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Abstract. Coastlines potentially harbor a large part of litter
entering the oceans, such as plastic waste. The relative im-
portance of the physical processes that influence the beach-
ing of litter is still relatively unknown. Here, we investigate
the beaching of litter by analyzing a data set of litter gath-
ered along the Dutch North Sea coast during extensive beach
cleanup efforts between the years 2014 and 2019. This data
set is unique in the sense that data are gathered consistently
over various years by many volunteers (a total of 14 000)
on beaches that are quite similar in substrate (sandy). This
makes the data set valuable to identify which environmental
variables play an important role in the beaching process and
to explore the variability of beach litter concentrations. We
investigate this by fitting a random forest machine learning
regression model to the observed litter concentrations. We
find that tides play an especially important role, where an in-
creasing tidal variability and tidal height leads to less litter
found on beaches. Relatively straight and exposed coastlines
appear to accumulate more litter. The regression model indi-
cates that transport of litter through the marine environment
is also important in explaining beach litter variability. By un-
derstanding which processes cause the accumulation of litter
on the coast, recommendations can be given for more effec-
tive removal of litter from the marine environment, such as
organizing beach cleanups during low tides at exposed coast-
lines. We estimate that 16 500–31 200 kg (95 % confidence
interval) of litter is located along the 365 km of Dutch North
Sea coastline.

1 Introduction

The accelerated release of mismanaged plastic waste into
the global ocean gives rise to the need for effective cleanup
strategies (Ogunola et al., 2018). In order to minimize the
negative impact of plastic pollution on the environment,
cleanup strategies need to be optimized to target the most im-
pacted areas while limiting the economic cost (Haarr et al.,
2019; Newman et al., 2015). Recent studies indicate that
plastics remain trapped in coastal zones (Koelmans et al.,
2017; Lebreton et al., 2019; Kaandorp et al., 2021a; Morales-
Caselles et al., 2021), with at least 77 % of buoyant marine
plastic debris beaching or floating in coastal waters (Onink
et al., 2021). Therefore, beach cleanups have the potential to
be a highly effective mitigation measure.

In addition, the plastic concentrations found on beaches
are generally higher compared to other environmental com-
partments, such as the surface water or the seafloor (Morales-
Caselles et al., 2021), making beaches favorable locations for
cleanup activities. Furthermore, by limiting the resuspension
of plastic items by removal, the overall plastic concentration
on the beach decreases over time and the formation of mi-
croplastic is reduced (Andrady, 2011; Haarr et al., 2020; Le-
breton et al., 2019). At the same time, as cleanup activities
generally involve a large number of volunteers, awareness of
the plastic pollution problem increases, leading to a reduc-
tion of plastic waste in the local environment (Kordella et al.,
2013).

Published by Copernicus Publications on behalf of the European Geosciences Union.



270 M. L. A. Kaandorp et al.: Explaining Dutch coastal litter using machine learning

Although the benefits of beach cleanups are well known,
the location and timing of these activities are often not opti-
mized. Haarr et al. (2019) identified accumulation zones of
beached plastic using the shoreline curvature and gradient in
Lofoten, Norway, and showed that high-accumulation areas
are often missed by cleanup actions. Other coastal properties
like substrate and backshore type have been found to influ-
ence debris quantities as well (Hardesty et al., 2017; Bren-
nan et al., 2018), with more litter accumulating in areas with
increased backshore vegetation. Additionally, physical pro-
cesses play an important role in the beaching of plastics and
should be considered when selecting effective sites for beach
cleanups.

However, the relative importance of the various physical
processes involved and how these can be parameterized so
far remains unknown (van Sebille et al., 2020; Pawlowicz,
2020). Studies have addressed the importance of the land-
ward wind direction for debris accumulation rates (Eriksson
et al., 2013; Critchell et al., 2015; Hengstmann et al., 2017;
Moy et al., 2018), the landward ocean circulation direction
(Thepwilai et al., 2021), and the role of tides (Eriksson et al.,
2013; Pawlowicz, 2020) and waves (Williams and Tudor,
2001). The spatial and temporal variability of the sources,
e.g., rivers, population density, and the fishing industry, also
play an important role for the accumulation of plastic on
beaches (Rech et al., 2014; Critchell and Lambrechts, 2016).

In addition to the study by Haarr et al. (2019), there are
several other studies that assess the prediction or monitor-
ing of beached plastic items using machine learning meth-
ods. These algorithms can be useful in discovering complex
relations between environmental variables and litter concen-
trations. In Granado et al. (2019), a marine litter forecasting
model was made using Bayesian networks, involving various
variables like wave height and period, wind velocity and di-
rection, precipitation, and river flow. Neural networks have
been used to quantify litter categories in Balas et al. (2004)
and Schulz and Matthies (2014), and deep learning methods
have been used to automatically identify debris on beaches
(Song et al., 2021).

In order to make data-driven methods work, relatively
large and consistent data sets are necessary, but most obser-
vational data sets are sparse. Beach cleanups and citizen sci-
ence initiatives can potentially provide valuable information
for scientific studies on marine pollution (Zettler et al., 2017),
as these data are based on a considerable amount of person
hours. Examples of citizen science data used in marine pol-
lution research can be seen in the work of Hidalgo-Ruz and
Thiel (2013), where schoolchildren in Chile documented the
distribution and abundance of plastic debris on beaches, and
Ribic et al. (2010, 2012), where amounts of marine debris
were measured by volunteer teams on beaches in the Pacific
and Atlantic.

Here, we will build upon past data-driven studies by us-
ing an unprecedented data set obtained from beach cleanup
efforts organized along the Dutch North Sea coast between

2014 and 2019. The number of participants (about 14 000),
person hours (about 84 000 h), the length of beach sampled
(about 1400 km), and the fact that all beaches sampled were
similar in substrate (sandy) make this data set unique and
very appropriate to apply data-driven methods. Furthermore,
a large set of explanatory variables will be created based on
environmental conditions and modeled transport of marine
litter. We will fit a random forest regression model to the ob-
served litter concentrations as a function of these explanatory
variables and investigate which ones are important to explain
the variability in beach litter. This allows us to investigate
which variables are important predictors for the amount of
litter present on beaches to get a better understanding of ma-
rine pollution and to increase the efficacy of beach cleanups
by creating a predictive model that could aid future cleanup
efforts.

2 Data description and region of interest

Since 2013 the North Sea Foundation, a Dutch environmental
non-governmental organization (NGO) advocating the pro-
tection and sustainable use of the North Sea marine ecosys-
tem, has organized the national Boskalis Beach Cleanup
Tour. During this tour, every year in August the entire Dutch
North Sea coast is cleaned up by volunteers. It is the largest
cleanup campaign in The Netherlands. The tour is divided
into stages along the North Sea coast. The length of each
stage is between 8–10 km. The midway points of all stages
are plotted in Fig. 1 using the black crosses.

During the first three editions (2013–2015), the tour was
organized over a period of a month, with one stage per day.
From 2016 on, the tour took 15 d, with simultaneous clean-
ing of two stages per day. One cleanup team started on the
Wadden Island Schiermonnikoog (the easternmost cross in
Fig. 1), the other team started in the southwestern province
Zeeland in Cadzand (the westernmost cross in Fig. 1). On
day 15, both teams met halfway in Zandvoort (≈ 4.5◦ E).
The cleanups started around 10:00 LT (local time) and ended
around 16:00 LT, with total cleanup times taking between
4 and 6 h for each stage. The volunteers were guided by
cleanup teams of the North Sea Foundation, which consist
of professional employees of the North Sea Foundation and
trained volunteers.

