Articles | Volume 15, issue 3
https://doi.org/10.5194/os-15-489-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-489-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cold vs. warm water route – sources for the upper limb of the Atlantic Meridional Overturning Circulation revisited in a high-resolution ocean model
Research Unit Ocean Dynamics, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
now at: Ocean Frontier Institute, Dalhousie University, Halifax, Canada
Invited contribution by Siren Rühs, recipient of the EGU Ocean Sciences Outstanding Student Poster and PICO Award 2017.
Franziska U. Schwarzkopf
Research Unit Ocean Dynamics, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Sabrina Speich
LMD-IPSL, UMR 8539, Département de Géosciences, ENS, PSL
Research University, Paris, France
Arne Biastoch
Research Unit Ocean Dynamics, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Christian-Albrechts-Universität zu Kiel, Kiel, Germany
Related authors
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1002, https://doi.org/10.5194/egusphere-2024-1002, 2024
Short summary
Short summary
Simulating the transport of floating particles on the ocean surface is crucial for solving many societal issues. Here, we investigate how the representation of wind-generated surface waves impacts particle transport simulations. We find that different wave-driven processes can alter the transport patterns, and that commonly adopted approximations are not always adequate. This implies that ideally coupled ocean-wave models should be used for surface particle transport simulations.
Alan D. Fox, Patricia Handmann, Christina Schmidt, Neil Fraser, Siren Rühs, Alejandra Sanchez-Franks, Torge Martin, Marilena Oltmanns, Clare Johnson, Willi Rath, N. Penny Holliday, Arne Biastoch, Stuart A. Cunningham, and Igor Yashayaev
Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, https://doi.org/10.5194/os-18-1507-2022, 2022
Short summary
Short summary
Observations of the eastern subpolar North Atlantic in the 2010s show exceptional freshening and cooling of the upper ocean, peaking in 2016 with the lowest salinities recorded for 120 years. Using results from a high-resolution ocean model, supported by observations, we propose that the leading cause is reduced surface cooling over the preceding decade in the Labrador Sea, leading to increased outflow of less dense water and so to freshening and cooling of the eastern subpolar North Atlantic.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Arne Biastoch, Franziska U. Schwarzkopf, Klaus Getzlaff, Siren Rühs, Torge Martin, Markus Scheinert, Tobias Schulzki, Patricia Handmann, Rebecca Hummels, and Claus W. Böning
Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, https://doi.org/10.5194/os-17-1177-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) quantifies the impact of the ocean on climate and climate change. Here we show that a high-resolution ocean model is able to realistically simulate ocean currents. While the mean representation of the AMOC depends on choices made for the model and on the atmospheric forcing, the temporal variability is quite robust. Comparing the ocean model with ocean observations, we able to identify that the AMOC has declined over the past two decades.
Christina Schmidt, Franziska U. Schwarzkopf, Siren Rühs, and Arne Biastoch
Ocean Sci., 17, 1067–1080, https://doi.org/10.5194/os-17-1067-2021, https://doi.org/10.5194/os-17-1067-2021, 2021
Short summary
Short summary
We estimate Agulhas leakage, water flowing from the Indian Ocean to the South Atlantic, in an ocean model with two different tools. The mean transport, variability and trend of Agulhas leakage is simulated comparably with both tools, emphasising the robustness of our method. If the experiments are designed differently, the mean transport of Agulhas leakage is altered, but not the trend. Agulhas leakage waters cool and become less salty south of Africa resulting in a density increase.
Josefine Maas, Susann Tegtmeier, Birgit Quack, Arne Biastoch, Jonathan V. Durgadoo, Siren Rühs, Stephan Gollasch, and Matej David
Ocean Sci., 15, 891–904, https://doi.org/10.5194/os-15-891-2019, https://doi.org/10.5194/os-15-891-2019, 2019
Short summary
Short summary
In a large-scale analysis, the spread of disinfection by-products from oxidative ballast water treatment is investigated, with a focus on Southeast Asia where major ports are located. Halogenated compounds such as bromoform (CHBr3) are produced in the ballast water and, once emitted into the environment, can participate in ozone depletion. Anthropogenic bromoform is rapidly emitted into the atmosphere and can locally double around large ports. A large-scale impact cannot be found.
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302, https://doi.org/10.5194/egusphere-2024-3302, 2024
Short summary
Short summary
Key parameters representing the gravity flux in global models are the sinking speed and the vertical attenuation of the exported material. We calculate for the first time, these parameters in situ for 6 intermittent blooms followed by export events using high-resolution (3 days) time series of 0–1000 m depth profiles from imaging sensor mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, density being an important property.
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3320, https://doi.org/10.5194/egusphere-2024-3320, 2024
Short summary
Short summary
The West African coastal region sustains highly productive fisheries and marine ecosystems influenced by sea surface temperature. We use oceanic models to show that the freshwater input from land to ocean strengthens a surface northward (southward) coastal current north (south) of the Congo river mouth, promoting a transfer of cooler (warmer) waters to north (south) of the Congo discharge location. We highlight the significant impact of river discharge on ocean temperatures and circulation.
Hendrik Grosselindemann, Frederic S. Castruccio, Gokhan Danabasoglu, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2288, https://doi.org/10.5194/egusphere-2024-2288, 2024
Short summary
Short summary
This study investigates Agulhas Leakage and examines its role in the global ocean circulation. It utilises a high-resolution earth system model and a pre-industrial climate to look at the response of Agulhas Leakage to the wind field and the Atlantic Meridional Overturning Circulation (AMOC) as well as its evolution under climate change. Agulhas Leakage influences the stability of the AMOC whose possible collapse would impact the global climate on the Northern Hemisphere.
