Articles | Volume 15, issue 6
https://doi.org/10.5194/os-15-1399-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1399-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extreme sea levels in the Baltic Sea under climate change scenarios – Part 1: Model validation and sensitivity
Christian Dieterich
CORRESPONDING AUTHOR
Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, Sweden
Matthias Gröger
Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, Sweden
Lars Arneborg
Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, Sweden
Helén C. Andersson
Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, Sweden
Related authors
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Taru Olsson, Anna Luomaranta, Kirsti Jylhä, Julia Jeworrek, Tuuli Perttula, Christian Dieterich, Lichuan Wu, Anna Rutgersson, and Antti Mäkelä
Adv. Sci. Res., 17, 87–104, https://doi.org/10.5194/asr-17-87-2020, https://doi.org/10.5194/asr-17-87-2020, 2020
Short summary
Short summary
Statistics of the frequency and intensity of snow bands affecting the Finnish coast during years 2000–2010 was conducted. A set of criteria for meteorological variables favoring the formation of the snow bands were applied to regional climate model (RCA4) data. We found on average three days per year with favorable conditions for coastal sea-effect snowfall. The heaviest convective snowfall events were detected most frequently over the southern coastline.
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Iréne Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, https://doi.org/10.5194/gmd-12-363-2019, 2019
Short summary
Short summary
Nemo-Nordic is a regional ocean model based on a community code (NEMO). It covers the Baltic and the North Sea area and is used as a forecast model by the Swedish Meteorological and Hydrological Institute. It is also used as a research tool by scientists of several countries to study, for example, the effects of climate change on the Baltic and North seas. Using such a model permits us to understand key processes in this coastal ecosystem and how such processes will change in a future climate.
Sofia Saraiva, H. E. Markus Meier, Helén Andersson, Anders Höglund, Christian Dieterich, Robinson Hordoir, and Kari Eilola
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2018-16, https://doi.org/10.5194/esd-2018-16, 2018
Revised manuscript not accepted
Short summary
Short summary
Uncertainties are estimated in Baltic Sea climate projections by performing scenarios combining 4 Global Climate Models, 2 future gas emissions (RCP4.5, RCP8.5) and 3 nutrient load scenarios. Results on primary production, nitrogen fixation, and hypoxic areas show that uncertainties caused by the nutrients loads are greater than uncertainties due to GCMs and RCPs. In all scenarios, nutrient load abatement strategy, Baltic Sea Action Plan, will lead to an improvement in the environmental state.
Julia Jeworrek, Lichuan Wu, Christian Dieterich, and Anna Rutgersson
Earth Syst. Dynam., 8, 163–175, https://doi.org/10.5194/esd-8-163-2017, https://doi.org/10.5194/esd-8-163-2017, 2017
Short summary
Short summary
Convective snow bands develop in response to a cold air outbreak from the continent over an open water surface. In the Baltic Sea region these cause intense snowfall and can cause serious problems for traffic, infrastructure and other important establishments of society. The conditions for these events to occur were characterized and the potential of using a regional modelling system was evaluated. The modelling system was used to develop statistics of these events to occur in time and space.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
Short summary
This paper describes the development of a regional Earth System Model for the Baltic Sea region. In contrast to conventional coupling approaches, the presented model includes a flux calculator operating on a common exchange grid. This approach automatically ensures a locally consistent treatment of fluxes and simplifies the exchange of model components. The presented model can be used for various scientific questions, such as studies of natural variability and ocean–atmosphere interactions.