At each stage, all litter present on the beach was collected
in plastic bags and weighed. The weighing of the collected
litter was done using analogue and/or digital scales (dur-
ing the stage or at the end of the stage) and carried out by
one of the members of the cleanup team. Most of the litter
found was plastic (estimated percentage between 80 %–90 %
in terms of numbers). The years over which weights of col-
lected litter are available for each stage are plotted in Fig. 1
using the colored squares. For most stages, weights are avail-
able for all years, in some cases stages were added in later
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years. Figures with the observed amount of litter per location
per year are presented in Figs. A1 and A2.

To get an impression of the mean environmental condi-
tions along the Dutch North Sea coast, the mean surface cur-
rents are plotted in Fig. 1 using the arrows (Global Monitor-
ing and Forecasting Center, 2021), and the mean wind speed
and direction are plotted using the wind rose (Hersbach et al.,
2020), all averaged over August between 2014 and 2019.
The wind predominantly comes from the southwest. Gener-
ally, the currents move from southwest to northeast along the
North Sea coast. The effect of freshwater influxes from rivers
is visible around the southern province of Zeeland (< 52◦ N).
The effect of this freshwater influx can be observed over con-
siderable distances along the Dutch coast, for example in
the form of freshwater lenses traveling downstream (De Rui-
jter et al., 1997; Rijnsburger et al., 2021). Ricker and Stanev
(2020) found that locations with high-salinity gradients due
to a freshwater influx can act as a barrier for neutrally buoy-
ant particles, possibly causing accumulation of litter along
these fronts. Finally, tidal currents move along the coast to
the northeast during flood tide and southwest during ebb tide
(not plotted in the Fig. 1).

3 Methodology

3.1 Data preprocessing

Different sources of marine litter exist, such as mismanage-
ment of waste near the coast, input from rivers, or fishing
gear which is lost at sea. The litter is then transported through
the environment and can eventually end up on beaches, influ-
enced by various factors such as ocean currents and winds.
However, how all of these variables combined influence the
beaching of litter is unknown. A regression model is used
here to relate various environmental variables to the observed
litter concentrations. We will assess whether it is possible
to use the regression model to make predictions about the
amount of beached litter and, if so, which environmental
variables are important predictors to take into account.

For the environmental variables, three classes of data are
used. First of all, hydrodynamic data (ocean currents, ocean
surface waves, tides) and wind data are used (Sect. 3.1.1).
Furthermore, we use Lagrangian simulation data, captur-
ing transport of virtual particles representing floating litter.
These simulations are used to estimate fluxes of litter onto
beaches (Sect. 3.1.2). Finally, we use data of the coastal ge-
ometry and orientation (Sect. 3.1.3). Environmental variables
are calculated for various lead times and distances from the
measurement locations (expressed as radii around the stage
midway points). These variables are then fed into a random
forest algorithm to make the regression model.

3.1.1 Hydrodynamic and wind data

Numerical model data are used to specify the state of the sea
and wind around the beach cleanup locations, as these fac-
tors have been found to likely play a role in the accumulation
of beach litter (Eriksson et al., 2013; Thepwilai et al., 2021;
Williams and Tudor, 2001). Reanalysis data are used where
historical observational data have been assimilated in numer-
ical models.

Information about ocean surface currents (U curr.), salin-
ity (S), Stokes drift (UStokes), and significant wave height
(Hs) are derived from EU Copernicus Marine Environmental
Monitoring Service Information data. High-frequency tidal
forcing has been used to produce the ocean current data, but
output is only provided daily. To capture the effects of tides
on a high temporal resolution, FES2014 data are used. Tidal
currents (U tides) and heights (htide) are calculated, taking the
M2, S2, K1, and O1 constituents into account (Sterl et al.,
2020), as well as the M4 and M6 components, which have
been shown to play an important role in transport of sus-
pended particles in the North Sea (Gräwe et al., 2014). The
wind velocity field at 10 m (Uwind) is taken from ERA5 re-
analysis data. ERA5 data are used for the atmospheric forc-
ing in the European Northwest Shelf reanalysis product from
which the surface current data are obtained, making these
data sets consistent. Further details on the temporal and spa-
tial resolution and assimilated data are given in Table 1.

3.1.2 Lagrangian model setup

While data on the sea state and wind might explain the litter
accumulating on beaches to some extent, it misses informa-
tion on possible sources of litter and how this litter is trans-
ported through the marine environment. We therefore include
estimates of beached litter fluxes in our analysis based on La-
grangian particle simulations.

Using the OceanParcels Lagrangian ocean analysis frame-
work (Delandmeter and van Sebille, 2019), we model the tra-
jectories of virtual buoyant particles at the sea surface using
a Runge–Kutta 4 integration scheme. These virtual particles
represent floating litter such as plastics. For the trajectories
we consider a domain between 40–65◦ N and 20◦W–13◦ E;
see Fig. 2. We simulate a total of about 380 000 trajectories
over the years 2011–2019. When particles move out of the
specified domain they are removed, which mainly happens
after particles move northward along the Norwegian coast.
The ocean surface currents and Stokes drift from the hydro-
dynamic data are used to move the virtual particles around.
We do not add additional tidal forcing to the Lagrangian
model (Sterl et al., 2020) since the net effect of tides is al-
ready included in the ocean surface current data set (Global
Monitoring and Forecasting Center, 2021). It is assumed that
particles move just below the surface water and do not ex-
perience a direct wind drag (Lebreton et al., 2018; Macias
et al., 2019; Kaandorp et al., 2020). Effects of subgrid-scale
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Figure 1. Locations of the midway points for each cleanup tour stage (black crosses) and dates showing for which year data are available
(the colored squares). For stages with multiple data points per year, different stretches of beach were cleaned (e.g., once on the northern side
and once on the southern side). Also plotted are the mean surface currents (arrows) (Global Monitoring and Forecasting Center, 2021) and
the wind rose (Hersbach et al., 2020) calculated for August for the years 2014–2019.

Table 1. An overview of the numerical hydrodynamic and wind data used to derive the variables for the regression analysis. The data set
name, temporal and spatial resolution, data used to assimilated the numerical models, and corresponding references are presented.

Variables Data set name Spatial res. Temporal res. Assimilated data Reference

U∗∗curr., S
∗ European

Northwest
Shelf reanalysis

1/9◦× 1/15◦ daily mean temperature, salinity obser-
vations

Global Monitoring and
Forecasting Center (2021)

U∗∗Stokes, H∗s Global Ocean
Waves reanaly-
sis

1/5◦× 1/5◦ 3-hourly in-
stantaneous

Hs and directional wave
spectra observations

Global Monitoring and
Forecasting Center (2020)

U∗tide, h∗tide FES2014 1/16◦× 1/16◦ spectral altimetry data, tidal gauges Lyard et al. (2021)

U∗wind ERA5 global
reanalysis

1/4◦× 1/4◦ daily-mean various observations Hersbach et al. (2020)

∗ Data are used from July to September for the years 2014 to 2019. ∗∗ Data are used for all months from January 2011 up to September 2019, as these are also used for the
Lagrangian model simulations.

phenomena are parameterized using a zeroth-order Markov
model (van Sebille et al., 2018). The tracer diffusivity is set
to a constant value of 10 m2 s−1, appropriate for the given
mesh size (Neumann et al., 2014).