Yan Barabinot, Sabrina Speich, and Xavier Carton
EGUsphere, https://doi.org/10.22541/essoar.169833426.64842571/v1, https://doi.org/10.22541/essoar.169833426.64842571/v1, 2024
Short summary
Short summary
Mesoscale eddies are ubiquitous rotating currents in the ocean. Some eddies called "Materially Coherent" are able to transport a different water mass from the surrounding water. By analyzing 3D eddies structures sampled during oceanographic cruises, we found that eddies can be nonmaterially coherent accounting only for their surface properties, but materially coherent considering their properties at depth. Future studies cannot rely solely on satellite data to evaluate heat and salt transport.
Alexandre Accardo, Rémi Laxenaire, Alberto Baudena, Sabrina Speich, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1558, https://doi.org/10.5194/egusphere-2024-1558, 2024
Short summary
Short summary
The open ocean helps mitigate climate change by storing CO2 through the biological carbon pump (BCP). The BCP involves processes like phytoplankton capturing CO2 and sequestering it in the deep ocean via marine snow production. We found significant marine snow accumulation from the surface to 600 meters deep in frontal regions between eddies. We suggest that the coupling of hydrodynamics at eddy edges and biological activity (via planktonic organisms) may enhanced this process.
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1002, https://doi.org/10.5194/egusphere-2024-1002, 2024
Short summary
Short summary
Simulating the transport of floating particles on the ocean surface is crucial for solving many societal issues. Here, we investigate how the representation of wind-generated surface waves impacts particle transport simulations. We find that different wave-driven processes can alter the transport patterns, and that commonly adopted approximations are not always adequate. This implies that ideally coupled ocean-wave models should be used for surface particle transport simulations.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Jonathan Andrew Baker, Richard Renshaw, Laura Claire Jackson, Clotilde Dubois, Doroteaciro Iovino, Hao Zuo, Renellys C. Perez, Shenfu Dong, Marion Kersalé, Michael Mayer, Johannes Mayer, Sabrina Speich, and Tarron Lamont
State Planet, 1-osr7, 4, https://doi.org/10.5194/sp-1-osr7-4-2023, https://doi.org/10.5194/sp-1-osr7-4-2023, 2023
Short summary
Short summary
We use ocean reanalyses, in which ocean models are combined with observations, to infer past changes in ocean circulation and heat transport in the South Atlantic. Comparing these estimates with other observation-based estimates, we find differences in their trends, variability, and mean heat transport but closer agreement in their mean overturning strength. Ocean reanalyses can help us understand the cause of these differences, which could improve estimates of ocean transports in this region.
Saeed Hariri, Sabrina Speich, Bruno Blanke, and Marina Lévy
Ocean Sci., 19, 1183–1201, https://doi.org/10.5194/os-19-1183-2023, https://doi.org/10.5194/os-19-1183-2023, 2023
Short summary
Short summary
This work presents a series of studies conducted by the authors on the application of the Lagrangian approach for the connectivity analysis between different ocean locations in an idealized open-ocean model. We assess how the connectivity properties of typical oceanic flows are affected by the fine-scale circulation and discuss the challenges facing ocean connectivity estimates related to the spatial resolution. Our results are important to improve the understanding of marine ecosystems.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Torge Martin and Arne Biastoch
Ocean Sci., 19, 141–167, https://doi.org/10.5194/os-19-141-2023, https://doi.org/10.5194/os-19-141-2023, 2023
Short summary
Short summary
How is the ocean affected by continued Greenland Ice Sheet mass loss? We show in a systematic set of model experiments that atmospheric feedback needs to be accounted for as the large-scale ocean circulation is more than twice as sensitive to the meltwater otherwise. Coastal winds, boundary currents, and ocean eddies play a key role in redistributing the meltwater. Eddy paramterization helps the coarse simulation to perform better in the Labrador Sea but not in the North Atlantic Current region.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Alan D. Fox, Patricia Handmann, Christina Schmidt, Neil Fraser, Siren Rühs, Alejandra Sanchez-Franks, Torge Martin, Marilena Oltmanns, Clare Johnson, Willi Rath, N. Penny Holliday, Arne Biastoch, Stuart A. Cunningham, and Igor Yashayaev
Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, https://doi.org/10.5194/os-18-1507-2022, 2022
Short summary
Short summary
Observations of the eastern subpolar North Atlantic in the 2010s show exceptional freshening and cooling of the upper ocean, peaking in 2016 with the lowest salinities recorded for 120 years. Using results from a high-resolution ocean model, supported by observations, we propose that the leading cause is reduced surface cooling over the preceding decade in the Labrador Sea, leading to increased outflow of less dense water and so to freshening and cooling of the eastern subpolar North Atlantic.