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Dmitry V. Sein, Anton Y. Dvornikov, Stanislav D. Martyanov, William Cabos, Vladimir A. Ryabchenko, Matthias Gröger, Daniela Jacob, Alok Kumar Mishra, and Pankaj Kumar
Earth Syst. Dynam., 13, 809–831, https://doi.org/10.5194/esd-13-809-2022, https://doi.org/10.5194/esd-13-809-2022, 2022
Short summary
Short summary
The effect of the marine biogeochemical variability upon the South Asian regional climate has been investigated. In the experiment where its full impact is activated, the average sea surface temperature is lower over most of the ocean. When the biogeochemical coupling is included, the main impacts include the enhanced phytoplankton primary production, a shallower thermocline, decreased SST and water temperature in subsurface layers.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
Amanda T. Nylund, Lars Arneborg, Anders Tengberg, Ulf Mallast, and Ida-Maja Hassellöv
Ocean Sci., 17, 1285–1302, https://doi.org/10.5194/os-17-1285-2021, https://doi.org/10.5194/os-17-1285-2021, 2021
Short summary
Short summary
Acoustic and satellite observations of turbulent ship wakes show that ships can mix the water column down to 30 m depth and that a temperature signature of the wake can last for tens of kilometres after ship passage. Turbulent wakes deeper than 12 m were frequently detected, which is deeper than previously reported. The observed extent of turbulent ship wakes implies that in areas with intensive ship traffic, ship mixing should be considered when assessing environmental impacts from shipping.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Stelios Myriokefalitakis, Matthias Gröger, Jenny Hieronymus, and Ralf Döscher
Ocean Sci., 16, 1183–1205, https://doi.org/10.5194/os-16-1183-2020, https://doi.org/10.5194/os-16-1183-2020, 2020
Short summary
Short summary
Global inorganic and organic nutrient deposition fields are coupled to PISCES to investigate their effect on ocean biogeochemistry. Pre-industrial deposition fluxes are lower compared to the present day, resulting in lower oceanic productivity. Future changes result in a modest decrease in the nutrients put into the global ocean. This work provides a first assessment of the atmospheric organic nutrients' contribution, highlighting the importance of their representation in biogeochemistry models.
Taru Olsson, Anna Luomaranta, Kirsti Jylhä, Julia Jeworrek, Tuuli Perttula, Christian Dieterich, Lichuan Wu, Anna Rutgersson, and Antti Mäkelä
Adv. Sci. Res., 17, 87–104, https://doi.org/10.5194/asr-17-87-2020, https://doi.org/10.5194/asr-17-87-2020, 2020
Short summary
Short summary
Statistics of the frequency and intensity of snow bands affecting the Finnish coast during years 2000–2010 was conducted. A set of criteria for meteorological variables favoring the formation of the snow bands were applied to regional climate model (RCA4) data. We found on average three days per year with favorable conditions for coastal sea-effect snowfall. The heaviest convective snowfall events were detected most frequently over the southern coastline.
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Iréne Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, https://doi.org/10.5194/gmd-12-363-2019, 2019
Short summary
Short summary
Nemo-Nordic is a regional ocean model based on a community code (NEMO). It covers the Baltic and the North Sea area and is used as a forecast model by the Swedish Meteorological and Hydrological Institute. It is also used as a research tool by scientists of several countries to study, for example, the effects of climate change on the Baltic and North seas. Using such a model permits us to understand key processes in this coastal ecosystem and how such processes will change in a future climate.
Sofia Saraiva, H. E. Markus Meier, Helén Andersson, Anders Höglund, Christian Dieterich, Robinson Hordoir, and Kari Eilola
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2018-16, https://doi.org/10.5194/esd-2018-16, 2018
Revised manuscript not accepted
Short summary
Short summary
Uncertainties are estimated in Baltic Sea climate projections by performing scenarios combining 4 Global Climate Models, 2 future gas emissions (RCP4.5, RCP8.5) and 3 nutrient load scenarios. Results on primary production, nitrogen fixation, and hypoxic areas show that uncertainties caused by the nutrients loads are greater than uncertainties due to GCMs and RCPs. In all scenarios, nutrient load abatement strategy, Baltic Sea Action Plan, will lead to an improvement in the environmental state.