We use the same approach as in Kaandorp et al. (2020) to
define sources of marine plastic litter. Particles are released

daily at river mouths, proportional to the estimated monthly
riverine outflow of plastic waste based on the model by Le-
breton et al. (2017). These sources are plotted using green
circles in Fig. 2. Particles are released daily in the sea, pro-
portional to the amount of fishing hours based on Kroodsma
et al. (2018), shown in blue in Fig. 2. These data are depen-
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dent on fishing vessel transponders, which are not equally
present over the years. We therefore release a constant in-
put of virtual particles from this source each day. Finally,
there is a constant daily release of particles along coastlines
proportional to the amount of estimated land-based misman-
aged plastic waste within a radius of 50 km from the coastline
(Jambeck et al., 2015; SEDAC et al., 2005). These sources
are plotted in red in Fig. 2.

A beaching timescale τbeach parameterizes how quickly lit-
ter moves from the sea onto the beach when residing near the
coast (Kaandorp et al., 2020). Here, the probability of beach-
ing Pbeach is given by

Pbeach = 1− e−tcoast/τbeach , (1)

where tcoast is the time that particles spend in the model
ocean cell adjacent to the coast. Various values for τbeach are
tested here, from τbeach = 25 d estimated for plastic particles
and τbeach = 75 d estimated for drifter buoys in Kaandorp
et al. (2020), to a more conservative value of τbeach = 150 d.
While in reality τbeach might vary significantly both in space
and time, it is unknown how this can be best parameterized
(Onink et al., 2021). We use the Lagrangian model simula-
tions to capture the large-scale transport of litter and allow
the regression model to pick the most appropriate value for
τbeach later on. Only direct pathways of litter through the sur-
face water are considered here and resuspension of litter from
beaches (Onink et al., 2021) is ignored. Particles are tracked
until they have lost more than 99 % of their initial mass in the
most conservative scenario of τbeach = 150 d. This means that
particles are deleted when they have spent more than 691 d
near the coast.

Each virtual particle starts with a unit mass. For each time
step that a virtual particle spends near the coast, a fraction
of its mass is lost due to the beaching process. This means
that as tcoast increases for a virtual particle, a fraction of its
mass is lost, which is calculated using Eq. (1). For each vir-
tual particle, we calculate where and when it loses mass due
to the beaching process. These masses lost to beaching are
binned in a 1/9◦× 1/15◦ beaching flux histogram for each
day. These beaching fluxes are denoted by Fbeach and are
calculated for each particle source: Fbeach,fis., Fbeach,riv., and
Fbeach,pop. for fishing activity, river inputs, and mismanaged
plastic waste from coastal population, respectively.

3.1.3 Coastal orientation and geometry

Coastal orientation, geometry, and substrate are likely to in-
fluence the amount of litter that actually beaches on coast-
lines (Brennan et al., 2018; Andrades et al., 2018; Hardesty
et al., 2017). Although the substrate of beaches in the Nether-
lands is relatively similar (sandy), there are local variations in
the coastline orientation with respect to the large-scale coast-
line. We take this into account by including information on
how the hydrodynamic and wind data are oriented with re-
spect to the local coastline.

The Natural Earth data set is used here at a 1 : 10 mil-
lion resolution (Kelso and Patterson, 2010), which is fine
enough to estimate the general orientation of the beaches
on which the cleanup stages have taken place. Two locations
are not present in the coastal geometry of this data set (two
constructed beaches along dams: Brouwersdam and Neeltje
Jans); the coastal orientations of these locations were deter-
mined manually.

Normal vectors to the coastline (denoted by n) are esti-
mated by fitting a tangent plane through the points defining
the coastline segments. Using a singular value decomposition
we minimize the orthogonal distance between these points
and the plane. All points within a box of 10× 10 km cen-
tered around the stage midway point are selected (roughly
the length scale of the beach cleanup tours). One example
is plotted in Fig. 3a, where the dotted box is the selection
around the stage midway point, and the coastline segments
within this box are indicated in orange. The resulting normal
vector to this coastline segment is plotted using the orange
arrow.

Dot products are calculated for vector fields (e.g., current
velocity) with respect to the coastline normal vectors to quan-
tify how much a vector points onshore (positive dot prod-
uct) or offshore (negative dot product). An example is pre-
sented in Fig. 3b. At a given stage midway point, the numer-
ical data within a certain radius are selected. For each of the
cells we can then calculate the dot product of the vector data
with respect to the coastline normal vector. In the example of
Fig. 3b, the normal vector points towards the northeast. Cells
where the velocity vector points in roughly the same direc-
tion (onshore) are colored red, the opposite directions (off-
shore) are colored blue. In Fig. 3b the example is presented
for only one time snapshot: the quantities can be calculated
for various lead times. We then save derived quantities such
as the mean, maximum, or minimum dot product over the
lead time in a given radius, which will be further explained
in Sect. 3.2.1.

The coastal normal vectors are also used to estimate the
misalignment between the numerical model coastline and the
high resolution coastline. In Fig. 3a, the numerical model
grid cell centers at the coast are plotted using the brown dots.
A singular value decomposition is used again to estimate the
coastline normal vector of the numerical grid (ngrid, indicated
by the brown arrow). At each stage midway point, the dot
product is taken of ngrid with respect to the high-resolution
coastline normal vector n to obtain a measure for the mis-
alignment. In the example plotted in Fig. 3a there would be a
large amount of misalignment between ngrid and n, resulting
in a negative dot product between the two quantities.

Finally, the coastline length per grid cell is estimated. For
each cell of the numerical model, we take the coastline seg-
ments within the given cell and calculate their total length.
Since coastlines show fractal behavior (Kappraff, 1986) their
Euclidian length is not well defined. This means that the
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Figure 2. Input scenarios used to seed virtual litter particles in the Lagrangian simulations. Riverine input is indicated by the green circles,
the amount of fishing hours is shown in blue, and the coastal mismanaged plastic waste density is shown in red. Note the log scale used for
all input scenarios. While all rivers from Lebreton et al. (2017) are included in our analysis, only rivers predicted to transport more than 0.2 t
of plastic litter into the ocean are plotted here.

lengths calculated here are estimates and that their value
would increase when taking a higher model resolution.

3.1.4 Spatial variability

Information about spatial variability of beached litter can be
useful for cleanup campaigns to target areas that are likely to
be the most polluted. One might expect that cleanup locations
close to each other show more similar litter concentrations
compared to locations that are further apart. Furthermore, it
is important for modeling studies to know the subgrid-scale
variability that is not captured by the (discrete) numerical
data (Kaandorp et al., 2020). Finally, observing how spatial
variability changes for different length scales could give us
clues which physical processes are important for the disper-
sion of litter.

We will quantify the spatial variability of litter found on
the coast as a function of the separation distance between the
different cleanup locations using an empirical variogram. To
compute the empirical variogram, all pairs of measurements
within a certain distance of each other are compared, defined
by h± δ, where h is the separation distance and δ is half
the bin width used to discretize the separation distance. The
empirical variance γ̂ (h) of the measurements separated by
h± δ is calculated using (Bachmaier and Backes, 2011)

γ̂ (h± δ)=
1

2N(h± δ)

∑
(i,j)∈N(h±δ)

(zi − zj )
2, (2)

where N(h± δ) denotes the number of samples in the given
separation distance bin and z is the quantity of interest.
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Figure 3. Illustration of the methodology used to calculate the directional variables. Panel (a) shows the high-resolution coastline points
and the derived normal vector (n), shown in orange, located around the stage midway point (the black cross). Also shown are the numerical
model coastline points and the derived normal vector (ngrid) in brown. Panel (b) shows how the dot product variables are calculated. In a
radius around the stage midway point, the dot product of the vector field is calculated with respect to the high-resolution coastline normal
vector (n), where offshore components are indicated in blue and onshore components are shown in red.

We calculate the empirical variogram on the log10 values
of the measured plastic concentrations (in kg km−1). Con-
fidence intervals of the calculated variogram are estimated
using a jackknife parameter estimation (Shafer and Varljen,
1990).