Jörg Fröhle, Patricia V. K. Handmann, and Arne Biastoch
Ocean Sci., 18, 1431–1450, https://doi.org/10.5194/os-18-1431-2022, https://doi.org/10.5194/os-18-1431-2022, 2022
Short summary
Short summary
Three deep-water masses pass the southern exit of the Labrador Sea. Usually they are defined by explicit density intervals linked to the formation region. We evaluate this relation in an ocean model by backtracking the paths the water follows for 40 years: 48 % densify without contact to the atmosphere, 24 % densify in contact with the atmosphere, and 19 % are from the Nordic Seas. All three contribute to a similar density range at 53° N with weak specific formation location characteristics.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Arne Biastoch, Franziska U. Schwarzkopf, Klaus Getzlaff, Siren Rühs, Torge Martin, Markus Scheinert, Tobias Schulzki, Patricia Handmann, Rebecca Hummels, and Claus W. Böning
Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, https://doi.org/10.5194/os-17-1177-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) quantifies the impact of the ocean on climate and climate change. Here we show that a high-resolution ocean model is able to realistically simulate ocean currents. While the mean representation of the AMOC depends on choices made for the model and on the atmospheric forcing, the temporal variability is quite robust. Comparing the ocean model with ocean observations, we able to identify that the AMOC has declined over the past two decades.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Christina Schmidt, Franziska U. Schwarzkopf, Siren Rühs, and Arne Biastoch
Ocean Sci., 17, 1067–1080, https://doi.org/10.5194/os-17-1067-2021, https://doi.org/10.5194/os-17-1067-2021, 2021
Short summary
Short summary
We estimate Agulhas leakage, water flowing from the Indian Ocean to the South Atlantic, in an ocean model with two different tools. The mean transport, variability and trend of Agulhas leakage is simulated comparably with both tools, emphasising the robustness of our method. If the experiments are designed differently, the mean transport of Agulhas leakage is altered, but not the trend. Agulhas leakage waters cool and become less salty south of Africa resulting in a density increase.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Pierre Bosser, Olivier Bock, Cyrille Flamant, Sandrine Bony, and Sabrina Speich
Earth Syst. Sci. Data, 13, 1499–1517, https://doi.org/10.5194/essd-13-1499-2021, https://doi.org/10.5194/essd-13-1499-2021, 2021
Short summary
Short summary
In the framework of the EUREC4A campaign, water vapour measurements were retrieved over the tropical west Atlantic Ocean from GNSS data acquired from three research vessels (R/Vs Atalante, Maria S. Merian and Meteor). The retrievals from R/Vs Atalante and Meteor are shown to be of high quality unlike the results for the R/V Maria S. Merian. These ship-borne retrievals are intended to be used for the description and understanding of meteorological phenomena that occurred during the campaign.
Josefine Maas, Susann Tegtmeier, Yue Jia, Birgit Quack, Jonathan V. Durgadoo, and Arne Biastoch
Atmos. Chem. Phys., 21, 4103–4121, https://doi.org/10.5194/acp-21-4103-2021, https://doi.org/10.5194/acp-21-4103-2021, 2021
Short summary
Short summary
Cooling-water disinfection at coastal power plants is a known source of atmospheric bromoform. A large source of anthropogenic bromoform is the industrial regions in East Asia. In current bottom-up flux estimates, these anthropogenic emissions are missing, underestimating the global air–sea flux of bromoform. With transport simulations, we show that by including anthropogenic bromoform from cooling-water treatment, the bottom-up flux estimates significantly improve in East and Southeast Asia.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 491–514, https://doi.org/10.5194/essd-13-491-2021, https://doi.org/10.5194/essd-13-491-2021, 2021
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 811 radiosondes, launched regularly (usually 4-hourly) from Barbados, and 4 ships measured wind, temperature, and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Short summary
A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced, consisting of a high-top atmosphere, an ocean model, sea-ice and land surface model components. A unique feature of FOCI is the ability to explicitly resolve small-scale oceanic features, for example, the Agulhas Current and the Gulf Stream. It allows to study the evolution of the climate system on regional and seasonal to (multi)decadal scales and bridges the gap to coarse-resolution climate models.
Nele Tim, Eduardo Zorita, Kay-Christian Emeis, Franziska U. Schwarzkopf, Arne Biastoch, and Birgit Hünicke
Earth Syst. Dynam., 10, 847–858, https://doi.org/10.5194/esd-10-847-2019, https://doi.org/10.5194/esd-10-847-2019, 2019
Short summary
Short summary
Our study reveals that the latitudinal position and intensity of Southern Hemisphere trades and westerlies are correlated. In the last decades the westerlies have shifted poleward and intensified. Furthermore, the latitudinal shifts and intensity of the trades and westerlies impact the sea surface temperatures around southern Africa and in the South Benguela upwelling region. The future development of wind stress depends on the strength of greenhouse gas forcing.
Franziska U. Schwarzkopf, Arne Biastoch, Claus W. Böning, Jérôme Chanut, Jonathan V. Durgadoo, Klaus Getzlaff, Jan Harlaß, Jan K. Rieck, Christina Roth, Markus M. Scheinert, and René Schubert
Geosci. Model Dev., 12, 3329–3355, https://doi.org/10.5194/gmd-12-3329-2019, https://doi.org/10.5194/gmd-12-3329-2019, 2019
Short summary
Short summary
A family of nested global ocean general circulation model configurations, the INALT family, has been established with resolutions of 1/10°, 1/20° and 1/60° in the South Atlantic and western Indian oceans, covering the greater Agulhas Current (AC) system. The INALT family provides a consistent set of configurations that allows to address eddy dynamics in the AC system and their impact on the large-scale ocean circulation.
Josefine Maas, Susann Tegtmeier, Birgit Quack, Arne Biastoch, Jonathan V. Durgadoo, Siren Rühs, Stephan Gollasch, and Matej David
Ocean Sci., 15, 891–904, https://doi.org/10.5194/os-15-891-2019, https://doi.org/10.5194/os-15-891-2019, 2019
Short summary
Short summary
In a large-scale analysis, the spread of disinfection by-products from oxidative ballast water treatment is investigated, with a focus on Southeast Asia where major ports are located. Halogenated compounds such as bromoform (CHBr3) are produced in the ballast water and, once emitted into the environment, can participate in ozone depletion. Anthropogenic bromoform is rapidly emitted into the atmosphere and can locally double around large ports. A large-scale impact cannot be found.