Julia Jeworrek, Lichuan Wu, Christian Dieterich, and Anna Rutgersson
Earth Syst. Dynam., 8, 163–175, https://doi.org/10.5194/esd-8-163-2017, https://doi.org/10.5194/esd-8-163-2017, 2017
Short summary
Short summary
Convective snow bands develop in response to a cold air outbreak from the continent over an open water surface. In the Baltic Sea region these cause intense snowfall and can cause serious problems for traffic, infrastructure and other important establishments of society. The conditions for these events to occur were characterized and the potential of using a regional modelling system was evaluated. The modelling system was used to develop statistics of these events to occur in time and space.
M. Gröger, E. Maier-Reimer, U. Mikolajewicz, A. Moll, and D. Sein
Biogeosciences, 10, 3767–3792, https://doi.org/10.5194/bg-10-3767-2013, https://doi.org/10.5194/bg-10-3767-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
Cited articles
Ågren, J. and Svensson, R.: The Height System RH 2000 and the Land Uplift
Model NKG2005LU, Mapp. Image Sci., 3, 4–12, 2011. a
Andersson, H. C.: Influence of long-term regional and large-scale atmospheric
circulation on the Baltic sea level, Tellus A, 54, 76–88, 2002. a
Arneborg, L.: Comment on “Influence of sea level rise on the dynamics of salt
inflows in the Baltic Sea” by R. Hordoir, L. Axell, U. Löptien, H.
Dietze, and I. Kuznetsov, J. Geophys. Res.-Oceans, 121, 2035–2040,
https://doi.org/10.1002/2015JC011451, 2016. a
Arns, A., Wahl, T., Haigh, I. D., Jensen, J., and Pattiaratchi, C.: Estimating
extreme water level probabilities: A comparison of the direct methods and
recommendations for best practise, Coast Eng., 81, 51–66,
https://doi.org/10.1016/j.coastaleng.2013.07.003, 2013. a
Averkiev, A. S. and Klevanny, K. A.: Determining cyclone trajectories and
velocities leading to extreme sea level rises in the gulf of Finland,
Russ. Meteorol. Hydrol., 32, 514–519,
https://doi.org/10.3103/S1068373907080067, 2007. a
Balmaseda, M. A., Mogensen, K., and Weaver, A. T.: Evaluation of the ECMWF
ocean reanalysis system ORAS4, Q. J. Roy. Meteorol. Soc., 139, 1132–1161,
https://doi.org/10.1002/qj.2063, 2013. a, b
Büchmann, B., Hansen, C., and Söderkvist, J.: Improvement of
hydrodynamic forecasting of Danish waters: impact of low-frequency North
Atlantic barotropic variations, Ocean. Dynam., 61, 1611–1617,
https://doi.org/10.1007/s10236-011-0451-2, 2011. a
Capela Lourenço, T., Cruz, M. J., Dzebo, A., Carlsen, H., Dunn, M.,
Juhász-Horváth, L., and Pinter, L.: Are European decision-makers
preparing for high-end climate change?, Reg. Environ. Change, 19, 629–642,
https://doi.org/10.1007/s10113-018-1362-2, 2018. a
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea
Level Change, in: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
Y., Bex, V., and Midgley, P. M., chap. 13, 1137–1216, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a, b
Dahlgren, P., Landelius, T., Kållberg, P., and Gollvik, S.: A
high-resolution regional reanalysis for Europe. Part 1: Three-dimensional
reanalysis with the regional HIgh-Resolution Limited-Area Model (HIRLAM), Q.