Measured litter concentrations are subject to both spatial
and temporal variability. To remove temporal variability as
much as possible from the empirical variance estimates, we
only use data pairs within a certain time separation. Decreas-
ing the time separation window reduces the effect of the tem-
poral variability but also reduces the number of available data
pairs. We use a time separation of 3 d here, for which it was
found that there are still enough available data pairs to com-
pute the empirical variogram.

3.2 Model

3.2.1 Machine learning features

The variables described in Sect. 3.1.1–3.1.3 are used to cre-
ate a set of explanatory variables, which are related to the
observed beach litter quantities. It is, however, not obvious
what kind of lead time should be considered for the variables
and over which spatial scale the variables will have an influ-
ence on beach littering. We therefore calculate a large set of
combinations for the explanatory variables by varying the ra-
dius of influence and/or the lead time. For the radii, we will
consider the variable data closest to the stage midway point
(which we will denote by a radius of 0 km) and variable data
within radii of 50 and 100 km. For lead times, we will con-
sider 1, 3, 9, and 30 d. As shown in Eriksson et al. (2013)
and Ryan et al. (2014), the turnover of litter on beaches gen-
erally happens within timescales of days, meaning that with
this range of lead times we should be able to capture most of

the litter accumulation. Furthermore, a lead time of 30 d also
captures all tidal variability up to and including the spring–
neap cycle. The combinations of variables, lead times, and
radii will be called features and are fed into the regression
algorithm.

An overview of the features is given in Table 2. Three cate-
gories are defined: scalar features, directional features (which
contain information on the direction of various vector fields
with respect to the coastline), and features derived from the
Lagrangian model simulations.

For the scalar features, we look atHs and the magnitude of
UStokes, Uwind, U curr., and U tides. We calculate the mean and
the maximum of these quantities using all data points within
the given radii and lead times.

We calculate a number of features derived from the tidal
height htide. First of all, the maximum tidal height and the
standard deviation of the tidal height over the given lead
times are calculated, taking the closest data point from the
stage midway point. Furthermore, a quantity is defined giv-
ing information in which period of the spring–neap tidal cy-
cle the stage was monitored (htide,deriv.). The maximum tidal
height at the stage day and the maximum tidal height at
the given lead time are calculated. We calculate the tempo-
ral derivative by subtracting both values and dividing by the
lead time. A positive value means we are approaching the
spring tide, a negative value means we are approaching the
neap tide. Since spring tides occur roughly every 2 weeks,
only lead times of 1 and 3 d are used for this feature. Finally,
the minimum and maximum tidal height encountered during
each stage are calculated since these might contribute to how
much beach was sampled during that day.

The total coastline length within a given radius is calcu-
lated (lcoast) using the Natural Earth data set, as explained
in Sect. 3.1.3. To include possible local sources of litter, the
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population within a given radius (npop.) is included as a fea-
ture (SEDAC et al., 2005), as is the total fishing activity
(Kroodsma et al., 2018) within a given radius (nfis.). Addi-
tionally, we want to include information about whether river
mouths are present upstream of the cleanup stage. We use
salinity (S) as a proxy for this, as low salinity indicates a
nearby river mouth. The mean and minimum salinity are cal-
culated over the various radii and lead times.

The number of participants for each stage is used as a fea-
ture (npart.) to assess whether a lower percentage of litter is
captured at stages with less participants. These data are avail-
able for 2017–2019. For 2014–2016 only the total number
of participants per year is available. To estimate the number
of participants per stage for these years, we first calculate
the participant fractions per location over 2017–2019. These
fractions are then scaled with the total number of participants
over 2014–2016.

For the directional features, we calculate the dot product of
the Stokes drift, wind, ocean currents, and tides with respect
to the coastline normal vector (n). The mean and maximum
are again calculated (as is the minimum) since this gives us
additional information as to whether there have been strong
offshore components. These features are calculated for all
radii and lead times. Furthermore, the misalignment of the
numerical model coastline normal vector (ngrid) with respect
to the coastline normal vector is specified as a feature.

Finally, the total fluxes of beached litter from the La-
grangian particle simulations are given as features from fish-
eries (Fbeach,fis.), riverine input (Fbeach,riv.), and mismanaged
waste from the coastal population (Fbeach,pop.). These fea-
tures are calculated for different beaching timescales τbeach,
all radii, and all lead times. The features are divided by the
appropriate lcoast corresponding to the radius to get the es-
timated beached litter fluxes per unit length of coast. One
benefit of adding beached litter fluxes from the Lagrangian
particle simulations is that potential sources of litter far away
from the beaching location can be included. While the ra-
dius of influence for all features goes up to 100 km, the La-
grangian model features can still include information from
further away, since the virtual particles are tracked indefi-
nitely, as explained in Sect. 3.1.2.

3.2.2 Regression model

The features and corresponding response (the measured
amount of litter in kg km−1) are used to fit a random for-
est regression algorithm (Pedregosa et al., 2011). This model
allows us to capture nonlinear relations between the features
and response. It is a non-parametric model and does not re-
quire prior knowledge on the model structure. These are both
important reasons to choose the specific algorithm: coastal
processes affecting dispersion of marine litter are highly
complex (van Sebille et al., 2020), and thus we do not know a
priori how the different environmental variables might inter-
act or how nonlinear these interactions might be. The random

forest regression model can aid in scientific knowledge dis-
covery (Bortnik and Camporeale, 2021) as it gives us Gini
importance values for all features (Nembrini et al., 2018).
This is another reason for choosing this specific algorithm,
as it provides us information about which processes are im-
portant for predicting beached litter concentrations.

In total we have 342 features from all variable, radius, and
lead time combinations. There are a total of 175 measured
litter concentrations. The large number of features in com-
parison to the measurements makes it difficult to interpret
the feature importance and could lead to overfitting. There-
fore, k-fold cross-validation is used to validate and test the
model on a reduced amount of features, which are selected
from a set of clusters.

Some features correlate because they are derived from the
same variable but for a different radius or lead time. How-
ever, we do not know a priori which of these radii and lead
times are the most appropriate predictors for the beached
litter quantities. For example, litter concentrations might be
influenced by long-term processes, there may be a slow in-
crease to the standing stock of litter on the beach, or the con-
centrations simply could be better predicted by conditions
on the day leading up to the cleanup stage. Since we do not
know whether these factors play a role, we let the algorithm
select the most appropriate variables. Features that are highly
correlated will be assigned to clusters. We use hierarchical
Ward linkage clustering for this, based on Spearman rank–
order correlations (McCann et al., 2019; Cope et al., 2017).
As a result, the total set of features is reduced to 66 feature
clusters. For further details and an interpretation of the clus-
ters, see Appendix C.

Nested 5-fold cross-validation is used for optimal feature
selection from the clusters and to assess the model perfor-
mance on a test data set. In the outer loop, we use 80 % of
the data to train the model and use the remaining 20 % to test
the model performance. This is repeated for each fold, i.e., 5
times. In the inner loop, 80 % of the training data (i.e., 64 %
of the total data) are used to train the model and 20 % (i.e.,
16 % of the total data) are used to calculate the importance
of the features; this process is also repeated 5 times. Since
in the inner loop none of the test data are used to train the
model, we do not overpredict the model performance (Hastie
et al., 2008). As all features in our regression model are con-
tinuous (i.e., there is no bias from categorical features Nem-
brini et al., 2018) we use the random forest Gini importance.
After the inner loop is complete, we then select the feature
with the highest Gini importance from each cluster. The ran-
dom forest is trained using the selected features, and its per-
formance is evaluated using the test data. We keep track of
which features from the clusters are estimated to be the most
important. The entire process is repeated 10 times to obtain
consistent feature importance estimates. A schematic of the
model pipeline is presented in Appendix D.