Marion Kersalé, Tarron Lamont, Sabrina Speich, Thierry Terre, Remi Laxenaire, Mike J. Roberts, Marcel A. van den Berg, and Isabelle J. Ansorge
Ocean Sci., 14, 923–945, https://doi.org/10.5194/os-14-923-2018, https://doi.org/10.5194/os-14-923-2018, 2018
D. Le Bars, J. V. Durgadoo, H. A. Dijkstra, A. Biastoch, and W. P. M. De Ruijter
Ocean Sci., 10, 601–609, https://doi.org/10.5194/os-10-601-2014, https://doi.org/10.5194/os-10-601-2014, 2014
Related subject area
Approach: Numerical Models | Depth range: All Depths | Geographical range: Deep Seas: South Atlantic | Phenomena: Current Field
South Atlantic meridional transports from NEMO-based simulations and reanalyses
Davi Mignac, David Ferreira, and Keith Haines
Ocean Sci., 14, 53–68, https://doi.org/10.5194/os-14-53-2018, https://doi.org/10.5194/os-14-53-2018, 2018
Short summary
Short summary
Four ocean reanalyses and two free-running models are compared to study the meridional transports in the South Atlantic. We analyse the underlying causes of the product differences in an attempt to understand the potential impact (and limitations) of the data assimilation (DA) in improving the simulated ocean states. The DA schemes can consistently constrain the basin interior transports, but not the overturning circulation dominated by the narrow South Atlantic western boundary currents.
Cited articles
Ansorge, I. J., Speich, S., Lutjeharms, J. R., Göni, G. J., Rautenbach,
C. J., Froneman, P. W., Rouault, M., and Garzoli, S.: Monitoring the oceanic
flow between Africa and Antarctica: Report of the first GoodHope cruise,
S. Afr. J. Sci., 101, 29–35, 2005. a
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS
NGDC-24, National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M,
2009. a
Arakawa, A. and Hsu, Y.-J. G.: Energy Conserving and Potential-Enstrophy
Dissipating Schemes for the Shallow Water Equations, Mon. Weather Rev.,
118, 1960–1969, 1990. a
Backeberg, B. C., Penven, P., and Rouault, M.: Impact of intensified Indian
Ocean winds on mesoscale variability in the Agulhas system, Nat. Clim.
Change, 2, 608–612, https://doi.org/10.1038/nclimate1587, 2012. a
Barnier, B., Madec, G., and Penduff, T.: Impact of partial steps and momentum
advection schemes in a global ocean circulation model at eddy-permitting
resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1,
2006. a
Barnier, B., Blaker, A., Biastoch, A., Böning, C., Coward, A., Deshayes,
J., Hirshi, J., Le Sommer, J., Madec, G., Maze, G., Molines, J., New, A.,
Penduff, T., Scheinert, M., Talandier, C., and Treguier, A.-M.: DRAKKAR:
developing high resolution ocean components for European Earth system
models, CLIVAR Exchange no. 65, 19, 18–21, 2014. a
Beal, L. M., Chereskin, T. K., Lenn, Y. D., and Elipot, S.: The Sources and
Mixing Characteristics of the Agulhas Current, J. Phys.
Oceanogr., 36, 2060–2074, https://doi.org/10.1175/JPO2964.1, 2006. a
Beal, L. M., de Ruijter, W. P. M., Biastoch, A., Zahn, R., and SCOR/WCRP/IAPSO
working group 136: On the role of the Agulhas system in ocean circulation
and climate, Nature, 472, 429–436, https://doi.org/10.1038/nature09983, 2011. a, b
Beal, L. M., Elipot, S., Houk, A., and Leber, G. M.: Capturing the Transport
Variability of a Western Boundary Jet: Results from the Agulhas Current
Time-Series Experiment (ACT), J. Phys. Oceanogr., 45,
1302–1324, https://doi.org/10.1175/JPO-D-14-0119.1, 2015. a
Bell, M. J., Peixoto, P. S., and Thuburn, J.: Numerical instabilities of
vector-invariant momentum equations on rectangular C-grids, Q.
J. Roy. Meteor. Soc., 143, 563–581,
https://doi.org/10.1002/qj.2950, 2017. a
Berglund, S., Döös, K., and Nycander, J.: Lagrangian tracing of
the water-mass transformations in the Atlantic Ocean, Tellus A, 69, 1–15,
https://doi.org/10.1080/16000870.2017.1306311, 2017. a
Biastoch, A. and Böning, C. W.: Anthropogenic impact on Agulhas
leakage, Geophys. Res. Lett., 40, 1138–1143,
https://doi.org/10.1002/grl.50243, 2013. a, b
Biastoch, A., Böning, C. W., Getzlaff, J., Molines, J.-M., and Madec, G.:
Causes of Interannual-Decadal Variability in the Meridional Overturning
Circulation of the Midlatitude North Atlantic Ocean, J. Climate, 21,
6599–6615, https://doi.org/10.1175/2008JCLI2404.1, 2008a. a
Biastoch, A., Böning, C. W., and Lutjeharms, J. R. E.: Agulhas leakage
dynamics affects decadal variability in Atlantic overturning circulation,
Nature, 456, 489–492, https://doi.org/10.1038/nature07426, 2008b. a
Biastoch, A., Lutjeharms, J. R. E., Böning, C. W., and Scheinert, M.:
Mesoscale perturbations control inter-ocean exchange south of Africa,
Geophys. Res. Lett., 35, L20602, https://doi.org/10.1029/2008GL035132,
2008c. a, b
Biastoch, A., Böning, C. W., Schwarzkopf, F. U., and Lutjeharms, J.
R. E.: Increase in Agulhas leakage due to poleward shift of the Southern
Hemisphere westerlies, Nature, 462, 495–498, https://doi.org/10.1038/nature08519,
2009. a, b
Biastoch, A., Durgadoo, J. V., Morrison, A. K., Van Sebille, E., Weijer, W.,
and Griffies, S. M.: Atlantic multi-decadal oscillation covaries with
Agulhas leakage, Nat. Commun., 6, 10082,
https://doi.org/10.1038/ncomms10082, 2015. a
Blanke, B. and Raynaud, S.: Kinematics of the Pacific Equatorial Undercurrent:
An Eulerian and Lagrangian approach from GCM results, J. Phys.
