Articles | Volume 21, issue 1
https://doi.org/10.5194/os-21-93-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-93-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term variability and trends in the Agulhas Leakage and its impacts on the global overturning
Hendrik Großelindemann
CORRESPONDING AUTHOR
Ocean Dynamics, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Faculty of Mathematics and Natural Sciences, Kiel University, Kiel, Germany
Frederic S. Castruccio
US National Science Foundation, National Center for Atmospheric Research, Boulder, CO, USA
Gokhan Danabasoglu
US National Science Foundation, National Center for Atmospheric Research, Boulder, CO, USA
Arne Biastoch
Ocean Dynamics, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Faculty of Mathematics and Natural Sciences, Kiel University, Kiel, Germany
Related authors
No articles found.
Ingo Richter, Ping Chang, Gokhan Danabasoglu, Dietmar Dommenget, Guillaume Gastineau, Aixue Hu, Takahito Kataoka, Noel Keenlyside, Fred Kucharski, Yuko Okumura, Wonsun Park, Malte Stuecker, Andrea Taschetto, Chunzai Wang, Stephen Yeager, and Sang-Wook Yeh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3110, https://doi.org/10.5194/egusphere-2024-3110, 2024
Short summary
Short summary
The tropical ocean basins influence each other through multiple pathways and mechanisms, here referred to as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models, but have obtained conflicting results. This may be partly due to differences in experiment protocols, and partly due to systematic model errors. TBIMIP aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3320, https://doi.org/10.5194/egusphere-2024-3320, 2024
Short summary
Short summary
The West African coastal region sustains highly productive fisheries and marine ecosystems influenced by sea surface temperature. We use oceanic models to show that the freshwater input from land to ocean strengthens a surface northward (southward) coastal current north (south) of the Congo river mouth, promoting a transfer of cooler (warmer) waters to north (south) of the Congo discharge location. We highlight the significant impact of river discharge on ocean temperatures and circulation.
Malcolm John Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2582, https://doi.org/10.5194/egusphere-2024-2582, 2024
Short summary
Short summary
HighResMIP2 is a model intercomparison project focussing on high resolution global climate models, that is those with grid spacings of 25 km or less in atmosphere and ocean, using simulations of decades to a century or so in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present day and future projections, and to build links with other communities to provide more robust climate information.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Laura C. Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev., 16, 1975–1995, https://doi.org/10.5194/gmd-16-1975-2023, https://doi.org/10.5194/gmd-16-1975-2023, 2023
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult; however, it is unclear whether TPs exist in global climate models. Here, we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic Hosing Model Intercomparison Project (NAHosMIP).
Torge Martin and Arne Biastoch
Ocean Sci., 19, 141–167, https://doi.org/10.5194/os-19-141-2023, https://doi.org/10.5194/os-19-141-2023, 2023
Short summary
Short summary
How is the ocean affected by continued Greenland Ice Sheet mass loss? We show in a systematic set of model experiments that atmospheric feedback needs to be accounted for as the large-scale ocean circulation is more than twice as sensitive to the meltwater otherwise. Coastal winds, boundary currents, and ocean eddies play a key role in redistributing the meltwater. Eddy paramterization helps the coarse simulation to perform better in the Labrador Sea but not in the North Atlantic Current region.
Alan D. Fox, Patricia Handmann, Christina Schmidt, Neil Fraser, Siren Rühs, Alejandra Sanchez-Franks, Torge Martin, Marilena Oltmanns, Clare Johnson, Willi Rath, N. Penny Holliday, Arne Biastoch, Stuart A. Cunningham, and Igor Yashayaev
Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, https://doi.org/10.5194/os-18-1507-2022, 2022
Short summary
Short summary
Observations of the eastern subpolar North Atlantic in the 2010s show exceptional freshening and cooling of the upper ocean, peaking in 2016 with the lowest salinities recorded for 120 years. Using results from a high-resolution ocean model, supported by observations, we propose that the leading cause is reduced surface cooling over the preceding decade in the Labrador Sea, leading to increased outflow of less dense water and so to freshening and cooling of the eastern subpolar North Atlantic.
Jörg Fröhle, Patricia V. K. Handmann, and Arne Biastoch
Ocean Sci., 18, 1431–1450, https://doi.org/10.5194/os-18-1431-2022, https://doi.org/10.5194/os-18-1431-2022, 2022
Short summary
Short summary
Three deep-water masses pass the southern exit of the Labrador Sea. Usually they are defined by explicit density intervals linked to the formation region. We evaluate this relation in an ocean model by backtracking the paths the water follows for 40 years: 48 % densify without contact to the atmosphere, 24 % densify in contact with the atmosphere, and 19 % are from the Nordic Seas. All three contribute to a similar density range at 53° N with weak specific formation location characteristics.