J. Roy. Meteorol. Soc., 142, 2119–2131, https://doi.org/10.1002/qj.2807, 2016. a, b
Dieterich, C. and NEMO Team: NEMO-Nordic 3.3.1 for RCA4-NEMO (Version rca4_nemo-028), Zenodo, https://doi.org/10.5281/zenodo.2643477, 2019. a
Eelsalu, M., Soomere, T., Pindsoo, K., and Lagemaa, P.: Ensemble approach for
projections of return periods of extreme water levels in Estonian waters,
Cont. Shelf Res., 91, 201–210,
https://doi.org/10.1016/j.csr.2014.09.012, 2014. a, b
Egbert, G. D., Erofeeva, S. Y., and Ray, R. D.: Assimilation of altimetry data
for nonlinear shallow-water tides: Quarter-diurnal tides of the Northwest
European Shelf, Cont. Shelf Res., 30, 668–679,
https://doi.org/10.1016/j.csr.2009.10.011, 2010. a
Ekman, M.: The Changing Level of the Baltic Sea during 300 Years: A Clue to
Understanding the Earth, Summer Institute for Historical Geophysics,
Åland Islands, 2009. a
Ekman, M. and Mäkinen, J.: Mean sea surface topography in the Baltic Sea
and its transition area to the North Sea: A geodetic solution and comparisons
with oceanographic models, J. Geophys. Res.-Oceans, 101, 11993–11999,
1996. a
Feser, F., Rockel, B., von Storch, H., Winterfeldt, J., and Zahn, M.: Regional
Climate Models Add Value to Global Model Data: A Review and Selected
Examples, B. Am. Meteorol. Soc., 92, 1181–1192, https://doi.org/10.1175/2011BAMS3061.1, 2011. a
Fredriksson, C., Tajvidi, N., Hanson, H., and Larson, M.: Statistical Analysis
of Extreme Sea Water Levels at the Falsterbo Peninsula, South Sweden,
Vatten, J. Water Manage. Res., 72, 129–142, 2016. a
Fredriksson, C., Feldmann Eellend, B., Larson, M., and Martinez, G.:
Historiska stormhändelser som underlag vid riskanalys – Studie av
översvämningarna 1872 och 1904 längs Skånes syd- och
ostkust, Vatten, J. Water Manage. Res., 73, 93–108,
2017. a
Ganske, A., Tinz, B., Rosenhagen, G., and Heinrich, H.: Interannual and
Multidecadal Changes of Wind Speed and Directions over the North Sea from
Climate Model Results, Meteorol. Z., 25, 463–478,
https://doi.org/10.1127/metz/2016/0673, 2016. a, b
Gräwe, U. and Burchard, H.: Storm surges in the Western Baltic Sea: the
present and a possible future, Clim. Dynam., 39, 165–183,
https://doi.org/10.1007/s00382-011-1185-z, 2012. a, b, c, d
Gröger, M., Dieterich, C., Meier, H. E. M., and Schimanke, S.: Thermal
air–sea coupling in hindcast simulations for the North Sea and Baltic Sea on
the NW European shelf, Tellus A, 67, 26911, https://doi.org/10.3402/tellusa.v67.26911, 2015. a, b, c, d
Gröger, M., Arneborg, L., Dieterich, C., Höglund, A., and Meier, H.