Oceanogr., 27, 1038–1053,
https://doi.org/10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2, 1997. a
Blanke, B., Speich, S., Madec, G., and Maugé, R.: A global diagnostic of
interior ocean ventilation, Geophys. Res. Lett., 29, 1267,
https://doi.org/10.1029/2001GL013727, 2002. a
Broecker, W. S.: The Great Ocean Conveyor, Oceanography, 4, 79–89,
https://doi.org/10.5670/oceanog.1991.07, 1991. a
Bryden, H. L., Beal, L. M., and Duncan, L. M.: Structure and Transport of the
Agulhas Current and Its Temporal Variability, J. Oceanogr., 61,
479–492, https://doi.org/10.1007/s10872-005-0057-8, 2005. a
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of
the Atlantic Meridional Overturning Circulation: A review, Rev.
Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493., 2016. a
Castellanos, P., Campos, E. J. D., Piera, J., Sato, O. T., and Silva Dias, M.
A. F.: Impacts of Agulhas leakage on the tropical Atlantic western boundary
systems, J. Climate, 30, 6645–6659, https://doi.org/10.1175/JCLI-D-15-0878.1,
2017. a
Cessi, P. and Jones, C. S.: Warm-Route versus Cold-Route Interbasin Exchange
in the Meridional Overturning Circulation, J. Phys. Oceanogr.,
47, 1981–1997, https://doi.org/10.1175/JPO-D-16-0249.1, 2017. a, b, c, d
Cimatoribus, A. A., Drijfhout, S. S., den Toom, M., and Dijkstra, H. A.:
Sensitivity of the Atlantic meridional overturning circulation to South
Atlantic freshwater anomalies, Clim. Dynam., 39, 2291–2306,
https://doi.org/10.1007/s00382-012-1292-5, 2012. a
Cunningham, S. A., Alderson, S. G., King, B. A., and Brandon, M. A.: Transport
and variability of the Antarctic Circumpolar Current in Drake Passage,
J. Geophys. Res.-Oceans, 108, 8084,
https://doi.org/10.1029/2001JC001147, 2003. a, b
de Ruijter, W. P. M., Biastoch, A., Drijfhout, S. S., Lutjeharms, J. R. E.,
Matano, R. P., Pichevin, T., van Leeuwen, P. J., and Weijer, W.:
Indian-Atlantic interocean exchange: Dynamics, estimation and impact,
J. Geophys. Res.-Oceans, 104, 20885–20910,
https://doi.org/10.1029/1998JC900099, 1999. a
Debreu, L. and Blayo, E.: Two-way embedding algorithms: a review, Ocean
Dynam., 58, 415–428, https://doi.org/10.1007/s10236-008-0150-9, 2008. a
Deshayes, J., Tréguier, A. M., Barnier, B., Lecointre, A., Sommer, J. L.,
Molines, J. M., Penduff, T., Bourdallé-Badie, R., Drillet, Y., Garric,
G., Benshila, R., Madec, G., Biastoch, A., Böning, C. W., Scheinert,
M., Coward, A. C., and Hirschi, J. J.-M.: Oceanic hindcast simulations at
high resolution suggest that the Atlantic MOC is bistable, Geophys.
Res. Lett., 40, 3069–3073, https://doi.org/10.1002/grl.50534, 2013. a, b
Dong, S., Garzoli, S., and Baringer, M.: The Role of Interocean Exchanges on
Decadal Variations of the Meridional Heat Transport in the South Atlantic,
J. Phys. Oceanogr., 41, 1498–1511,
https://doi.org/10.1175/2011JPO4549.1, 2011. a, b
Döös, K., Nycander, J., and Coward, A. C.: Lagrangian
decomposition of the Deacon Cell, J. Geophys. Res.-Oceans,
113, C07028, https://doi.org/10.1029/2007JC004351, 2008. a, b
Drake, H. F., Morrison, A. K., Griffies, S. M., Sarmiento, J. L., Weijer, W.,
and Gray, A. R.: Lagrangian Timescales of Southern Ocean Upwelling in a
Hierarchy of Model Resolutions, Geophys. Res. Lett., 45, 891–898,
https://doi.org/10.1002/2017GL076045, 2018. a
Drijfhout, S. S., Weber, S. L., and van der Swaluw, E.: The stability of the
MOC as diagnosed from model projections for pre-industrial, present and
future climates, Clim. Dynam., 37, 1575–1586,
https://doi.org/10.1007/s00382-010-0930-z, 2011. a, b
Durgadoo, J. V.: Controls and impact of Agulhas leakage, Phd thesis, Faculty
of Mathematics and Natural Sciences, Christian-Albrechts-Universität zu
Kiel, Kiel, 2013. a
Durgadoo, J. V., Rühs, S., Biastoch, A., and Böning, C. W.: Indian
Ocean sources of Agulhas leakage, J. Geophys. Res.-Oceans, 122, 3481–3499,
https://doi.org/10.1002/2016JC012676, 2017. a
Fichefet, T. and Maqueda, M. A.: Sensitivity of a global sea ice model to the
treatment of ice thermodynamics and dynamics, J. Geophys. Res.-Oceans,
102, 12609–12646, https://doi.org/10.1029/97JC00480,
1997. a
Firing, Y. L., Chereskin, T. K., and Mazloff, M. R.: Vertical structure and
transport of the Antarctic Circumpolar Current in Drake Passage from direct
velocity observations, J. Geophys. Res.-Oceans, 116,