Stephen G. Yeager, Nan Rosenbloom, Anne A. Glanville, Xian Wu, Isla Simpson, Hui Li, Maria J. Molina, Kristen Krumhardt, Samuel Mogen, Keith Lindsay, Danica Lombardozzi, Will Wieder, Who M. Kim, Jadwiga H. Richter, Matthew Long, Gokhan Danabasoglu, David Bailey, Marika Holland, Nicole Lovenduski, Warren G. Strand, and Teagan King
Geosci. Model Dev., 15, 6451–6493, https://doi.org/10.5194/gmd-15-6451-2022, https://doi.org/10.5194/gmd-15-6451-2022, 2022
Short summary
Short summary
The Earth system changes over a range of time and space scales, and some of these changes are predictable in advance. Short-term weather forecasts are most familiar, but recent work has shown that it is possible to generate useful predictions several seasons or even a decade in advance. This study focuses on predictions over intermediate timescales (up to 24 months in advance) and shows that there is promising potential to forecast a variety of changes in the natural environment.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Keith B. Rodgers, Sun-Seon Lee, Nan Rosenbloom, Axel Timmermann, Gokhan Danabasoglu, Clara Deser, Jim Edwards, Ji-Eun Kim, Isla R. Simpson, Karl Stein, Malte F. Stuecker, Ryohei Yamaguchi, Tamás Bódai, Eui-Seok Chung, Lei Huang, Who M. Kim, Jean-François Lamarque, Danica L. Lombardozzi, William R. Wieder, and Stephen G. Yeager
Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, https://doi.org/10.5194/esd-12-1393-2021, 2021
Short summary
Short summary
A large ensemble of simulations with 100 members has been conducted with the state-of-the-art CESM2 Earth system model, using historical and SSP3-7.0 forcing. Our main finding is that there are significant changes in the variance of the Earth system in response to anthropogenic forcing, with these changes spanning a broad range of variables important to impacts for human populations and ecosystems.
Arne Biastoch, Franziska U. Schwarzkopf, Klaus Getzlaff, Siren Rühs, Torge Martin, Markus Scheinert, Tobias Schulzki, Patricia Handmann, Rebecca Hummels, and Claus W. Böning
Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, https://doi.org/10.5194/os-17-1177-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) quantifies the impact of the ocean on climate and climate change. Here we show that a high-resolution ocean model is able to realistically simulate ocean currents. While the mean representation of the AMOC depends on choices made for the model and on the atmospheric forcing, the temporal variability is quite robust. Comparing the ocean model with ocean observations, we able to identify that the AMOC has declined over the past two decades.
Christina Schmidt, Franziska U. Schwarzkopf, Siren Rühs, and Arne Biastoch
Ocean Sci., 17, 1067–1080, https://doi.org/10.5194/os-17-1067-2021, https://doi.org/10.5194/os-17-1067-2021, 2021
Short summary
Short summary
We estimate Agulhas leakage, water flowing from the Indian Ocean to the South Atlantic, in an ocean model with two different tools. The mean transport, variability and trend of Agulhas leakage is simulated comparably with both tools, emphasising the robustness of our method. If the experiments are designed differently, the mean transport of Agulhas leakage is altered, but not the trend. Agulhas leakage waters cool and become less salty south of Africa resulting in a density increase.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Josefine Maas, Susann Tegtmeier, Yue Jia, Birgit Quack, Jonathan V. Durgadoo, and Arne Biastoch
Atmos. Chem. Phys., 21, 4103–4121, https://doi.org/10.5194/acp-21-4103-2021, https://doi.org/10.5194/acp-21-4103-2021, 2021
Short summary
Short summary
Cooling-water disinfection at coastal power plants is a known source of atmospheric bromoform. A large source of anthropogenic bromoform is the industrial regions in East Asia. In current bottom-up flux estimates, these anthropogenic emissions are missing, underestimating the global air–sea flux of bromoform. With transport simulations, we show that by including anthropogenic bromoform from cooling-water treatment, the bottom-up flux estimates significantly improve in East and Southeast Asia.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Short summary
A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced, consisting of a high-top atmosphere, an ocean model, sea-ice and land surface model components. A unique feature of FOCI is the ability to explicitly resolve small-scale oceanic features, for example, the Agulhas Current and the Gulf Stream. It allows to study the evolution of the climate system on regional and seasonal to (multi)decadal scales and bridges the gap to coarse-resolution climate models.
Nele Tim, Eduardo Zorita, Kay-Christian Emeis, Franziska U. Schwarzkopf, Arne Biastoch, and Birgit Hünicke
Earth Syst. Dynam., 10, 847–858, https://doi.org/10.5194/esd-10-847-2019, https://doi.org/10.5194/esd-10-847-2019, 2019
Short summary
Short summary
Our study reveals that the latitudinal position and intensity of Southern Hemisphere trades and westerlies are correlated. In the last decades the westerlies have shifted poleward and intensified. Furthermore, the latitudinal shifts and intensity of the trades and westerlies impact the sea surface temperatures around southern Africa and in the South Benguela upwelling region. The future development of wind stress depends on the strength of greenhouse gas forcing.
Franziska U. Schwarzkopf, Arne Biastoch, Claus W. Böning, Jérôme Chanut, Jonathan V. Durgadoo, Klaus Getzlaff, Jan Harlaß, Jan K. Rieck, Christina Roth, Markus M. Scheinert, and René Schubert
Geosci. Model Dev., 12, 3329–3355, https://doi.org/10.5194/gmd-12-3329-2019, https://doi.org/10.5194/gmd-12-3329-2019, 2019
Short summary
Short summary
A family of nested global ocean general circulation model configurations, the INALT family, has been established with resolutions of 1/10°, 1/20° and 1/60° in the South Atlantic and western Indian oceans, covering the greater Agulhas Current (AC) system. The INALT family provides a consistent set of configurations that allows to address eddy dynamics in the AC system and their impact on the large-scale ocean circulation.