E. M.: Summer hydrographic changes in the Baltic Sea, Kattegat and Skagerrak
projected in an ensemble of climate scenarios downscaled with a coupled
regional ocean-sea ice-atmosphere model, Clim. Dynam., 53, 5945–5966,
https://doi.org/10.1007/s00382-019-04908-9, 2019. a, b
Hammarklint, T.: Swedish Sea Level Series – A Climate Indicator, Tech. rep., SMHI, 2009. a
Hieronymus, M., Hieronymus, J., and Arneborg, L.: Sea level modelling in the
Baltic and the North Sea: The respective role of different parts of the
forcing, Ocean Model., 118, 59–72, https://doi.org/10.1016/j.ocemod.2017.08.007, 2017. a
Hieronymus, M., Dieterich, C., Andersson, H., and Hordoir, R.: The effects of
mean sea level rise and strengthened winds on extreme sea levels in the
Baltic Sea, Theor. Appl. Lett., 8, 366–371,
https://doi.org/10.1016/j.taml.2018.06.008, 2018. a
Hordoir, R., Axell, L., Löptien, U., Dietze, H., and Kuznetsov, I.:
Influence of sea level rise on the dynamics of salt inflows in the Baltic
Sea, J. Geophys. Res.-Oceans, 120, 6653–6668, https://doi.org/10.1002/2014JC010642,
2015. a
Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., and Haapala, J.: Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications, Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, 2019. a, b, c, d
Jevrejeva, S., Moore, J. C., and Grinsted, A.: Influence of the Arctic
Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in
the Baltic Sea: The wavelet approach, J. Geophys. Res.-Ocean Atmos., 108, 4677,
https://doi.org/10.1029/2003JD003417, 2003. a
Jeworrek, J., Wu, L., Dieterich, C., and Rutgersson, A.: Characteristics of convective snow bands along the Swedish east coast, Earth Syst. Dynam., 8, 163–175, https://doi.org/10.5194/esd-8-163-2017, 2017. a, b
Jivall, L., Norin, D., Lilje, M., Lidberg, M., Wiklund, P., Engberg, L. E.,
Kempe, C., Ågren, J., Engfeldt, A., and Steffen, H.: National Report of
Sweden to the EUREF 2016 Symposium, Tech. rep., Lantmäteriet, Sweden,
2016. a
Johansson, L., Gyllenram, W., and Nerheim, S.: Lokala effekter på extrema havsvattenstånd, Oceanografi 125, SMHI,
available at: http://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-4511 (last access: 13 July 2018), 2017. a
Karabil, S., Zorita, E., and Hünicke, B.: Contribution of atmospheric circulation to recent off-shore sea-level variations in the Baltic Sea and the North Sea, Earth Syst. Dynam., 9, 69–90, https://doi.org/10.5194/esd-9-69-2018, 2018. a, b
Kauker, F. and Meier, H. E. M.: Modeling decadal variability of the Baltic
Sea: 1. Reconstructing atmospheric surface data for the period 1902–1998, J.
Geophys. Res.-Oceans, 108, 3267, https://doi.org/10.1029/2003JC001797, 2003. a
Kjellström, E., Bärring, L., Nikulin, G., Nilsson, C., Persson, G., and
Strandberg, G.: Production and use of regional climate model projections –
a Swedish perspective on building climate services, Clim. Serv., 2–3, 15–29,
https://doi.org/10.1016/j.cliser.2016.06.004, 2016. a
Kowalewski, M. and Kowalewska-Kalkowska, H.: Sensitivity of the Baltic Sea
level prediction to spatial model resolution, J. Mar. Syst., 173, 101–113,
https://doi.org/10.1016/j.jmarsys.2017.05.001, 2017. a
Lang, A. and Mikolajewicz, U.: The long-term variability of extreme sea levels in the German Bight, Ocean Sci., 15, 651–668, https://doi.org/10.5194/os-15-651-2019, 2019. a
Matthäus, W. and Franck, H.: Characteristics of major Baltic inflows-a
statistical analysis, Cont. Shelf Res., 12, 1375–1400,
https://doi.org/10.1016/0278-4343(92)90060-W, 1992. a