C08015, https://doi.org/10.1029/2011JC006999, 2011. a
Garzoli, S. L. and Matano, R.: The South Atlantic and the Atlantic Meridional
Overturning Circulation, Deep-Sea Res. Pt. II, 58, 1837–1847,
https://doi.org/10.1016/j.dsr2.2010.10.063, 2011. a, b, c
Garzoli, S. L., Baringer, M. O., Dong, S., Perez, R. C., and Yao, Q.: South
Atlantic meridional fluxes, Deep-Sea Res. Pt. I, 71, 21–32,
https://doi.org/10.1016/J.DSR.2012.09.003, 2013. a
Gaspar, P., Grégoris, Y., and Lefevre, J.-M.: A simple eddy kinetic
energy model for simulations of the oceanic vertical mixing: Tests at station
Papa and long-term upper ocean study site, J. Geophys. Res.-Oceans, 95,
16179, https://doi.org/10.1029/JC095iC09p16179, 1990. a
Gent, P. R.: A commentary on the Atlantic meridional overturning circulation
stability in climate models, Ocean Model., 122, 57–66,
https://doi.org/10.1016/j.ocemod.2017.12.006, 2018. a
Gordon, A. L.: Interocean exchange of thermocline water, J. Geophys. Res.-Oceans,
91, 5037–5046, https://doi.org/10.1029/JC091iC04p05037,
1986. a, b, c, d
Griffies, S. M., Biastoch, A., Böning, C. W., Bryan, F., Danabasoglu, G.,
Chassignet, E., England, M., Gerdes, R., Haak, H., Hallberg, R. W.,
Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels,
B. L., Scheinert, M., Gupta, A. S., Severijns, C. A., Simons, H. L.,
Treguier, A. M., Winton, M., Yeager, S., and Yin, J.: Coordinated Ocean-ice
Reference Experiments (COREs), Ocean Model., 26, 1–46,
https://doi.org/10.1016/j.ocemod.2008.08.007, 2009. a
Haarsma, R. J., Campos, E. J. D., Drijfhout, S., Hazeleger, W., and Severijns,
C.: Impacts of interruption of the Agulhas leakage on the tropical Atlantic
in coupled ocean-atmosphere simulations, Clim. Dynam., 36, 989–1003,
https://doi.org/10.1007/s00382-009-0692-7, 2011. a
Hallberg, R.: Using a resolution function to regulate parameterizations of
oceanic mesoscale eddy effects, Ocean Model., 72, 92–103,
https://doi.org/10.1016/j.ocemod.2013.08.007, 2013. a
Hanawa, K. and Talley, L. D.: Chapter 5.4 Mode waters, in: International
Geophysics Series Volume 77, Ocean Circulation and Climate – Observing and
Modelling the Global Ocean, edited by: Siedler, G., Church, J., and Gould, J.,
Academic Press, 373–386, https://doi.org/10.1016/S0074-6142(01)80129-7, 2001. a
Hazeleger, W. and Drijfhout, S.: Subtropical cells and meridional overturning
circulation pathways in the tropical Atlantic, J. Geophys. Res.-Oceans, 111,
C03013, https://doi.org/10.1029/2005JC002942, 2006. a
Holfort, J. and Siedler, G.: The Meridional Oceanic Transports of Heat and
Nutrients in the South Atlantic, J. Phys. Oceanogr., 31,
5–29, https://doi.org/10.1175/1520-0485(2001)031<0005:TMOTOH>2.0.CO;2, 2001. a, b
Hollingsworth, A., Kallberg, P., Renner, V., and Burridge, D. M.: An internal
symmetric computational instability, Q. J. Roy.
Meteor. Soc., 109, 417–428, https://doi.org/10.1002/qj.49710946012, 1983. a
Hummels, R., Brandt, P., Dengler, M., Fischer, J., Araujo, M., Veleda, D., and
Durgadoo, J. V.: Interannual to decadal changes in the Western Boundary
Circulation in the Atlantic at 11∘ S, Geophys. Res. Lett., 42,
7615–7622, https://doi.org/10.1002/2015GL065254, 2015. a
Kelly, K. A., Thompson, L., and Lyman, J.: The Coherence and Impact of
Meridional Heat Transport Anomalies in the Atlantic Ocean Inferred from
Observations, J. Climate, 27, 1469–1487,
https://doi.org/10.1175/JCLI-D-12-00131.1, 2014. a
Knorr, G. and Lohmann, G.: Southern Ocean origin for the resumption of
Atlantic thermohaline circulation during deglaciation, Nature, 424,
532–536, https://doi.org/10.1038/nature01855, 2003. a
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009. a
Le Bars, D., Dijkstra, H. A., and De Ruijter, W. P. M.: Impact of the
Indonesian Throughflow on Agulhas leakage, Ocean Sci., 9, 773–785,
https://doi.org/10.5194/os-9-773-2013, 2013. a
Le Bars, D., Durgadoo, J. V., Dijkstra, H. A., Biastoch, A., and De Ruijter,
W. P. M.: An observed 20-year time series of Agulhas leakage, Ocean Sci., 10,
601–609, https://doi.org/10.5194/os-10-601-2014, 2014. a
Levitus, S., Boyer, T. P., Conkright, M. E., O'Brien, T., Antonov, J.,
Stephens, C., Stathoplos, L., Johnson, D., and Gelfeld, R.: NOAA Atlas
NESDIS 18, World Ocean Database 1998, Volume 1, Introduction, U.S. Gov.
Printing Office, Washington, D.C., 1998.