Josefine Maas, Susann Tegtmeier, Birgit Quack, Arne Biastoch, Jonathan V. Durgadoo, Siren Rühs, Stephan Gollasch, and Matej David
Ocean Sci., 15, 891–904, https://doi.org/10.5194/os-15-891-2019, https://doi.org/10.5194/os-15-891-2019, 2019
Short summary
Short summary
In a large-scale analysis, the spread of disinfection by-products from oxidative ballast water treatment is investigated, with a focus on Southeast Asia where major ports are located. Halogenated compounds such as bromoform (CHBr3) are produced in the ballast water and, once emitted into the environment, can participate in ozone depletion. Anthropogenic bromoform is rapidly emitted into the atmosphere and can locally double around large ports. A large-scale impact cannot be found.
Siren Rühs, Franziska U. Schwarzkopf, Sabrina Speich, and Arne Biastoch
Ocean Sci., 15, 489–512, https://doi.org/10.5194/os-15-489-2019, https://doi.org/10.5194/os-15-489-2019, 2019
Short summary
Short summary
We revisit the sources for the upper limb of the overturning circulation in the South Atlantic by tracking fluid particles in a high-resolution ocean model. Our results suggest that the upper limb’s transport is dominantly supplied by waters with Indian Ocean origin, but the contribution of waters with Pacific origin is substantially larger than previously estimated with coarse-resolution models. Yet, a large part of upper limb waters obtains thermohaline properties within the South Atlantic.
Ali Aydoğdu, Nadia Pinardi, Emin Özsoy, Gokhan Danabasoglu, Özgür Gürses, and Alicia Karspeck
Ocean Sci., 14, 999–1019, https://doi.org/10.5194/os-14-999-2018, https://doi.org/10.5194/os-14-999-2018, 2018
Short summary
Short summary
A 6-year simulation of the Turkish Straits System is presented. The simulation is performed by a model using unstructured triangular mesh and realistic atmospheric forcing. The dynamics and circulation of the Marmara Sea are analysed and the mean state of the system is discussed on annual averages. Volume fluxes computed throughout the simulation are presented and the response of the model to severe storms is shown. Finally, it was possible to assess the kinetic energy budget in the Marmara Sea.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
George J. Boer, Douglas M. Smith, Christophe Cassou, Francisco Doblas-Reyes, Gokhan Danabasoglu, Ben Kirtman, Yochanan Kushnir, Masahide Kimoto, Gerald A. Meehl, Rym Msadek, Wolfgang A. Mueller, Karl E. Taylor, Francis Zwiers, Michel Rixen, Yohan Ruprich-Robert, and Rosie Eade
Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016, https://doi.org/10.5194/gmd-9-3751-2016, 2016
Short summary
Short summary
The Decadal Climate Prediction Project (DCPP) investigates our ability to skilfully predict climate variations from a year to a decade ahead by means of a series of retrospective forecasts. Quasi-real-time forecasts are also produced for potential users. In addition, the DCPP investigates how perturbations such as volcanoes affect forecasts and, more broadly, what new information can be learned about the mechanisms governing climate variations by means of case studies of past climate behaviour.
Stephen M. Griffies, Gokhan Danabasoglu, Paul J. Durack, Alistair J. Adcroft, V. Balaji, Claus W. Böning, Eric P. Chassignet, Enrique Curchitser, Julie Deshayes, Helge Drange, Baylor Fox-Kemper, Peter J. Gleckler, Jonathan M. Gregory, Helmuth Haak, Robert W. Hallberg, Patrick Heimbach, Helene T. Hewitt, David M. Holland, Tatiana Ilyina, Johann H. Jungclaus, Yoshiki Komuro, John P. Krasting, William G. Large, Simon J. Marsland, Simona Masina, Trevor J. McDougall, A. J. George Nurser, James C. Orr, Anna Pirani, Fangli Qiao, Ronald J. Stouffer, Karl E. Taylor, Anne Marie Treguier, Hiroyuki Tsujino, Petteri Uotila, Maria Valdivieso, Qiang Wang, Michael Winton, and Stephen G. Yeager
Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, https://doi.org/10.5194/gmd-9-3231-2016, 2016
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This document defines OMIP and details a protocol both for simulating global ocean/sea-ice models and for analysing their output.
D. Le Bars, J. V. Durgadoo, H. A. Dijkstra, A. Biastoch, and W. P. M. De Ruijter
Ocean Sci., 10, 601–609, https://doi.org/10.5194/os-10-601-2014, https://doi.org/10.5194/os-10-601-2014, 2014
Related subject area
Approach: Numerical Models | Properties and processes: Overturning circulation, gyres and water masses
North Atlantic Subtropical Mode Water properties: intrinsic and atmospherically forced interannual variability
The formation and ventilation of an oxygen minimum zone in a simple model for latitudinally alternating zonal jets
Persistent climate model biases in the Atlantic Ocean's freshwater transport
Surface factors controlling the volume of accumulated Labrador Sea Water
Dependency of simulated tropical Atlantic current variability on the wind forcing
Altered Weddell Sea warm- and dense-water pathways in response to 21st-century climate change
Assessing the drift of fish aggregating devices in the tropical Pacific Ocean
Assessment of Indonesian Throughflow transports from ocean reanalyses with mooring-based observations
Olivier Narinc, Thierry Penduff, Guillaume Maze, Stéphanie Leroux, and Jean-Marc Molines
Ocean Sci., 20, 1351–1365, https://doi.org/10.5194/os-20-1351-2024, https://doi.org/10.5194/os-20-1351-2024, 2024
Short summary
Short summary
This study examines how the ocean's chaotic variability and atmospheric fluctuations affect yearly changes in North Atlantic Subtropical Mode Water (STMW) properties, using an ensemble of realistic ocean simulations. Results show that while yearly changes in STMW properties are mostly paced by the atmosphere, a notable part of these changes are random in phase. This study also illustrates the value of ensemble simulations over single runs in understanding oceanic fluctuations and their causes.
