijkstra, H. A., and van Sebille, E.: Modelling size
distributions of marine plastics under the influence of continuous cascading
fragmentation, Environ. Res. Lett., 16, 54075,
https://doi.org/10.1088/1748-9326/abe9ea, 2021a. a
Kaandorp, M. L. A., Ypma, S., Boonstra, M., Dijkstra, H. A., and van Sebille, E.: Code and data for the Dutch North Sea beached litter analysis, [code, data], https://doi.org/10.24416/UU01-NVGL3G, 2021b. a
Kappraff, J.: The Fractal Geometry of coastlines: a study in fractals, Comp.
Maths. Appls., 12, 655–671, 1986. a
Kelso, N. V. and Patterson, T.: Introducing Natural Earth Data –
Naturalearthdata.com, Geogr. Tech., 82–89, 2010. a
Koelmans, A. A., Kooi, M., Law, K. L., and van Sebille, E.: All is not lost:
Deriving a top-down mass budget of plastic at sea, Environ. Res. Lett., 12, 114028, https://doi.org/10.1088/1748-9326/aa9500, 2017. a
Kordella, S., Geraga, M., Papatheodorou, G., Fakiris, E., and Mitropoulou,
I. M.: Litter composition and source contribution for 80 beaches in Greece,
Eastern Mediterranean: A nationwide voluntary clean-up campaign, Aquat.
Ecosyst. Health Manage., 16, 111–118,
https://doi.org/10.1080/14634988.2012.759503, 2013. a
Kroodsma, D. A., Mayorga, J., Hochberg, T., Miller, N. A., Boerder, K.,
Ferretti, F., Wilson, A., Bergman, B., White, T. D., Block, B. A., Woods, P.,
Sullivan, B., Costello, C., and Worm, B.: Tracking the global footprint of
fisheries, Science, 359, 904–908, https://doi.org/10.1126/science.aao5646, 2018. a, b
Lavers, J. L. and Bond, A. L.: Exceptional and rapid accumulation of
anthropogenic debris on one of the world's most remote and pristine islands,
P. Natl. Acad. Sci. USA, 114, 6052–6055, https://doi.org/10.1073/pnas.1619818114, 2017. a
Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse,
R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak,
P., Maral, H., Schoeneich-Argent, R., Brambini, R., and Reisser, J.:
Evidence that the Great Pacific Garbage Patch is rapidly accumulating
plastic, Sci. Rep., 8, 1–15, https://doi.org/10.1038/s41598-018-22939-w,
2018. a, b
Lebreton, L., Egger, M., and Slat, B.: A global mass budget for positively
buoyant macroplastic debris in the ocean, Sci. Rep., 9, 12922,
https://doi.org/10.1038/s41598-019-49413-5, 2019. a, b
Lebreton, L. C., Van Der Zwet, J., Damsteeg, J. W., Slat, B., Andrady, A., and
Reisser, J.: River plastic emissions to the world's oceans, Nat.
Commun., 8, 1–10, https://doi.org/10.1038/ncomms15611, 2017. a, b
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021. a
Macias, D., Cózar, A., Garcia-gorriz, E., González-fernández,
D., and Stips, A.: Surface water circulation develops seasonally changing
patterns of fl oating litter accumulation in the Mediterranean Sea . A
modelling approach, Mar. Pollut. Bull., 149, 110619,
https://doi.org/10.1016/j.marpolbul.2019.110619, 2019. a
McCann, A., Jeffery, I. B., Ouliass, B., Ferland, G., Fu, X., Booth, S. L.,
Tran, T. T., O'Toole, P. W., and O'Connor, E. M.: Exploratory analysis of
covariation of microbiota-derived Vitamin K and cognition in older adults,
Am. J. Clin. Nutr., 110, 1404–1415,
https://doi.org/10.1093/ajcn/nqz220, 2019. a, b
Morales-Caselles, C., Viejo, J., Martí, E.,
González-Fernández, D., Pragnell-Raasch, H.,
González-Gordillo, J. I., Montero, E., Arroyo, G. M., Hanke, G., Salvo,
V. S., Basurko, O. C., Mallos, N., Lebreton, L., Echevarría, F., van
Emmerik, T., Duarte, C. M., Gálvez, J. A., van Sebille, E., Galgani,
F., García, C. M., Ross, P. S., Bartual, A., Ioakeimidis, C.,
Markalain, G., Isobe, A., and Cózar, A.: An inshore–offshore sorting
system revealed from global classification of ocean litter, Nat.
