Articles | Volume 21, issue 2
https://doi.org/10.5194/os-21-643-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-643-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of a submarine canyon on the wind-driven downwelling circulation over the continental shelf
Pedro A. Figueroa
Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile
Gonzalo S. Saldías
CORRESPONDING AUTHOR
Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile
Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
Susan E. Allen
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
Related authors
Macarena Díaz-Astudillo, Manuel Castillo, Pedro A. Figueroa, Leonardo R. Castro, Ramiro Riquelme-Bugueño, Iván Pérez-Santos, Oscar Pizarro, and Gonzalo S. Saldías
EGUsphere, https://doi.org/10.5194/egusphere-2025-417, https://doi.org/10.5194/egusphere-2025-417, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Submarine canyons are known hotspots of marine productivity and biodiversity, but we don’t fully understand why. We studied a submarine canyon located in central Chile and found that it’s a highly dynamic environment in both space and time. We think that the alternating currents and the contrasting distribution of zooplankton within the canyon might interact to promote zooplankton retention. Our results help to explain why submarine canyons host such high zooplankton diversity and abundance.
Macarena Díaz-Astudillo, Manuel Castillo, Pedro A. Figueroa, Leonardo R. Castro, Ramiro Riquelme-Bugueño, Iván Pérez-Santos, Oscar Pizarro, and Gonzalo S. Saldías
EGUsphere, https://doi.org/10.5194/egusphere-2025-417, https://doi.org/10.5194/egusphere-2025-417, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Submarine canyons are known hotspots of marine productivity and biodiversity, but we don’t fully understand why. We studied a submarine canyon located in central Chile and found that it’s a highly dynamic environment in both space and time. We think that the alternating currents and the contrasting distribution of zooplankton within the canyon might interact to promote zooplankton retention. Our results help to explain why submarine canyons host such high zooplankton diversity and abundance.
Laura Bianucci, Jennifer M. Jackson, Susan E. Allen, Maxim V. Krassovski, Ian J. W. Giesbrecht, and Wendy C. Callendar
Ocean Sci., 20, 293–306, https://doi.org/10.5194/os-20-293-2024, https://doi.org/10.5194/os-20-293-2024, 2024
Short summary
Short summary
While the deeper waters in the coastal ocean show signs of climate-change-induced warming and deoxygenation, some fjords can keep cool and oxygenated waters in the subsurface. We use a model to investigate how these subsurface waters created during winter can linger all summer in Bute Inlet, Canada. We found two main mechanisms that make this fjord retentive: the typical slow subsurface circulation in such a deep, long fjord and the further speed reduction when the cold waters are present.
Julio Salcedo-Castro, Antonio Olita, Freddy Saavedra, Gonzalo S. Saldías, Raúl C. Cruz-Gómez, and Cristian D. De la Torre Martínez
Ocean Sci., 19, 1687–1703, https://doi.org/10.5194/os-19-1687-2023, https://doi.org/10.5194/os-19-1687-2023, 2023
Short summary
Short summary
Considering the relevance and impact of river discharges on the coastal environment, it is necessary to understand the processes associated with river plume dynamics in different regions and at different scales. Modeling studies focused on the eastern Pacific coast under the influence of the Humboldt Current are scarce. Here, we conduct for the first time an interannual modeling study of two river plumes off central Chile and discuss their characteristics.
Tereza Jarníková, Elise M. Olson, Susan E. Allen, Debby Ianson, and Karyn D. Suchy
Ocean Sci., 18, 1451–1475, https://doi.org/10.5194/os-18-1451-2022, https://doi.org/10.5194/os-18-1451-2022, 2022
Short summary
Short summary
Understanding drivers of phytoplankton biomass in dynamic coastal regions is key to predicting present and future ecosystem functioning. Using a clustering-based method, we objectively determined biophysical provinces in a complex estuarine sea. The Salish Sea contains three major distinct provinces where phytoplankton dynamics are controlled by diverse stratification regimes. Our method is simple to implement and broadly applicable for identifying structure in large model-derived datasets.
Ben Moore-Maley and Susan E. Allen
Ocean Sci., 18, 143–167, https://doi.org/10.5194/os-18-143-2022, https://doi.org/10.5194/os-18-143-2022, 2022
Short summary
Short summary
Inland seas are critical habitats for globally important fisheries, and the local food webs that support these fisheries are often limited by surface nutrient availability. In the Strait of Georgia, which supports several key northern Pacific fisheries, we identify wind-driven upwelling as a dominant source of summer surface nutrients using a high-resolution coupled ecosystem model. This newly identified underlying mechanism will inform interpretations of ecosystem variability in the region.
Benjamin L. Moore-Maley, Debby Ianson, and Susan E. Allen
Biogeosciences, 15, 3743–3760, https://doi.org/10.5194/bg-15-3743-2018, https://doi.org/10.5194/bg-15-3743-2018, 2018
Short summary
Short summary
Estuaries are vulnerable to ocean acidification, but present-day estuarine pH and aragonite saturation state variability are larger than in the open ocean. Using a numerical model of a large estuary and data from its primary river, we find that changes in river alkalinity relative to river carbon may determine a small but significant portion of this variability, while the majority is controlled by photosynthesis/respiration. Future watershed changes may shift the river alkalinity–carbon balance.