Ocean Sci., 18, 269–293, 2022 https://doi.org/10.5194/os-18-269-2022



M. L. A. Kaandorp et al.: Explaining Dutch coastal litter using machine learning 277

Table 2. An overview of the machine learning features used. For each set of variables in each column, derived quantities are calculated, e.g.,
the maximum, sum, or mean, over the given radius and lead time. Directional features are dot products of a given vector field with respect to
the coastline normal vector n. For the last category (Lagrangian model features), the radius, lead time, and the beaching timescale (τbeach)
are all varied.

Category Scalar features Directional features Lagrangian
model features

Variable Hs,
|UStokes|,
|Uwind|,
|Ucurr.|,
|U tides|

htide htide lcoast, npop.,
nfis.

S npart. UStokes ·n,
Uwind ·n,
Ucurr. ·n,
U tides ·n

ngrid ·n Fbeach,fis.,
Fbeach,riv.,
Fbeach,pop.,
τbeach =
25,75,150 d

Quantity mean, max max, SD,
deriv.∗

max, min sum mean, min – mean, max,
min

– sum

Radii 0, 50, 100 km 0 0 0, 50, 100 km 0, 50, 100 km – 0, 50, 100 km 0 0, 50, 100 km

Lead
times

1, 3, 9, 30 d 1, 3, 9, 30 d during tour∗ – 1, 3, 9, 30 d – 1, 3, 9, 30 d – 1, 3, 9, 30 d

∗Further explanation is given in the main text for these parameters.

4 Results and discussion

4.1 Regression analysis

The regression model shows reasonable correspondence with
the measured litter concentrations, where the Pearson corre-
lation coefficient (R) based on the repeated cross-validation
is 0.72±0.08. A scatterplot with the measured litter concen-
trations on the x axis and the predicted litter concentrations
on the y axis is shown in Fig. 4. The points are colored ac-
cording to their test folds. As the 5-fold cross-validation is
repeated 10 times, only one realization is shown here, where
every data point is plotted once.

In Fig. 4, the variability is shown that can be expected for
length scales and timescales smaller than the numerical data
resolution. Using the empirical variogram, we calculate that
γ̂ = 0.08 for lag distances of h= 5±5 km. This lag distance
is at the lower side of the grid resolution for the numerical
data (approximately 7 km for the ocean current data), and
thus the model is not able to capture variations below this
length scale. Therefore, a 1 : 1 line is plotted for ±2 stan-
dard deviations based on this variance as an indication of
the optimal performance that can be expected. In this case,
94 % of the predicted values lie inside the ±2σ interval, in-
dicating that the model is close to the optimal performance
that can be expected for the given spatial and temporal res-
olution. It can be seen that there are two kinds of outliers
in Fig. 4: low observed litter concentrations not captured by
the model (points in the upper left corner of the scatterplot)
and high observed litter concentrations not captured by the
model (points in the lower right corner of the scatterplot).
This can be explained by the fact that the model is not able
to capture all variability contained in the observations. As
the hydrodynamic and wind data in the model have a limited
resolution, subgrid-scale effects are missing (see Sect. 4.2).

Figure 4. Scatterplot of the observed log-transformed litter quan-
tities (x axis) and the modeled log-transformed litter quantities
(y axis). The points are colored according to the five test folds
used in the analysis. The 1 : 1 line is plotted using the dashed black
line, and the estimated uncertainty based on the small-scale variance
(±2σ ) is plotted using the dashed red lines.

Furthermore, local point sources of litter (both spatially and
temporally, e.g., shipping container accidents van der Molen
et al., 2021) are not captured by the model.

In Fig. 5 we show box plots for the 10 most important fea-
tures based on the Gini importance, which have been picked
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out of the total 66 feature clusters. Importance scores for all
66 feature clusters are plotted in Appendix B. The model in-
dicates that tides play an important role for predicting the
amount of beached litter. The most important feature is re-
lated to the long-term variability of the tidal height, with a
lead time of 30 d. Short-term behavior is also seen as impor-
tant, as the second most important feature is the maximum
tidal height encountered within a lead time of 3 d. Further-
more, the maximum tidal height encountered during the tour
is the sixth most important feature, and the dot product of the
tidal currents with respect to the coastline is the eighth most
important feature. In general, higher tidal maximum and vari-
ability lead to less litter measured on the coastline (see Ap-
pendix B5 for further details). A higher tide during or pre-
ceding the cleanup could resuspend some of the litter from
the beach. Furthermore, a higher tide encountered during the
cleanup stage reduces the beach width that can be sampled.
Perhaps a stronger variability in the tidal height leads to less
persistent high strandlines where the highest litter concen-
trations are normally found (Heo et al., 2013). It has been
shown in numerical studies that residual tidal currents can
lead to a net transport of both suspended and floating matter
(Gräwe et al., 2014; Børve et al., 2021; Schulz and Umlauf,
2016). While the regression model indicates that tides play
an important role, it is difficult to separate the causal rela-
tions between all these different effects and the litter quanti-
ties found on beaches. To quantify this in more detail, further
experimental and numerical studies are required.

The coastline length in the neighborhood of the cleanup
stage (lcoast) is ranked as the fourth most important feature.
This feature can describe multiple effects on litter concen-
trations. More coastline per unit area means that litter con-
centrations are possibly spread out over longer stretches of
beach, reducing the amount of litter per kilometer of beach.
Furthermore, an increasing lcoast indicates an increasing ir-
regularity of the nearby coastline shape. This is, for exam-
ple, the case around the province of Zeeland in the southwest
(< 52◦ N in Fig. 1): in regions with irregular coastlines, more
sheltered beaches can be found compared to regions with a
long straight coastline, influencing the litter concentrations.
Coastal orientation, ngrid ·n, plays an important role given
that it has the fifth-highest Gini importance. When the coast-
line section tends to be more directly located towards the
open sea, the large-scale coastal geometry (ngrid) aligns with
the small-scale coastal geometry (n) at the locations used
here. In Haarr et al. (2019) and Hardesty et al. (2017), for ex-
ample, it was reported that large-scale headlands tend to en-
hance catchment of litter compared to large-scale sheltered
areas. This is in line with our findings, with an increasing
ngrid ·n leading to more predicted litter (see Appendix B5).

Results suggest that transport of marine litter is important
to take into account, as the third and seventh most impor-
tant features are beaching fluxes from the Lagrangian model
simulations from fishing activity and coastal mismanaged
waste, respectively. These features implicitly contain infor-

mation about various hydrodynamic variables and sources
of litter, explaining why these are ranked above most other
scalar and directional features related to wind, currents, and
waves. It is also interesting that they are all ranked above the
nearby fishing activity (nfis.) and population density (npop.),
which are the 10th and 14th most important features, respec-
tively (see Fig. B1). This could indicate that transport of
litter through the marine environment is important to take
into account, as opposed to only considering local terres-
trial sources. From the three possible sources of litter used
in the model, transport from fisheries is the most important.
This is consistent with the litter composition found on Dutch
beaches, which consists in large part of fishing-related items
(40 % van Duinen et al., 2021).

Finally, the dot product of U curr. with respect to the coast-
line is seen as important (ninth most important). This feature
is related to small-scale and long-term behavior, which might
give an indication as to whether there are currents present
moving the litter onshore to the cleanup stage location.