Eike E. Köhn, Richard J. Greatbatch, Peter Brandt, and Martin Claus
Ocean Sci., 20, 1281–1290, https://doi.org/10.5194/os-20-1281-2024, https://doi.org/10.5194/os-20-1281-2024, 2024
Short summary
Short summary
The latitudinally alternating zonal jets are a ubiquitous feature of the ocean. We use a simple model to illustrate the potential role of these jets in the formation, maintenance, and multidecadal variability in the oxygen minimum zones, using the eastern tropical North Atlantic oxygen minimum zone as an example.
René M. van Westen and Henk A. Dijkstra
Ocean Sci., 20, 549–567, https://doi.org/10.5194/os-20-549-2024, https://doi.org/10.5194/os-20-549-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component in the global climate system. Observations of the present-day AMOC indicate that it may weaken or collapse under global warming, with profound disruptive effects on future climate. However, AMOC weakening is not correctly represented because an important feedback is underestimated due to biases in the Atlantic's freshwater budget. Here we address these biases in several state-of-the-art climate model simulations.
Yavor Kostov, Marie-José Messias, Herlé Mercier, David P. Marshall, and Helen L. Johnson
Ocean Sci., 20, 521–547, https://doi.org/10.5194/os-20-521-2024, https://doi.org/10.5194/os-20-521-2024, 2024
Short summary
Short summary
We examine factors affecting variability in the volume of Labrador Sea Water (LSW), a water mass that is important for the uptake and storage of heat and carbon in the Atlantic Ocean. We find that LSW accumulated in the Labrador Sea exhibits a lagged response to remote conditions: surface wind stress, heat flux, and freshwater flux anomalies, especially along the pathways of the North Atlantic Current branches. We use our results to reconstruct and attribute historical changes in LSW volume.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Cara Nissen, Ralph Timmermann, Mathias van Caspel, and Claudia Wekerle
Ocean Sci., 20, 85–101, https://doi.org/10.5194/os-20-85-2024, https://doi.org/10.5194/os-20-85-2024, 2024
Short summary
Short summary
The southeastern Weddell Sea is important for global ocean circulation due to the cross-shelf-break exchange of Dense Shelf Water and Warm Deep Water, but their exact circulation pathways remain elusive. Using Lagrangian model experiments in an eddy-permitting ocean model, we show how present circulation pathways and transit times of these water masses on the continental shelf are altered by 21st-century climate change, which has implications for local ice-shelf basal melt rates and ecosystems.
Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille
Ocean Sci., 20, 31–41, https://doi.org/10.5194/os-20-31-2024, https://doi.org/10.5194/os-20-31-2024, 2024
Short summary
Short summary
Tuna fisheries in the Pacific often use drifting fish aggregating devices (dFADs) to attract fish that are advected by subsurface flow through underwater appendages. Using a particle advection model, we find that virtual particles advected by surface flow are displaced farther than virtual dFADs. We find a relation between El Niño–Southern Oscillation and circular motion in some areas, influencing dFAD densities. This information helps us to understand processes that drive dFAD distribution.
Magdalena Fritz, Michael Mayer, Leopold Haimberger, and Susanna Winkelbauer
Ocean Sci., 19, 1203–1223, https://doi.org/10.5194/os-19-1203-2023, https://doi.org/10.5194/os-19-1203-2023, 2023
Short summary
Short summary
The interaction between the Indonesian Throughflow (ITF) and regional climate phenomena indicates the high relevance for monitoring the ITF. Observations remain temporally and spatially limited; hence near-real-time monitoring is only possible with reanalyses. We assess how well ocean reanalyses depict the intensity of the ITF via comparison to observations. The results show that reanalyses agree reasonably well with in situ observations; however, some aspects require higher-resolution products.