Sustain., 4, 484–493, https://doi.org/10.1038/s41893-021-00720-8, 2021. a, b
Moy, K., Neilson, B., Chung, A., Meadows, A., Castrence, M., Ambagis, S., and
Davidson, K.: Mapping coastal marine debris using aerial imagery and spatial
analysis, Mar. Pollut. Bull., 132, 52–59,
https://doi.org/10.1016/j.marpolbul.2017.11.045, 2018. a
Nembrini, S., König, I. R., and Wright, M. N.: The revival of the Gini
importance?, Bioinformatics, 34, 3711–3718,
https://doi.org/10.1093/bioinformatics/bty373, 2018. a, b
Neumann, D., Callies, U., and Matthies, M.: Marine litter ensemble transport
simulations in the southern North Sea, Mar. Pollut. Bull., 86,
219–228, https://doi.org/10.1016/j.marpolbul.2014.07.016, 2014. a
Newman, S., Watkins, E., Farmer, A., Brink, P. T., and Schweitzer, J.-P.: The
Economics of Marine Litter, in: Marine Anthropogenic Litter, edited by:
Bergmann, M., Gutow, L., and Klages, M., Springer International
Publishing, Cham, 367–394, https://doi.org/10.1007/978-3-319-16510-3{_}14, 2015. a
Ogunola, O. S., Onada, O. A., and Falaye, A. E.: Mitigation measures to avert
the impacts of plastics and microplastics in the marine environment (a
review), Environ. Sci. Pollut. Res., 25, 9293–9310,
https://doi.org/10.1007/s11356-018-1499-z, 2018. a
Onink, V., Jongedijk, C. E., Hoffman, M. J., van Sebille, E., and
Laufkötter, C.: Global simulations of marine plastic transport show
plastic trapping in coastal zones, Environ. Res. Lett., 16, 064053,
https://doi.org/10.1088/1748-9326/abecbd, 2021. a, b, c
Pawlowicz, R.: The Grounding of Floating Objects in a Marginal Sea, J. Phys. Oceanogr., 51, 537–551, https://doi.org/10.1175/jpo-d-20-0183.1, 2020. a, b
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, https://doi.org/10.5555/1953048.2078195, 2011. a
Rech, S., Macaya-Caquilpán, V., Pantoja, J., Rivadeneira, M.,
Jofre Madariaga, D., and Thiel, M.: Rivers as a source of marine litter –
A study from the SE Pacific, Mar. Pollut. Bull., 82, 66–75,
https://doi.org/10.1016/j.marpolbul.2014.03.019, 2014. a
Ribic, C. A., Sheavly, S. B., Rugg, D. J., and Erdmann, E. S.: Trends and
drivers of marine debris on the Atlantic coast of the United States
1997-2007, Mar. Pollut. Bull., 60, 1231–1242,
https://doi.org/10.1016/j.marpolbul.2010.03.021, 2010. a
Ribic, C. A., Sheavly, S. B., Rugg, D. J., and Erdmann, E. S.: Trends in
marine debris along the U.S. Pacific Coast and Hawai'i 1998-2007, Mar. Pollut. Bull., 64, 994–1004, https://doi.org/10.1016/j.marpolbul.2012.02.008,
2012. a
Ricker, M. and Stanev, E. V.: Circulation of the European northwest shelf: a Lagrangian perspective, Ocean Sci., 16, 637–655, https://doi.org/10.5194/os-16-637-2020, 2020. a
Rijnsburger, S., Flores, R. P., Pietrzak, J. D., Horner‐Devine, A. R., Souza,
A. J., and Zijl, F.: The Evolution of Plume Fronts in the Rhine Region of
Freshwater Influence, J. Geophys. Res.-Oceans, 126, 1–28,
https://doi.org/10.1029/2019jc015927, 2021. a
Roomen, M. V., Keijl, G., Koks, B., and Mostert, K.: Numbers of wintering
waders on the North Sea coast of the Netherlands in January 1998, in:
International Wader Studies, International Wader Study Group, Thetford, UK,
18, 55–58, 2008. a
Ryan, P. G., Lamprecht, A., Swanepoel, D., and Moloney, C. L.: The effect of
fine-scale sampling frequency on estimates of beach litter accumulation,
Mar. Pollut. Bull., 88, 249–254,
https://doi.org/10.1016/j.marpolbul.2014.08.036, 2014. a
Ryan, P. G., Weideman, E. A., Perold, V., and Moloney, C. L.: Toward Balancing
the Budget: Surface Macro-Plastics Dominate the Mass of Particulate Pollution
Stranded on Beaches, Front. Mar. Sci., 7, 575395,
https://doi.org/10.3389/fmars.2020.575395, 2020. a
Schulz, K. and Umlauf, L.: Residual transport of suspended material by tidal
straining near sloping topography, J. Phys. Oceanogr., 46,
2083–2102, https://doi.org/10.1175/JPO-D-15-0218.1, 2016. a, b
Schulz, M. and Matthies, M.: Artificial neural networks for modeling time