Changes in predictive capability are relatively small when
leaving out the Lagrangian model simulation features; see
Fig. B2. The Pearson correlation coefficient R in this case
is 0.72± 0.10, which is not significantly lower than the full
model. This suggests that information on transport of litter is
to some extent also contained in other variables, such as the
currents, waves, and wind magnitude and direction. Direc-
tional information seems to play an important role, as when
leaving out the Lagrangian model simulation features, 4 out
of the 10 most important features are related to the dot prod-
ucts of currents, tides, and Stokes drift with respect to the
coastline (see Fig. B3).

It is estimated that the number of participants taking part in
the tour does not have a large influence on the amount of litter
that is found; see Appendix B for further details. This sug-
gests that with an average of 77 participants per campaign,
adding more participants would not necessarily lead to more
litter being cleaned up. No clear patterns emerge regarding
lead times and radii for the most important features. This
could indicate that litter found on beaches is an ensemble
of objects with different moments of beaching and residence
times. Features regarding wind and significant wave height
are seen as less important, being ranked 18th and lower; see
Fig. B1. It is possible that this information is already con-
tained in the Stokes drift or that they play a lesser role in the
transport of litter. One explanation is that most of the litter
found during the cleanup tour has a relatively low wind drag
coefficient in the water, which was also observed in Lebreton
et al. (2018) for litter in the Great Pacific Garbage Patch.

Having the full set of 66 feature clusters is not necessary
for predictive capability. In Fig. B4 we show that the model
performs well when only picking the top eight features (Pear-
son correlation coefficient R: 0.79± 0.04). Increasing the
amount of features does not increase the model performance.
For an operational model it would therefore be recommended
to stick to a lower amount of features, as this keeps the model
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Figure 5. Box plots for the feature Gini importance values from the random forest regression algorithm. Only the top 10 features are plotted
here; an overview of all features can be found in Appendix B. The label colors correspond to the variable categories in Table 2, where scalar
features are indicated in blue, directional features are shown in red, and Lagrangian model features are shown in orange. The radius and lead
time are indicated in the brackets (when applicable).

simple and easier to interpret. We investigate if the most im-
portant variables are related to certain locations by perform-
ing a principal component analysis, taking these eight most
important features in the full model (Fig. 5). A scatterplot
of the first two principal components is presented in Fig. 6,
where the dots are colored according to their latitude. The
two principal components explain 50 % and 17 % of the to-
tal variance, respectively. What can be seen is that the points
separate into roughly three different regions: measurements
taken at lower latitudes around the province of Zeeland (51–
52◦ N), measurements taken between 52 and 53◦ N, and mea-
surements obtained near the Wadden Islands (53–53.5◦ N).
The first principal component shows the highest absolute cor-
relation (Pearson R: 0.45) with long-term tidal variability
(with a lead time of 30 d). The second principal component
shows the highest absolute correlation (Pearson R: −0.58)
with the nearby coastal length (within a radius of 50 km).
As the measurements taken between 52–53◦ N are clustered
quite closely together, this indicates that conditions regarding
tides and coastline geometry are relatively similar for these
locations. Variations in the tidal height are relatively large be-
tween 51–52◦ N. The coastal geometry is also more irregular
here compared to the rest of the Netherlands. These factors
combined likely lead to less litter on beaches here: calculated
over 2014–2019 for< 52◦ N we find on average 52 kg km−1,
and for > 52◦ N we find on average 73 kg km−1 for the same
period.

4.2 Spatial variability

To assess which length scales are important for the spatial
variability of beached litter, we calculate the empirical vari-
ogram for different lag distances. Spatial variability remains

Figure 6. The two principal components based on the five most
important features (see Fig. 5). The points are colored according to
their latitude, from which the separation of measurements into three
different clusters (51–52, 52–53, and 53–53.5◦ N) becomes evident.

relatively constant for lag distances up to about 100 km, with
a mean of γ̂ = 0.07; see Fig. 7. For the smallest lag dis-
tance (h= 5± 5 km), we find γ̂ = 0.08. This variance esti-
mate was also used to create the error bars in Fig. 4. Around
h= 125 km there seems to be an increase in the variance to
about γ̂ = 0.2–0.3. However, at this lag distance there is also
a large uncertainty in the estimates and fewer unique data
pairs to calculate the empirical variance.

Interestingly, some periodic behavior seems to be present
with a length scale of about 25 km. One possible explanation
could be the typical spacing of the Dutch islands and penin-
sulas. As shown in the previous section, coastline orientation
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Figure 7. Variogram calculated for the log10 of the measured litter
quantities (in kg km−1), with the lag distance h on the x axis and
the empirical variance γ̂ (h) on the y axis. Only data pairs with a
maximum of 3 d temporal separation are taken into account. For the
separation distance half bin width δ = 5 km is used. The points are
colored by the number of unique data pairs used to calculate the
variance, and the jackknife uncertainty estimate (±σ ) is shaded in
blue.

likely plays an important role in the amount of observed lit-
ter. This effect can also present itself in the variogram with,
for example, measurements in sheltered areas (e.g., coves)
being more correlated with each other compared to nearby
exposed locations (e.g., headlands).

The grid sizes used for our numerical data range from
about 7 km (the surface current data) to about 20 km (the
wind data). This means that the variance at and below these
length scales is not captured by the numerical data. The vari-
ance calculated for lag distances up to 20 km is quite sub-
stantial (γ̂ = 0.05–0.12). As can be seen in Fig. 4 the values
corresponding to the lower and upper 95 % confidence inter-
val vary by about an order of magnitude. This is essential to
consider when using observational data to inform numerical
models: due to the amount of variability at the subgrid-scale
level, relatively large sets of observational data are required
to extract information. A large number of physical processes
could induce variability below length scales of 20 km, such as
Langmuir circulations or processes in the coastal zone such
as wave breaking, rip currents, and alongshore currents (van
Sebille et al., 2020). Finally, it is important to consider that
spatial variability is inherent to data obtained from cleanup
campaigns such as those analyzed here, due to, e.g., different
participants having slightly different strategies for finding lit-
ter on beaches.

4.3 Extrapolating litter quantities to the entire
coastline

The random forest regression model can be used to extrapo-
late how much litter is likely to be beached along the entire
Dutch coastline. First, a regression model is trained using the

top eight features listed in Fig. 5. We then divide the Dutch
North Sea coastline into 1/9◦×1/15◦ sections (roughly 7 km
by 7 km). For each of the sections the top eight features are
computed, as well as the total coastline length contained in
each section. In total we have 65 separate sections and a total
coastline length of 365 km, which matches the total length of
the Dutch North Sea coastline from the literature (Roomen
et al., 2008). We choose to use a model trained using the top
eight features for the extrapolations, as increasing the amount
of features does not increase the predictive performance (see
Fig. B4). Furthermore, reducing the amount of features sim-
plifies the computations, as we do not need to compute all
391 variables again for all coastline sections.

For each section, the litter concentrations (in kg km−1) are
predicted per day over the month of August in the years
2014–2019. Predictions are only made for August since all
cleanup campaigns were organized during this period, and
thus making predictions for other months might induce sea-
sonal biases. The mean concentrations per coastline section
are plotted in Fig. 8. For each day, the total litter quantities
are computed by multiplying the litter concentrations by the
coastline length per section. Monte Carlo estimates of the
confidence bounds are calculated by randomly adding noise
proportional to the estimated variance (γ̂ = 0.08), which is
repeated 1000 times per day per section.

We find a total of 16 500–31 200 kg litter along the Dutch
North Sea coastline based on the 95 % confidence interval.
It must be noted that this only accounts for the visible lit-
ter on the beach surface. The cleanup efforts are likely to
miss a substantial amount of beached litter that is buried in
beach sediment or located at the back of the beach (e.g., in
vegetation). This was also noted, for example, in Lavers and
Bond (2017) for a remote island in the South Pacific, where
in terms of mass about 68 % of the litter was located on the
beach surface, 27 % was found at the back of the beach in and
around vegetation, and 5 % was buried in beach sediment.
Further research is necessary to quantify how these numbers
translate to Dutch beaches.