Cited articles
Anderson, D. L. and Killworth, P. D.: Spin-up of a stratified ocean, with topography, Deep-Sea Res., 24, 709–732, https://doi.org/10.1016/0146-6291(77)90495-7, 1977. a
Arumí-Planas, C., Dong, S., Perez, R., Harrison, M. J., Farneti, R., and Hernández-Guerra, A.: A Multi-Data Set Analysis of the Freshwater Transport by the Atlantic Meridional Overturning Circulation at Nominally 34.5° S, J. Geophys. Res.-Oceans, 129, e2023J020C558, https://doi.org/10.1029/2023JC020558, 2024. a, b
Beal, L. M., Ruijter, W. P. D., Biastoch, A., Zahn, R., Cronin, M., Hermes, J., Lutjeharms, J., Quartly, G., Tozuka, T., Baker-Yeboah, S., Bornman, T., Cipollini, P., Dijkstra, H., Hall, I., Park, W., Peeters, F., Penven, P., Ridderinkhof, H., and Zinke, J.: On the role of the Agulhas system in ocean circulation and climate, Nature, 472, 429–436, https://doi.org/10.1038/nature09983, 2011. a, b, c, d
Beal, L. M., Elipot, S., Houk, A., and Leber, G. M.: Capturing the transport variability of a western boundary jet: Results from the Agulhas Current time-series experiment (ACT), J. Phys. Oceanogr., 45, 1302–1324, https://doi.org/10.1175/JPO-D-14-0119.1, 2015. a, b, c
Beech, N., Rackow, T., Semmler, T., Danilov, S., Wang, Q., and Jung, T.: Long-term evolution of ocean eddy activity in a warming world, Nat. Clim. Change, 12, 910–917, https://doi.org/10.1038/s41558-022-01478-3, 2022. a, b
Biastoch, A., Böning, C. W., and Lutjeharms, J. R.: Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation, Nature, 456, 489–492, https://doi.org/10.1038/nature07426, 2008. a, b
Biastoch, A., Böning, C. W., Schwarzkopf, F. U., and Lutjeharms, J. R.: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies, Nature, 462, 495–498, https://doi.org/10.1038/nature08519, 2009. a, b
Biastoch, A., Durgadoo, J. V., Morrison, A. K., van Sebille, E., Weijer, W., and Griffies, S. M.: Atlantic multi-decadal oscillation covaries with Agulhas leakage, Nat. Commun., 6, 10082, https://doi.org/10.1038/ncomms10082, 2015. a
Boers, N.: Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation, Nat. Clim. Change, 11, 680–688, https://doi.org/10.1038/s41558-021-01097-4, 2021. a
Boulton, C. A., Allison, L. C., and Lenton, T. M.: Early warning signals of atlantic meridional overturning circulation collapse in a fully coupled climate model, Nat. Commun., 5, 5752, https://doi.org/10.1038/ncomms6752, 2014. a
Cai, W.: Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation, Geophys. Res. Lett., 33, 1–4, https://doi.org/10.1029/2005GL024911, 2006. a, b
Castruccio, F., Chang, P., Danabasoglu, G., Fu, D., Rosenbloom, N., Zhang, Q., King, T., and Liu, X.: MESACLIP: A 10-member ensemble of CESM HR historical (1920–2005) simulations, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], Boulder, CO, https://doi.org/10.5065/7N1X-K278, 2024a. a
Castruccio, F., Chang, P., Danabasoglu, G., Fu, D., Rosenbloom, N., Zhang, Q., King, T., and Liu, X.: MESACLIP: A 10-member ensemble of CESM HR RCP 8.5 (2006–2100) simulations, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], Boulder CO, https://doi.org/10.5065/PNCR-5S34, 2024b. a
Castruccio, F., Chang, P., Danabasoglu, G., Fu, D., Rosenbloom, N., Zhang, Q., King, T., and Liu, X.: MESACLIP: A 500-year CESM HR pre-industrial control simulation forced with perpetual 1850 conditions, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], Boulder CO, https://doi.org/10.5065/2K6J-SB78, 2025. a
Chang, P., Zhang, S., Danabasoglu, G., Yeager, S. G., Fu, H., Wang, H., Castruccio, F. S., Chen, Y., Edwards, J., Fu, D., Jia, Y., Laurindo, L. C., Liu, X., Rosenbloom, N., Small, R. J., Xu, G., Zeng, Y., Zhang, Q., Bacmeister, J., Bailey, D. A., Duan, X., DuVivier, A. K., Li, D., Li, Y., Neale, R., Stössel, A., Wang, L., Zhuang, Y., Baker, A., Bates, S., Dennis, J., Diao, X., Gan, B., Gopal, A., Jia, D., Jing, Z., Ma, X., Saravanan, R., Strand, W. G., Tao, J., Yang, H., Wang, X., Wei, Z., and Wu, L.: An unprecedented set of high-resolution earth system simulations for understanding multiscale interactions in climate variability and change, J. Adv. Model. Earth Sy., 12, e2020MS002298, https://doi.org/10.1029/2020MS002298, 2020. a, b, c, d, e
Cheng, W., Weijer, W., Kim, W. M., Danabasoglu, G., Yeager, S. G., Gent, P. R., Zhang, D., Chiang, J. C., and Zhang, J.: Can the salt-advection feedback be detected in internal variability of the atlantic meridional overturning circulation?, J. Climate, 31, 6649–6667, https://doi.org/10.1175/JCLI-D-17-0825.1, 2018. a
Cheng, Y., Putrasahan, D., Beal, L., and Kirtman, B.: Quantifying Agulhas Leakage in a high-resolution climate model, J. Climate, 29, 6881–6892, https://doi.org/10.1175/JCLI-D-15-0568.1, 2016. a
CMEMS: Atlantic Meridional Overturning Circulation AMOC timeseries at 26N from Reanalysis, https://doi.org/10.48670/moi-00232, 2023. a