series of beach litter in the southern north sea, Mar. Environ. Res., 98, 14–20, https://doi.org/10.1016/j.marenvres.2014.03.014, 2014. a
SEDAC, CIESIN – Center for International Earth Science Information Network –
Columbia University, FAO – United Nations Food and Agriculture Programme,
and CIAT – Centro Internacional de Agricultura Tropical: Gridded Population
of the World, Version 3 (GPWv3): Population Count Grid [data set],
https://doi.org/10.7927/H4639MPP, 2005. a, b
Shafer, J. M. and Varljen, M. D.: Approximation of confidence limits on sample
semivariograms from single realizations of spatially correlated random
fields, Water Resour. Res., 26, 1787–1802,
https://doi.org/10.1029/WR026i008p01787, 1990. a
Song, K., Jung, J. Y., Lee, S. H., and Park, S.: A comparative study of deep
learning-based network model and conventional method to assess beach debris
standing-stock, Mar. Pollut. Bull., 168, 112466,
https://doi.org/10.1016/j.marpolbul.2021.112466, 2021. a
Sterl, M. F., Delandmeter, P., and Sebille, E.: Influence of Barotropic Tidal
Currents on Transport and Accumulation of Floating Microplastics in the
Global Open Ocean, J. Geophys. Res.-Oceans, 125, e2019JC015583,
https://doi.org/10.1029/2019JC015583, 2020. a, b
Thepwilai, S., Wangritthikraikul, K., Chawchai, S., and Bissen, R.: Testing
the factors controlling the numbers of microplastics on beaches along the
western Gulf of Thailand, Mar. Pollut. Bull., 168, 112467,
https://doi.org/10.1016/j.marpolbul.2021.112467, 2021. a, b
van der Molen, J., van Leeuwen, S. M., Govers, L. L., van der Heide, T., and
Olff, H.: Potential Micro-Plastics Dispersal and Accumulation in the North
Sea, With Application to the MSC Zoe Incident, Front. Mar. Sci.,
8, 607203, https://doi.org/10.3389/fmars.2021.607203, 2021. a
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P.,
Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,
Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary,
S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli,
F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H.,
Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.:
Lagrangian ocean analysis: Fundamentals and practices, Ocean Model.,
121, 49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018.
a
van Sebille, E., Aliani, S., Law, K. L., Maximenko, N., Alsina, J. M., Bagaev,
A., Bergmann, M., Chapron, B., Chubarenko, I., Cózar, A., Delandmeter,
P., Egger, M., Fox-Kemper, B., Garaba, S. P., Goddijn-Murphy, L., Hardesty,
B. D., Hoffman, M. J., Isobe, A., Jongedijk, C. E., Kaandorp, M. L. A.,
Khatmullina, L., Koelmans, A. A., Kukulka, T., Laufkötter, C.,
Lebreton, L., Lobelle, D., Maes, C., Martinez-Vicente, V., Morales Maqueda,
M. A., Poulain-Zarcos, M., Rodríguez, E., Ryan, P. G., Shanks, A. L.,
Shim, W. J., Suaria, G., Thiel, M., van den Bremer, T. S., and Wichmann, D.:
The physical oceanography of the transport of floating marine debris,
Environ. Res. Lett., 15, 023003,
https://doi.org/10.1088/1748-9326/ab6d7d, 2020. a, b, c
Williams, A. T. and Tudor, D. T.: Litter burial and exhumation: Spatial and
temporal distribution on a cobble pocket beach, Mar. Pollut. Bull.,
42, 1031–1039, https://doi.org/10.1016/S0025-326X(01)00058-3, 2001. a, b
Zettler, E. R., Takada, H., Monteleone, B., Mallos, N., Eriksen, M., and
Amaral-Zettler, L. A.: Incorporating citizen science to study plastics in
the environment, Anal. Meth., 9, 1392–1403,
https://doi.org/10.1039/c6ay02716d, 2017. a
Short summary
A large amount of marine litter, such as plastics, is located on or around beaches. Both the total amount of this litter and its transport are poorly understood. We investigate this by training a machine learning model with data of cleanup efforts on Dutch beaches between 2014 and 2019, obtained by about 14 000 volunteers. We find that Dutch beaches contain up to 30 000 kg of litter, largely depending on tides, oceanic transport, and how exposed the beaches are.
A large amount of marine litter, such as plastics, is located on or around beaches. Both the...