The total amount of litter gathered during the cleanup cam-
paigns and the total amount of kilometers sampled per year
is presented in Table A1. The total amount of litter gathered
varies from 9872 to 20 078 kg. This is in line with the ex-
pected total amount of litter predicted by the model, since
the majority of the coastline (222–262 km out of 365 km) was
covered during the cleanup campaigns.

5 Conclusions and recommendations

Using data from beach cleanup efforts in the Netherlands for
the years 2014–2019, we analyzed which variables are im-
portant for predicting litter on beaches and what spatial vari-
ability this litter has. In order to do this, we fitted a regres-
sion model to the observed litter quantities as a function of
variables related to wind, waves, currents, tides, coastal ge-
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Figure 8. Mean litter concentrations over the month of August in
the years 2014–2019 extrapolated to the entire Dutch coastline.

ometry, and simulated oceanic transport. We find that tides
play an important role, where increasing tidal variability
and increasing tidal maximum lead to less observed litter
on beaches. Other important variables are whether the local
orientation of a beach corresponds to the large-scale coast-
line orientation and the total nearby coastal length, which
can both be seen as measures of how exposed a beach is.
These factors are likely explanations for why the observed
litter quantities are relatively low in the southwestern part of
the Netherlands compared to the other parts. Additionally,
transport of litter through the marine environment is seen
as important to take into account by the regression model.
Rivers, fishing activity, and mismanaged plastic waste along
coastlines were taken into account as possible sources of lit-
ter in the transport model, where the regression analysis at-
tributed relatively high importance to litter originating from
fishing activity. This is in line with findings in van Duinen
et al. (2021), as approximately 40 % of the litter found on the
Dutch North Sea coastline is estimated to originate from the
fishing industry.

We compute that spatial variability of the observed litter
concentrations is substantial on length scales less than 10 km,
causing model ±2σ confidence bounds to vary by about an
order of magnitude. Due to this significant variability, large
observational data sets are necessary if they are to be used to
inform numerical models. Finally, based on extrapolation of
the regression model, we estimate that the Dutch North Sea
coastlines contain a total of 16 500–31 200 kg (95 % confi-
dence interval) of litter on the beach surface.

Estimating the spatial variability of beached litter can give
us information for efficient monitoring of pollution. It can be
used to constrain estimates of litter concentrations based on
observations elsewhere. We found that the variance for lag
distances smaller than 125 km is relatively constant around
γ̂ = 0.08. As an example, if one measures a relatively high
amount of 200 kg km−1 at the northern tip of the mainland

near Den Helder (≈ 53◦ N in Fig. 1), one can expect at
least 54 kg km−1 of litter elsewhere in the northern part of
the Netherlands, taking the 95 % confidence interval. After
125 km, the estimated variance seems to increase, meaning
that this observation becomes less informative for locations
further away.

For future studies on quantifying beach litter variability, it
would be interesting to segment the beach cleanup tours into
smaller stretches. One idea would be to organize some stages
where the litter quantities are weighed per 1 km, 100 m, or
even shorter stretches. This way it would be possible to
estimate the variance on sub-kilometer scale. Ryan et al.
(2020) reported significant correlations between measure-
ments taken roughly 50 m apart (Spearman rank correlation
of about 0.9). It would be interesting to see how this changes
up to the kilometer scale. This can give us valuable insights
into which processes might be causing the high amount of
variability between litter observations and what length scales
should be taken into account to capture this variability with
models. We see relatively few data points in Fig. 7 for larger
lag distances. Performing the cleanup stages in a randomized
order would provide a more even coverage of data points over
the given lag distances.

Future studies could further investigate the causal rela-
tions between the variables seen as important predictors by
the regression model and the litter concentrations found on
beaches. This is especially the case for tides, which consti-
tute the two most important features in the regression model
(see Fig. 5). Experimental studies could further determine
whether lower litter concentrations at locations with higher
tidal variability are mainly caused by litter re-suspending
back into the sea or (for example) due to the fact that less
area of the beach is sampled during high tide. It should ad-
ditionally be investigated how these effects compare to the
role of (residual) tidal currents, as it has been shown that this
can play an important role in transporting suspended matter
towards the shore (Schulz and Umlauf, 2016). Experimen-
tal investigations can be done in combination with numerical
studies of the nearshore marine environment to capture the
interactions between processes such as tides, waves, and par-
ticle sizes (Alsina et al., 2020).

It should be investigated how the results found here gener-
alize to other geographic regions, and how the importance of
explanatory variables vary globally. The model itself cannot
be directly used for other geographic regions since the fea-
tures used to train the algorithm are specific to the region of
interest. The model is likely to perform poorly when mak-
ing extrapolations for conditions not present in the training
data. As an example, the substrate of beaches is likely to
have a large impact on litter concentrations (Hardesty et al.,
2017), which are relatively uniform in this analysis (all sandy
beaches). According to our regression model, wind is not a
very important variable to take into account. Perhaps some
of the high-windage litter has been beached before reaching
the Dutch waters. It should be noted, however, that wind indi-
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rectly affects other variables such as the ocean currents, and it
therefore also affects the Lagrangian particle simulations. It
would be interesting to redo this analysis with data obtained
in the nearby English channel and check if wind plays a more
important role there, as in the Lagrangian model simulations
many virtual particles pass through this region.

It is necessary to further investigate the effect of regular
cleaning of beaches by municipalities and other volunteer
groups or individuals. This effect was left out in this anal-
ysis due to unavailability of these data. It is likely that it is
mainly the beaches near densely populated areas that are reg-
ularly cleaned. Since data on population density has been in-
cluded in the features, it is possible that this effect is taken
into account by the regression model, but further analysis is
necessary. Furthermore, effects of tourism can be taken into
account in the future when these data are available, as this
affects the local population density seasonally.

Regarding effective cleanup of beaches, it is recommended
to perform beach cleanups during low tide, preferably in a
week around the neap tide, when the tidal variability is lower.
If limited resources are available, one can focus on exposed
shorelines, which generally accumulate more litter. Addi-
tionally, more litter can be expected on relatively straight
shorelines compared to more irregular geometries where lit-
ter is distributed over longer stretches of beach. We saw no
effect from the number of participants per beach cleanup tour
on the amount of gathered litter, with an average of 77 partic-
ipants per tour. One possible improvement to clean up more
litter could therefore be to spread out participants over differ-
ent stages, avoiding parts of the beach being inspected mul-
tiple times.

Appendix A: Observational and modeled data per year

Figures A1 and A2 present the modeled litter quantities (left
column) and the raw observational data (right column) per
year per cleanup stage. The litter concentrations are plot-
ted using circles, where the color and size correspond to the
litter quantities (note the logarithmic scale here). Table A1
presents the total gathered litter per year.

Table A1. Overview of the total amount of litter gathered per year
during the beach cleanup tours.

Year 2014 2015 2016 2017 2018 2019

Total litter 20 078 9872 19 203 14 863 11 163 10 991
gathered (kg)

Figure A1. Modeled (a) and observed (b) litter concentrations (in
kg km−1) per individual location and year (2014–2016). Circles are
scaled and colored according to the litter concentrations.