Daher, H., Beal, L. M., and Schwarzkopf, F. U.: A new improved estimation of Agulhas Leakage using observations and simulations of Lagrangian floats and drifters, J. Geophys. Res.-Oceans, 125, 1–17, https://doi.org/10.1029/2019JC015753, 2020. a, b, c
Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., Peacock, S., and Yeager, S. G.: The CCSM4 ocean component, J. Climate, 25, 1361–1389, https://doi.org/10.1175/JCLI-D-11-00091.1, 2012. a
Delandmeter, P. and van Sebille, E.: The Parcels v2.0 Lagrangian framework: new field interpolation schemes, Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, 2019. a, b
Dencausse, G., Arhan, M., and Speich, S.: Routes of Agulhas rings in the southeastern Cape Basin, Deep-Sea Res. Pt. I, 57, 1406–1421, https://doi.org/10.1016/j.dsr.2010.07.008, 2010. a
Deshayes, J., Tréguier, A.-M., Barnier, B., Lecointre, A., Sommer, J. L., Molines, J.-M., Penduff, T., Bourdallé-Badie, R., Drillet, Y., Garric, G., Benshila, R., Madec, G., Biastoch, A., Böning, C. W., Scheinert, M., Coward, A. C., and Hirschi, J. J.: Oceanic hindcast simulations at high resolution suggest that the Atlantic MOC is bistable, Geophys. Res. Lett., 40, 3069–3073, https://doi.org/10.1002/grl.50534, 2013. a
DiNezio, P. N., Gramer, L. J., Johns, W. E., Meinen, C. S., and Baringer, M. O.: Observed interannual variability of the Florida current: Wind forcing and the North Atlantic Oscillation, J. Phys. Oceanogr., 39, 721–736, https://doi.org/10.1175/2008JPO4001.1, 2009. a, b
Durgadoo, J. V., Loveday, B. R., Reason, C. J. C., Penven, P., and Biastoch, A.: Agulhas Leakage predominantly responds to the southern hemisphere westerlies, J. Phys. Oceanogr., 43, 2113–2131, https://doi.org/10.1175/JPO-D-13-047.1, 2013. a, b
Durgadoo, J. V., Rühs, S., Biastoch, A., and Böning, C. W. B.: Indian Ocean sources of Agulhas leakage, J. Geophys. Res.-Oceans, 122, 3481–3499, https://doi.org/10.1002/2016JC012676, 2017. a, b
Gordon, A. L.: Interocean exchange of thermocline water, J. Geophys. Res., 91, 5037, https://doi.org/10.1029/JC091iC04p05037, 1986. a
Gordon, A. L., Bosley, K. T., and Aikman, F.: Tropical atlantic water within the Benguela upwelling system at 27° S, Deep-Sea Res. Pt. I, 42, 1–12, https://doi.org/10.1016/0967-0637(94)00032-N, 1995. a
Grosselindemann, H., Castruccio, F., Danabasoglu, G., and Biastoch, A.: Supplementary data to Grosselindemann et al. (2024): Long-term Variability and Trends of Agulhas Leakage and its Impacts on the Global Overturning, GEOMAR Helmholtz Centre for Ocean Research Kiel [data set], https://hdl.handle.net/20.500.12085/f10e76e5-0e1e-4dee-95b5-45d6275eb144, 2024. a
Holton, L., Deshayes, J., Backeberg, B. C., Loveday, B. R., Hermes, J. C., and Reason, C. J. C.: Spatio-temporal characteristics of Agulhas leakage: a model inter-comparison study, Clim. Dynam., 48, 2107–2121, https://doi.org/10.1007/s00382-016-3193-5, 2017. a, b, c
Hu, A., Meehl, G. A., Rosenbloom, N., Molina, M. J., and Strand, W. G.: The influence of variability in meridional overturning on global ocean circulation, J. Climate, 34, 7697–7716, https://doi.org/10.1175/JCLI-D-21-0119.1, 2021. a, b
Hunke, E. C. and Lipscomb, W. H.: CICE: the Los Alamos sea ice model user's manual, version 4, Los Alamos National Laboratory, Tech. Rep., https://www.researchgate.net/publication/237249046 (last access: 20 December 2024), 2008. a
Jüling, A., Zhang, X., Castellana, D., von der Heydt, A. S., and Dijkstra, H. A.: The Atlantic's freshwater budget under climate change in the Community Earth System Model with strongly eddying oceans, Ocean Sci., 17, 729–754, https://doi.org/10.5194/os-17-729-2021, 2021. a, b
Kehl, C., Nooteboom, P. D., Kaandorp, M. L., and van Sebille, E.: Efficiently simulating Lagrangian particles in large-scale ocean flows – Data structures and their impact on geophysical applications, Comput. Geosci., 175, 105322, https://doi.org/10.1016/j.cageo.2023.105322, 2023. a
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B., and Slater, A. G.: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model, J. Adv. Model. Earth Sy., 3, 1–27, https://doi.org/10.1029/2011ms000045, 2011. a
Le Bars, D., Dijkstra, H. A., and De Ruijter, W. P. M.: Impact of the Indonesian Throughflow on Agulhas leakage, Ocean Sci., 9, 773–785, https://doi.org/10.5194/os-9-773-2013, 2013. a
Li, J., Roughan, M., and Kerry, C.: Drivers of ocean warming in the western boundary currents of the Southern Hemisphere, Nat. Clim. Change, 12, 901–909, https://doi.org/10.1038/s41558-022-01473-8, 2022. a
Liu, W., Xie, S.-P., Liu, Z., and Zhu, J.: Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate, Science Advances, 3, e1601666, https://doi.org/10.1126/sciadv.1601666, 2017. a