Lozier, M. S.: Deconstructing the Conveyor Belt, Science, 328, 1507–1511,
https://doi.org/10.1126/science.1189250, 2010. a
Lübbecke, J. F., Durgadoo, J. V., and Biastoch, A.: Contribution of
Increased Agulhas Leakage to Tropical Atlantic Warming, J. Climate,
28, 9697–9706, https://doi.org/10.1175/JCLI-D-15-0258.1, 2015. a
Lutjeharms, J. R. E.: The Agulhas Current, Springer, Berlin, 2006. a
Lynch-Stieglitz, J.: The Atlantic Meridional Overturning Circulation and
Abrupt Climate Change, Annu. Rev. Mar. Sci., 9, 83–104,
https://doi.org/10.1146/annurev-marine-010816-060415, 2017. a
Macdonald, A. M.: Property fluxes at 30∘ S and their implications
for the
Pacific-Indian throughflow and the global heat budget, J. Geophys. Res.-Oceans, 98, 6851–6868,
https://doi.org/10.1029/92JC02964, 1993. a
Macdonald, A. M.: The global ocean circulation: a hydrographic estimate and
regional analysis, Prog. Oceanogr., 41, 281–382,
https://doi.org/10.1016/S0079-6611(98)00020-2, 1998. a
Madec, G. and NEMO-team: NEMO Ocean Engine, Tech. rep., Institut Pierre-Simon
Laplace (IPSL), Paris, 2016. a
Madec, G., Delecluse, P., Imbard, M., and Levy, C.: OPA 8 Ocean General
Circulation Model – Reference Manual, Tech. rep., LODYC/IPSL Note 11, 1998. a
Meinen, C. S., Speich, S., Perez, R. C., Dong, S., Piola, A. R., Garzoli,
S. L., Baringer, M. O., Gladyshev, S., and Campos, E. J. D.: Temporal
variability of the meridional overturning circulation at 34.5∘ S: Results
from two pilot boundary arrays in the South Atlantic, J. Geophys. Res.-Oceans,
118, 6461–6478, https://doi.org/10.1002/2013JC009228, 2013. a
Meinen, C. S., Speich, S., Piola, A. R., Ansorge, I., Campos, E.,
Kersalé, M., Terre, T., Chidichimo, M. P., Lamont, T., Sato, O. T.,
Perez, R. C., Valla, D., van den Berg, M., Le Hénaff, M., Dong, S.,
and Garzoli, S. L.: Meridional Overturning Circulation Transport Variability
at 34.5∘ S During 2009–2017: Baroclinic and Barotropic Flows and the Dueling
Influence of the Boundaries, Geophys. Res. Lett., 45, 4180–4188,
https://doi.org/10.1029/2018GL077408, 2018. a
Mesinger, F. and Arakawa, A.: Numerical methods used in atmospheric models,
Global Atmospheric Research Program World Meteorological Organization, 1,
1–66, 1976. a
Moffa-Sánchez, P. and Hall, I. R.: North Atlantic variability and its
links to European climate over the last 3000 years, Nat. Commun.,
8, 1726, https://doi.org/10.1038/s41467-017-01884-8, 2017. a
Palter, J. B.: The Role of the Gulf Stream in European Climate, Annu. Rev.
Mar. Sci., 7, 113–137, https://doi.org/10.1146/annurev-marine-010814-015656,
2015. a
Rahmstorf, S.: On the freshwater forcing and transport of the Atlantic
thermohaline circulation, Clim. Dynam., 12, 799–811,
https://doi.org/10.1007/s003820050144, 1996. a
Rahmstorf, S.: Ocean circulation and climate during the past 120,000 years,
Nature, 419, 207–214, https://doi.org/10.1038/nature01090, 2002. a
Richardson, P. L.: Agulhas leakage into the Atlantic estimated with subsurface
floats and surface drifters, Deep-Sea Res. Pt. I, 54, 1361–1389, https://doi.org/10.1016/J.DSR.2007.04.010, 2007. a, b
Richardson, P. L.: On the history of meridional overturning circulation
schematic diagrams, Prog. Oceanogr., 76, 466–486,
https://doi.org/10.1016/j.pocean.2008.01.005, 2008. a
Rimaud, J., Speich, S., Blanke, B., and Grima, N.: The exchange of
Intermediate Water in the southeast Atlantic: Water mass transformations
diagnosed from the Lagrangian analysis of a regional ocean model,
J. Geophys. Res.-Oceans, 117, C08034, https://doi.org/10.1029/2012JC008059,
2012. a, b
Rintoul, S. R.: South Atlantic Interbasin Exchange, J. Geophys.
Res.-Oceans, 96, 2675–2692, https://doi.org/10.1029/90JC02422, 1991. a, b
Rodrigues, R. R., Wimbush, M., Watts, D. R., Rothstein, L. M., and Ollitrault,
M.: South Atlantic mass transports obtained from subsurface float and
hydrographic data, J. Mar. Res., 68, 819–850,
https://doi.org/10.1357/002224010796673858, 2010. a, b, c
Roemmich, D.: The Balance of Geostrophic and Ekman Transports in the Tropical
Atlantic Ocean, J. Phys. Oceanogr., 13, 1534–1539,
https://doi.org/10.1175/1520-0485(1983)013<1534:TBOGAE>2.0.CO;2, 1983. a
Rühs, S: Quantitative ARIANE trajectories for the upper limb of the SAMOC
calculated from 5-day mean velocities of hindcast simulation KFS044 with
ocean model INALT20, available at:
https://data.geomar.de/thredds/catalog/open_access/ruehs_et_al_2019_os/catalog.html,
last access: 11 April 2019. a
Rusciano, E., Speich, S., and Ollitrault, M.: Interocean exchanges and the
spreading of Antarctic Intermediate Water south of Africa, J. Geophys. Res.-Oceans,
117, C10010, https://doi.org/10.1029/2012JC008266,
2012. a
Sato, O. T. and Polito, P. S.: Observation of South Atlantic subtropical mode
waters with Argo profiling float data, J. Geophys. Res.-Oceans,
119, 2860–2881, https://doi.org/10.1002/2013JC009438, 2014. a
Schmitz, W. J.: On the interbasin-scale thermohaline circulation, Rev.
Geophys., 33, 151–173, https://doi.org/10.1029/95RG00879, 1995. a
Schott, F. A., McCreary, J. P., and Johnson, G. C.: Shallow overturning
circulations of the tropical-subtropical oceans, in: Geophysical Monograph
Series, 147, 261–304, American Geophysical Union (AGU),
https://doi.org/10.1029/147GM15, 2004. a
Schott, F. A., Dengler, M., Zantopp, R., Stramma, L., Fischer, J., and Brandt,
P.: The shallow and deep western boundary circulation of the South Atlantic
at 5∘–11∘ S, J. Phys. Oceanogr., 35, 2031–2053,
https://doi.org/10.1175/JPO2813.1, 2005. a
Schwarzkopf, F. U., Biastoch, A., Böning, C. W., Chanut, J., Durgadoo, J.