Meier, H. E. M.: Baltic Sea climate in the late twenty-first century: a
dynamical downscaling approach using two global models and two emission
scenarios, Clim. Dynam., 27, 39–68, https://doi.org/10.1007/s00382-006-0124-x, 2006. a
Meier, H. E. M., Höglund, A., Eilola, K., and Almroth-Rosell, E.: Impact
of accelerated future global mean sea level rise on hypoxia in the Baltic
Sea, Clim. Dynam., 49, 163–172, https://doi.org/10.1007/s00382-016-3333-y, 2017. a
Meier, H. E. M., Edman, M., Eilola, K., Placke, M., Neumann, T., Andersson,
H. C., Brunnabend, S.-E., Dieterich, C., Frauen, C., Friedland, R.,
Gröger, M., Gustafsson, B. G., Gustafsson, E., Isaev, A., Kniebusch, M.,
Kuznetsov, I., Müller-Karulis, B., Naumann, M., Omstedt, A., Ryabchenko,
V., Saraiva, S., and Savchuk, O. P.: Assessment of Uncertainties in Scenario
Simulations of Biogeochemical Cycles in the Baltic Sea, Front. Mar. Sci., 6,
46, https://doi.org/10.3389/fmars.2019.00046, 2019. a
Omstedt, A. and Chen, D.: Influence of atmospheric circulation on the maximum
ice extent in the Baltic Sea, J. Geophys. Res.-Oceans, 106, 4493–4500,
https://doi.org/10.1029/1999JC000173, 2001. a
Pätsch, J., Burchard, H., Dieterich, C., Gräwe, U., Gröger, M.,
Mathis, M., Kapitza, H., Bersch, M., Moll, A., Pohlmann, T., Su, J.,
Ho-Hagemann, H. T. M., Schulz, A., Elizalde, A., and Eden, C.: An evaluation
of the North Sea circulation in global and regional models relevant for
ecosystem simulations, Ocean Model., 111, 70–95,
https://doi.org/10.1016/j.ocemod.2017.06.005, 2017. a
Pelling, H. E., Green, J. A. M., and Ward, S. L.: Modelling tides and
sea-level rise: To flood or not to flood, Ocean Model., 63, 21–29,
https://doi.org/10.1016/j.ocemod.2012.12.004, 2013. a, b
Perbeck, P.: Översyn av områden med betydande
översvämningsrisk, Tech. Rep. MSB1152, MSB, 2018. a
Pinto, J. G., Zacharias, S., Fink, A. H., Leckebusch, G. C., and Ulbrich, U.:
Factors contributing to the development of extreme North Atlantic cyclones
and their relationship with the NAO, Clim. Dynam., 32, 711–737,
https://doi.org/10.1007/s00382-008-0396-4, 2009. a
Saenko, O. A., Yang, D., and Myers, P. G.: Response of the North Atlantic
dynamic sea level and circulation to Greenland meltwater and climate change
in an eddy-permitting ocean model, Clim. Dynam., 49, 2895–2910,
https://doi.org/10.1007/s00382-016-3495-7, 2017. a
Samuelsson, M. and Stigebrandt, A.: Main characteristics of the long-term sea
level variability in the Baltic sea, Tellus A, 48, 672–683,
https://doi.org/10.1034/j.1600-0870.1996.t01-4-00006.x, 1996. a, b
Schimanke, S., Dieterich, C., and Meier, H. E. M.: An algorithm based on
sea-level pressure fluctuations to identify major Baltic inflow events,
Tellus A, 66, 23452, https://doi.org/10.3402/tellusa.v66.23452, 2014. a
Schneidereit, A., Blender, R., Fraedrich, K., and Lunkeit, F.: Icelandic
climate and North Atlantic cyclones in ERA-40 reanalyses, Meteorol. Z., 16,
17–23, https://doi.org/10.1127/0941-2948/2007/0187, 2007. a
Schöld, S., Hellström, S., Ivarsson, C.-L., Kållberg, P., Lindow,
H., Nerheim, S., Schimanke, S., Södling, J., and Wern, L.:
Vattenståndsdynamik längs Sveriges kust, Oceanografi. 123, SMHI,
available at: http://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-4508 (last access: 2 February 2018), 2017. a
Smagorinsky, J.: General Circulation Experiments with the Primitve Equations:
1 the Basic Experiment, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a, b, c
Stein, U. and Alpert, P.: Factor Separation in Numerical Simulations, J. Atmos.