Lohmann, J., Dijkstra, H. A., Jochum, M., Lucarini, V., and Ditlevsen, P. D.: Multistability and intermediate tipping of the Atlantic Ocean circulation, Science Advances, 10, 4253, https://doi.org/10.1126/sciadv.adi4253, 2024. a
Loveday, B. R., Durgadoo, J. V., Reason, C. J., Biastoch, A., and Penven, P.: Decoupling of the Agulhas leakage from the Agulhas Current, J. Phys. Oceanogr., 44, 1776–1797, https://doi.org/10.1175/JPO-D-13-093.1, 2014. a, b
Makarim, S., Sprintall, J., Liu, Z., Yu, W., Santoso, A., Yan, X. H., and Susanto, R. D.: Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades, Sci. Rep.-UK, 9, 1–13, https://doi.org/10.1038/s41598-019-43841-z, 2019. a
Meehl, G. A., Yang, D., Arblaster, J. M., Bates, S. C., Rosenbloom, N., Neale, R., Bacmeister, J., Lauritzen, P. H., Bryan, F., Small, J., Truesdale, J., Hannay, C., Shields, C., Strand, W. G., Dennis, J., and Danabasoglu, G.: Effects of model resolution, physics, and coupling on southern hemisphere storm tracks in CESM1.3, Geophys. Res. Lett., 46, 12408–12416, https://doi.org/10.1029/2019GL084057, 2019. a
Mertz, F., Rosmorduc, V., Maheu, C., and Faugere, Y.: For sea level SLA products, Copernicus Marine Service, 1, 1–51, 2017. a
Moat, B., Smeed, D., Rayner, D., Johns, W., Smith, R., Volkov, D., Baringer, M., and Collins, J.: Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2022 (v2022.1), https://doi.org/10.5285/04c79ece-3186-349a-e063-6c86abc0158c, 2023. a
Morrow, R., Ward, M. L., Hogg, A. M., and Pasquet, S.: Eddy response to Southern Ocean climate modes, J. Geophys. Res.-Oceans, 115, 1–12, https://doi.org/10.1029/2009JC005894, 2010. a
Neale, R. B., Gettelman, A., Park, S., Chen, C.-C., Lauritzen, P. H., Williamson, D. L., Conley, A. J., Kinnison, D., Marsh, D., Smith, A. K., Vitt, F. M., Garcia, R., Lamarque, J.-F., Mills, M. J., Tilmes, S., Morrison, H., Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Ghan, S. J., Liu, X., Rasch, P. J., and Taylor, M. A.: Description of the NCAR Community Atmosphere Model (CAM5.0), NCAR/TN-486, 2012. a
Olson, D. B. and Evans, R. H.: Rings of the Agulhas current, Deep-Sea Res., 33, 27–42, https://doi.org/10.1016/0198-0149(86)90106-8, 1986. a, b, c
Osychny, V. and Cornillon, P.: Properties of Rossby waves in the North Atlantic estimated from satellite data, J. Phys. Oceanogr., 34, 61–76, https://doi.org/10.1175/1520-0485(2004)034<0061:PORWIT>2.0.CO;2, 2004. a
Phillips, A. S., Deser, C., and Fasullo, J.: Evaluating modes of variability in climate models, Eos T. Am. Geophys. Un., 95, 453–455, https://doi.org/10.1002/2014EO490002, 2014. a
Rahmstorf, S.: On the freshwater forcing and transport of the Atlantic thermohaline circulation, Clim. Dynam., 12, 799–811, https://doi.org/10.1007/s003820050144, 1996. a, b, c, d
Roberts, M. J., Jackson, L. C., Roberts, C. D., Meccia, V., Docquier, D., Koenigk, T., Ortega, P., Moreno-Chamarro, E., Bellucci, A., Coward, A., Drijfhout, S., Exarchou, E., Gutjahr, O., Hewitt, H., Iovino, D., Lohmann, K., Putrasahan, D., Schiemann, R., Seddon, J., Terray, L., Xu, X., Zhang, Q., Chang, P., Yeager, S. G., Castruccio, F. S., Zhang, S., and Wu, L.: Sensitivity of the Atlantic Meridional Overturning Circulation to model resolution in CMIP6 HighResMIP simulations and implications for future changes, J. Adv. Model. Earth Sy., 12, 1–22, https://doi.org/10.1029/2019MS002014, 2020. a
Rühs, S., Schwarzkopf, F. U., Speich, S., and Biastoch, A.: Cold vs. warm water route – sources for the upper limb of the Atlantic Meridional Overturning Circulation revisited in a high-resolution ocean model, Ocean Sci., 15, 489–512, https://doi.org/10.5194/os-15-489-2019, 2019. a
Rühs, S., Schmidt, C., Schubert, R., Schulzki, T. G., Schwarzkopf, F. U., Bars, D. L., and Biastoch, A.: Robust estimates for the decadal evolution of Agulhas leakage from the 1960s to the 2010s, Communications Earth and Environment, 3, 318, https://doi.org/10.1038/s43247-022-00643-y, 2022. a, b, c, d, e, f, g
Sanchez-Franks, A., Frajka-Williams, E., Moat, B. I., and Smeed, D. A.: A dynamically based method for estimating the Atlantic meridional overturning circulation at 26° N from satellite altimetry, Ocean Sci., 17, 1321–1340, https://doi.org/10.5194/os-17-1321-2021, 2021. a
Schmid, C., Boebel, O., Zenk, W., Lutjeharms, J. R., Garzoli, S. L., Richardson, P. L., and Barron, C.: Early evolution of an Agulhas Ring, Deep-Sea Res. Pt. II, 50, 141–166, https://doi.org/10.1016/S0967-0645(02)00382-X, 2003. a
Schmidt, C., Schwarzkopf, F. U., Rühs, S., and Biastoch, A.: Characteristics and robustness of Agulhas leakage estimates: an inter-comparison study of Lagrangian methods, Ocean Sci., 17, 1067–1080, https://doi.org/10.5194/os-17-1067-2021, 2021. a, b, c, d