Figure A2. Modeled (a) and observed (b) litter concentrations (in
kg km−1) per individual location and year (2017–2019). Circles are
scaled and colored according to the litter concentrations.
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Appendix B: Extended results

B1 Gini importance overview

A complete overview of the Gini importance for all features
is presented in Fig. B1. The numbers in the feature labels
give information about the radius (in kilometers) and lead
time (in days) if applicable. See Table 2 for the radius
and lead time combinations used for the variables. The
Lagrangian model features (orange labels) are indicated by
“beaching_p”, “beaching_r”, and “beaching_f”, for litter
sources originating from mismanaged coastal plastic waste
(p), rivers (r), and fishing activity (f), respectively.

Figure B1. Gini importance overview of all features. Labels are colored according to the feature categories in Table 2.
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B2 Excluding Lagrangian model features

A scatterplot of the measured litter concentrations versus the
predicted values is presented in Fig. B2, where Lagrangian
model features have been excluded from the feature set.
As described in the main text, no significant decrease in
the correlation is observed compared to the case where La-
grangian model features have been included (0.70±0.10 ver-
sus 0.71± 0.11).

Figure B2. Scatterplot of the observed litter quantities (x axis), and the modeled litter quantities (y axis), when not taking Lagrangian model
features into account. Litter quantities are log-transformed, and points are colored according to the five test folds used in the analysis.

A complete overview of the featured Gini importance val-
ues corresponding to the cases without Lagrangian model
features is presented in Fig. B3. As mentioned in the main
text, more features related to the currents and Stokes drift
orientation with respect to the coastline are seen as impor-
tant here when compared to Fig. B1. This could be explained
due to these features taking over the role of the Lagrangian
model features in capturing the effect of marine litter trans-
port.
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Figure B3. Gini importance overview when not taking into account the Lagrangian model features, where labels are colored according to
the feature categories in Table 2.
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Figure B4. The effect of the number of included features on the
Pearson correlation coefficient R, where the mean is plotted using
the solid line, and the filled area represents the 10 % to 90 % quan-
tile. Cases both with and without using Lagrangian model features
are presented (blue and orange lines, respectively). The case using
all 66 features (corresponding to Fig. 4) is shown using the red error
bar.

B3 Effect of using only the top N features

It is not necessary to include all 66 feature clusters for pre-
dictive capability of the model. In Fig. B4 we present the
Pearson correlation coefficient R as a function of the number
of features included in the random forest algorithm both with
and without using the Lagrangian model features. Each time
only the top features (corresponding to Figs. B1 and B3) are
used to train and test the model, using 5-fold cross-validation
repeated 10 times. Generally the model performs well when
about 7–8 features used. Performance is quite stable in cases
where Lagrangian model features are used; some outliers
with lower Pearson correlation coefficients can be observed
when not taking into account these features. The Pearson cor-
relation coefficient when using all 66 features, corresponding
to Fig. 4, is shown using the red error bar. In this case the
Pearson correlation coefficient is slightly smaller than when
using, for example, the top eight features, which could indi-
cate a small amount of overfitting, although this difference is
not significant.

In Fig. B5, we analyze the effect of leaving out certain
feature categories on the model performance. The random
forest can create a highly nonlinear map between the fea-
tures and corresponding response. It is therefore possible that
when using a large set of features and leaving out one impor-
tant explanatory variable, it will use a combination of the re-
maining features to still obtain a good fit. We therefore only
use the top 10 features in this analysis and exclude the La-
grangian model variables, as these implicitly contain infor-
mation on the other features. As can be seen, leaving out a
certain category of features reduces the model performance.
This can especially be observed when leaving out all features

Figure B5. Analysis where some of the feature categories have been
left out. The top 10 features have been used without the Lagrangian
model features (see Fig. B3) as these implicitly contain informa-
tion on all feature categories. As can be observed, leaving out a set
of features generally decreases the predictive performance of the
model and increases the variability of the prediction quality.

regarding tides and the two features regarding coastal prop-
erties (lcoast and ngrid ·n). The mean Pearson correlation coef-
ficient decreases, and the variance of the model performance
increases.

B4 Number of participants

As mentioned in the main text, the number of participants is
not seen as important in terms of the Gini importance. The
number of participants is correlated with the population den-
sity in the neighborhood of the stage and is therefore assigned
to the same feature cluster as the population density; for more
details see Appendix C. The number of participants was not
picked out of this cluster as one of the most important fea-
tures during the k-fold cross-validation. In order to separate
the effect of the number of participants per cleanup stage, a
model run was done without the nearby population densities
being used as features. A summary of the resulting Gini im-
portance values is shown in Fig. B6, where only the top 10
features and the number of participants are plotted.

B5 Feature effect

The general effect of some features was described in the main
text, such as the fact that an increasing tidal variability, and
misalignment of the high resolution coastline with respect to
the numerical model coastline (ngrid ·n) lead to less observed
litter. Figure B7 illustrates this by varying one feature on the
x axis and plotting the resulting predictions on the y axis. In
the decision trees of the random forest, decision boundaries
are made at optimal splitting locations, making the resulting
model highly nonlinear. This makes it difficult to interpret
the regression model. In Fig. B7, we “fix” all features except
the one listed on the x axis. This feature is then varied from
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Figure B6. Gini importance overview when not using nearby population densities as features, which separates the effect of the number of
participants per cleanup stage. In this case, it is the 28th most important feature.

its minimum until its maximum encountered value. Since the
random forest result can depend highly on the exact value
of the other features, noise is introduced. Each other feature
is varied uniformly between its 0.4–0.6 quantile to illustrate
whether the found relation for the given feature on the x axis
is robust.

Features which show relatively robust relations are related
to tidal height, where an increasing variability and a higher
maximum decrease the predicted litter concentrations. The
effect for ngrid ·n also seems to be robust, with increasing
values leading to more predicted litter. For the coastal length
in the neighborhood (lcoast) an increasing value seems to lead
to less litter, although there is a sudden drop observed here.
This might be caused by the fact that there are relatively
few data points available where this feature has a high value
(most of the stages were conducted on relatively straight
coastline sections), and thus the model has trouble learn-
ing a relation here. For the Lagrangian model features, in-
creasing values lead to more predicted litter, as expected. For
the mismanaged coastal plastic waste (indicated by “beach-
ing_p_tau25_050_009”), the results are quite dependent on
the values of other features, as a lot of noise can be seen
here. Generally, the model indicates there are increasing lit-
ter concentrations for increasing currents and onshore Stokes
drift.
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Figure B7. Illustrated effect of the 12 most important features (x axes) on the litter concentrations (y axes) according to the random forest
regression model. For the 12 most important features, we vary their value from the minimum to maximum encountered value. All other
features are fixed, and some noise is added to illustrate robustness of the relations.
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Appendix C: Clustering dendrogram

Correlated features are put into clusters using hierarchical
Ward linkage clustering (McCann et al., 2019; Cope et al.,
2017). An overview of the resulting dendrogram is shown
in Fig. C1. A threshold is chosen to make a cut in the den-
drogram. This was selected by hand to be a value of 2.3, at
which the clusters remain relatively interpretable (e.g., sepa-
rate clusters for coastal properties and tidal properties). The
cut is shown in the figure by the dashed red line. Some gen-
eral patterns regarding the clusters are indicated in the den-
drogram.

Figure C1. Dendrogram used to construct the feature clusters.
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Appendix D: Model pipeline

Figure D1. Pipeline to train and test the random forest regression
model. Nested k-fold cross-validation is used to select the best fea-
ture from each cluster (inner loop) and to evaluate the model trained
with the best features of the test data set (outer loop). The process
is repeated to assess the average performance.

Code and data availability. Code used to conduct the ex-
periment and to create all of the figures and the beach
cleanup data from Stichting De Noordzee are available at
https://doi.org/10.24416/UU01-NVGL3G (Kaandorp et al., 2021b).
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