V., Getzlaff, K., Harlaß, J., Rieck, J. K., Roth, C., Scheinert, M. M.,
and Schubert, R.: The INALT family – a set of high-resolution nests for the
Agulhas Current system within global NEMO ocean/sea-ice configurations,
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-312, in review, 2019. a, b, c, d, e
Sloyan, B. M. and Rintoul, S. R.: Circulation, Renewal, and Modification of
Antarctic Mode and Intermediate Water, J. Phys. Oceanogr., 31,
1005–1030, https://doi.org/10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2, 2001. a
Speich, S., Blanke, B., de Vries, P., Drijfhout, S., Döös, K.,
Ganachaud, A., and Marsh, R.: Tasman leakage: A new route in the global
ocean conveyor belt, Geophys. Res. Lett., 29, 1416,
https://doi.org/10.1029/2001GL014586, 2002. a, b
Srokosz, M., Baringer, M., Bryden, H., Cunningham, S., Delworth, T., Lozier,
S., Marotzke, J., and Sutton, R.: Past, Present, and Future Changes in the
Atlantic Meridional Overturning Circulation, B. Am.
Meteorol. Soc., 93, 1663–1676, https://doi.org/10.1175/BAMS-D-11-00151.1,
2012. a
Steele, M., Morley, R., and Ermold, W.: PHC: A global ocean hydrography with
a high quality Arctic Ocean, J. Climate, 14, 2079–2087,
https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2, 2001. a
Stommel, H.: Thermohaline Convection with Two Stable Regimes, Tellus, 13,
224–230, https://doi.org/10.1111/j.2153-3490.1961.tb00079.x, 1961. a
Stramma, L. and England, M.: On the water masses and mean circulation of the
South Atlantic Ocean, J. Geophys. Res.-Oceans, 104,
20863–20883, https://doi.org/10.1029/1999JC900139, 1999. a
Thomas, M. D., Tréguier, A.-M., Blanke, B., Deshayes, J., and Voldoire,
A.: A Lagrangian Method to Isolate the Impacts of Mixed Layer Subduction on
the Meridional Overturning Circulation in a Numerical Model, J.
Climate, 28, 7503–7517, https://doi.org/10.1175/JCLI-D-14-00631.1, 2015. a, b
Tim, N., Zorita, E., Schwarzkopf, F. U., Rühs, S., Emeis, K.-C., and
Biastoch, A.: The impact of Agulhas leakage on the central water masses in
the Benguela upwelling system from a high-resolution ocean simulation,
J. Geophys. Res.-Oceans, 123, 9416–9428,
https://doi.org/10.1029/2018JC014218, 2018. a, b, c, d
van Sebille, E., van Leeuwen, P. J., Biastoch, A., and de Ruijter, W. P. M.:
Flux comparison of Eulerian and Lagrangian estimates of Agulhas leakage: A
case study using a numerical model, Deep-Sea Res. Pt. I, 57, 319–327,
https://doi.org/10.1016/J.DSR.2009.12.006, 2010. a
van Sebille, E., Beal, L. M., and Johns, W. E.: Advective Time Scales of
Agulhas Leakage to the North Atlantic in Surface Drifter Observations and the
3D OFES Model, J. Phys. Oceanogr., 41, 1026–1034,
https://doi.org/10.1175/2011JPO4602.1, 2011. a, b, c
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berlof, P.,
Biastoc, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,
Deleersnijder, E., Döös, K., Drake, H., Drijfhout, S., Gar,
S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
MacGilchrist, G. A., Marsh, R., Adame, G. C. M., McAdam, R., Nencioli, F.,
Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H.,
Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.:
Lagrangian ocean analysis: fundamentals and practices, Ocean Model.,
121, 49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018. a
Weijer, W., de Ruijter, W. P. M., and Dijkstra, H. A.: Stability of the
Atlantic Overturning Circulation: Competition between Bering Strait
Freshwater Flux and Agulhas Heat and Salt Sources, J. Phys. Oceanogr., 31, 2385–2402,
https://doi.org/10.1175/1520-0485(2001)031<2385:sotaoc>2.0.co;2, 2001. a
Weijer, W., de Ruijter, W. P., Sterl, A., and Drijfhout, S. S.: Response of
the Atlantic overturning circulation to South Atlantic sources of buoyancy,
Global Planet. Change, 34, 293–311,
https://doi.org/10.1016/S0921-8181(02)00121-2, 2002. a
Yeager, S. and Danabasoglu, G.: The Origins of Late-Twentieth-Century
Variations in the Large-Scale North Atlantic Circulation, J. Climate, 27,
3222–3247, https://doi.org/10.1175/JCLI-D-13-00125.1, 2014. a
Zalesak, S. T.: Fully multidimensional flux-corrected transport algorithms for
fluids, J. Comput. Phys., 31, 335–362,
https://doi.org/10.1016/0021-9991(79)90051-2, 1979.
a
Zhang, D.: Observational Evidence for Flow between the Subtropical and
Tropical Atlantic: The Atlantic Subtropical Cells, J. Phys. Oceanogr., 33, 1783–1797,
https://doi.org/10.1175/2408.1, 2003. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(7341 KB) - Full-text XML
Short summary
We revisit the sources for the upper limb of the overturning circulation in the South Atlantic by tracking fluid particles in a high-resolution ocean model. Our results suggest that the upper limb’s transport is dominantly supplied by waters with Indian Ocean origin, but the contribution of waters with Pacific origin is substantially larger than previously estimated with coarse-resolution models. Yet, a large part of upper limb waters obtains thermohaline properties within the South Atlantic.
We revisit the sources for the upper limb of the overturning circulation in the South Atlantic...