Schouten, M. W., Ruijter, W. P. D., van Leeuwen, P. J., and Lutjeharms, J. R.: Translation, decay and splitting of Agulhas rings in the southeastern Atlantic Ocean, J. Geophys. Res.-Oceans, 105, 21913–21925, https://doi.org/10.1029/1999jc000046, 2000. a
Schubert, R., Gula, J., and Biastoch, A.: Submesoscale flows impact Agulhas leakage in ocean simulations, Communications Earth and Environment, 2, 1–8, https://doi.org/10.1038/s43247-021-00271-y, 2021. a
Schulzki, T., Schwarzkopf, F. U., and Biastoch, A.: Atlantic meridional overturning response to increased Southern Ocean wind stress in a climate model with an eddy-rich ocean, J. Climate, 37, 5769–5792, https://doi.org/10.1175/jcli-d-23-0727.1, 2024. a, b, c
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S., Vertenstein, M., and Yeager, S.: The parallel ocean program (POP) reference manual ocean component of the community climate system model (CCSM) and community earth system model (CESM), LAUR-01853, 141, 1–140, https://www2.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf (last access: 20 December 2024), 2010. a
Speich, S., Blanke, B., and Cai, W.: Atlantic meridional overturning circulation and the Southern Hemisphere supergyre, Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2007GL031583, 2007. a
Speich, S., Rusciano, E., and Faure, V.: GOODHOPE/SAMOC, World, 29, 3, https://www.coriolis.eu.org/Science2/Atlantic-Ocean/GOODHOPE-SAMOC (last access: 20 December 2024), 2023. a
Stommel, H.: Thermohaline convection with two stable regimes of flow, Tellus, 13, 224–230, https://doi.org/10.3402/tellusa.v13i2.9491, 1961. a
Sverdrup, H. U.: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific, P. Natl. Acad. Sci. USA, 33, 318–326, https://doi.org/10.1073/pnas.33.11.318, 1947. a
Thompson, D. W. J. and Wallace, J. M.: Annular modes in the extratropical circulation. Part I: Month-to-month variability, J. Climate, 13, 1000–1016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2, 2000. a
Thompson, R. O. R. Y.: Coherence Significance Levels, J. Atmos. Sci., 36, 2020–2021, https://doi.org/10.1175/1520-0469(1979)036<2020:CSL>2.0.CO;2, 1979. a
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998. a
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Dias, F. B., Durack, P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W. G., Sommer, J. L., Marsland, S. J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do), Ocean Model., 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018. a
van Sebille, E., Biastoch, A., van Leeuwen, P. J., and Ruijter, W. P. D.: A weaker Agulhas current leads to more Agulhas leakage, Geophys. Res. Lett., 36, 10–13, https://doi.org/10.1029/2008GL036614, 2009. a, b
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C., MacGilchrist, G. A., Marsh, R., Adame, C. G. M., McAdam, R., Nencioli, F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.: Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., 121, 49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018. a
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011. a
van Westen, R. M. and Dijkstra, H. A.: Persistent climate model biases in the Atlantic Ocean's freshwater transport, Ocean Sci., 20, 549–567, https://doi.org/10.5194/os-20-549-2024, 2024. a, b, c, d
van Westen, R. M., Kliphuis, M., and Dijkstra, H. A.: Physics-based early warning signal shows that AMOC is on tipping course, Science Advances, 10, eadk1189, https://doi.org/10.1126/sciadv.adk1189, 2024. a
Webb, D. J., Spence, P., Holmes, R. M., and England, M. H.: Planetary-wave-induced strengthening of the AMOC forced by poleward intensified southern hemisphere westerly winds, J. Climate, 34, 7073–7090, https://doi.org/10.1175/JCLI-D-20-0858.1, 2021. a
Weijer, W., Cheng, W., Drijfhout, S. S., Fedorov, A. V., Hu, A., Jackson, L. C., Liu, W., McDonagh, E. L., Mecking, J. V., and Zhang, J.: Stability of the Atlantic Meridional Overturning Circulation: a review and synthesis, J. Geophys. Res.-Oceans, 124, 5336–5375, https://doi.org/10.1029/2019JC015083, 2019. a, b
Zhang, R., Sun, S., Chen, Z., Yang, H., and Wu, L.: On the decadal and multidecadal variability of the Agulhas Current, J. Phys. Oceanogr., 53, 1011–1024, https://doi.org/10.1175/JPO-D-22-0123.1, 2023. a
Short summary
This study investigates the Agulhas Leakage and examines its role in the global ocean circulation. It utilises a high-resolution Earth system model and a preindustrial climate to look at the response of the Agulhas Leakage to the wind field and the Atlantic Meridional Overturning Circulation (AMOC) and its evolution under climate change. The Agulhas Leakage could influence the stability of the AMOC, whose possible collapse would impact the climate in the Northern Hemisphere.
This study investigates the Agulhas Leakage and examines its role in the global ocean...