Sci., 50, 2107–2115,
https://doi.org/10.1175/1520-0469(1993)050<2107:FSINS>2.0.CO;2, 1993. a
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.): Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a, b
Strandberg, G., Bärring, L., Hansson, U., Jansson, C., Jones, C.,
Kjellström, E., Kolax, M., Kupiainen, M., Nikulin, G., Samuelsson, P.,
Ullerstig, A., and Wang, S.: CORDEX scenarios for Europe from the Rossby
Centre regional climate model RCA4, Reports Meteorology and Climatology 116,
SMHI, 2014. a
Sweet, W. V., Horton, R., Kopp, R. E., LeGrande, A. N., and Romanou, A.: Sea
level rise, in: Climate Science Special Report: Fourth National Climate
Assessment, Volume I, edited by: Wuebbles, D. J., Fahey, D. W., Hibbard,
K. A., Dokken, D. J., Stewart, B. C., and Maycock, T. K., 333–363, U.S.
Global Change Research Program, Washington, DC, USA, https://doi.org/10.7930/J0VM49F2, 2017. a
Tange, O.: GNU Parallel – The Command-Line Power Tool, Tech. Rep. 36, login: The USENIX Magazine, 2011. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the
Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Van der Meer, J. W., Allsop, N. W. H., Bruce, T., De Rouck, J., Kortenhaus, A.,
Pullen, T., Schüttrunpf, H., Troch, P., and Zanuttigh, B.: EurOtop,
2018. Manual on wave overtopping of sea defences and related structures, An
overtopping manual largely based on European research, but for worldwide
application, available at: http://www.overtopping-manual.com/ (last access: 8 August 2019), 2018. a
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Clim. Change, 109,
5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011. a
Viitak, M., Maljutenko, I., Alari, V., Suursaar, Ü., Rikka, S., and
Lagemaa, P.: The impact of surface currents and sea level on the wave field evolution during St. Jude storm in the eastern Baltic Sea, Oceanologia, 58, 176–186, https://doi.org/10.1016/j.oceano.2016.01.004, 2016. a
Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., and Feyen,
L.: Projections of extreme storm surge levels along Europe, Clim. Dynam., 47,
3171–3190, https://doi.org/10.1007/s00382-016-3019-5, 2016. a, b, c
Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S., Hinkel, J.,
and Slangen, A. B. A.: Understanding extreme sea levels for broad-scale
coastal impact and adaptation analysis, Nat. Commun., 8, 16075,
https://doi.org/10.1038/ncomms16075, 2017. a, b, c, d
Wang, S., Dieterich, C., Döscher, R., Höglund, A., Hordoir, R., Meier, H.
E. M., Samuelsson, P., and Schimanke, S.: Development and evaluation of a
new regional coupled atmosphere-ocean model in the North Sea and Baltic Sea,
Tellus A, 67, 24284, https://doi.org/10.3402/tellusa.v67.24284, 2015.
a, b
Weisse, R. and Weidemann, H.: Baltic Sea extreme sea levels 1948-2011:
Contributions from atmospheric forcing, Proc. IUTAM, 25, 65–69,
https://doi.org/10.1016/j.piutam.2017.09.010,
2017. a
Weisse, R., Bellafiore, D., Menéndez, M., Méndez, F., Nicholls, R. J.,
Umgiesser, G., and Willems, P.: Changing extreme sea levels along European
coasts, Coast Eng., 87, 4–14,
https://doi.org/10.1016/j.coastaleng.2013.10.017, 2014. a
Wiśniewski, B. and Wolski, T.: Physical aspects of extreme storm surges
and falls on the Polish coast, Oceanologia, 53, 373–390,
https://doi.org/10.5697/oc.53-1-TI.373, 2011. a
Short summary
We assess storm surges in the Baltic Sea and how they are represented in a regional climate model. We show how well different model formulations agree with each other and how this model uncertainty relates to observational uncertainty. With an ensemble of model solutions that represent today's climate, we show that this uncertainty is of the same size as the observational uncertainty. The second part of this study compares climate uncertainty with scenario uncertainty and natural variability.
We assess storm surges in the Baltic Sea and how they are represented in a regional climate...