J. M. Spurgin and S. E. Allen
Ocean Sci., 10, 799–819, https://doi.org/10.5194/os-10-799-2014, https://doi.org/10.5194/os-10-799-2014, 2014
Related subject area
Approach: Numerical Models | Properties and processes: Coastal and near-shore processes
Alongshore sediment transport analysis for a semi-enclosed basin: a case study of the Gulf of Riga, the Baltic Sea
Anthropogenic pressures driving the salinity intrusion in the Guadalquivir estuary: insights from 1D numerical simulations
Application of wave–current coupled sediment transport models with variable grain properties for coastal morphodynamics: a case study of the Changhua River, Hainan
Dynamics of salt intrusion in complex estuarine networks: an idealised model applied to the Rhine–Meuse Delta
Influence of river runoff and precipitation on the seasonal and interannual variability of sea surface salinity in the eastern North Tropical Atlantic
Coupling ocean currents and waves for seamless cross-scale modeling during Medicane Ianos
A three-quantile bias correction with spatial transfer for the correction of simulated European river runoff to force ocean models
River discharge impacts coastal Southeastern Tropical Atlantic sea surface temperature and circulation: a model-based analysis
Flow patterns, hotspots and connectivity of land-derived substances at the sea surface of Curaçao in the Southern Caribbean
High-resolution numerical modelling of seasonal volume, freshwater, and heat transport along the Indian coast
Mechanisms and intraseasonal variability in the South Vietnam Upwelling, South China Sea: the role of circulation, tides, and rivers
Exploring water accumulation dynamics in the Pearl River estuary from a Lagrangian perspective
Exploring the tidal response to bathymetry evolution and present-day sea level rise in a channel–shoal environment
Wave-resolving Voronoi model of Rouse number for sediment entrainment equilibrium
Influence of stratification and wind forcing on the dynamics of Lagrangian residual velocity in a periodically stratified estuary
Fjord circulation permits a persistent subsurface water mass in a long, deep mid-latitude inlet
Salt intrusion dynamics in a well-mixed sub-estuary connected to a partially to well-mixed main estuary
Transport dynamics in a complex coastal archipelago
Modeling the interannual variability in Maipo and Rapel river plumes off central Chile
Short-term prediction of the significant wave height and average wave period based on the variational mode decomposition–temporal convolutional network–long short-term memory (VMD–TCN–LSTM) algorithm
Tarmo Soomere, Mikołaj Zbigniew Jankowski, Maris Eelsalu, Kevin Ellis Parnell, and Maija Viška
Ocean Sci., 21, 619–641, https://doi.org/10.5194/os-21-619-2025, https://doi.org/10.5194/os-21-619-2025, 2025
Short summary
Short summary
Seemingly interconnected beaches are often separated by human-made obstacles and natural divergence areas of sediment flux. We decompose the sedimentary shores of the Gulf of Riga into five naturally almost isolated compartments based on the analysis of wave-driven sediment flux. The western, southern, and eastern shores have quite different and fragmented sediment transport regimes. The transport rates along different shore segments show extensive interannual variations but no explicit trends.
Sara Sirviente, Juan J. Gomiz-Pascual, Marina Bolado-Penagos, Sabine Sauvage, José M. Sánchez-Pérez, and Miguel Bruno
Ocean Sci., 21, 515–535, https://doi.org/10.5194/os-21-515-2025, https://doi.org/10.5194/os-21-515-2025, 2025
Short summary
Short summary
The present study utilizes a 1D hydrodynamic model to examine the impact of anthropogenic pressures on saline intrusion in the Guadalquivir estuary. Water extraction by human activities has led to elevated salinity levels throughout the estuary, thereby disrupting its natural state. A more profound understanding of these effects is essential for the protection of the estuarine ecosystems.
Yuxi Wu, Enjin Zhao, Xiwen Li, and Shiyou Zhang
Ocean Sci., 21, 473–495, https://doi.org/10.5194/os-21-473-2025, https://doi.org/10.5194/os-21-473-2025, 2025
Short summary
Short summary
A comprehensive sand transfer model is proposed to study sediment dynamics in the lower reaches of the Changhua River on the island of Hainan. It captures the complex relationship between wave action, ocean currents, and sediment transport. Validated on the basis of on-site measurements, the model reveals significant sediment deposits which are significantly affected by coastal ocean currents and geological structures.
Bouke Biemond, Wouter M. Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra
Ocean Sci., 21, 261–281, https://doi.org/10.5194/os-21-261-2025, https://doi.org/10.5194/os-21-261-2025, 2025
Short summary
Short summary
We study salinity in estuaries consisting of a network of channels. To this end, we develop a model that computes the flow and salinity in such systems. We use the model to quantify the mechanisms by which salt is transported into estuarine networks, the response to changes in river discharge, and the impact of depth changes. Results show that when changing the depth of channels, the effects on salt intrusion into other channels in the network can be larger than the effect on the channel itself.
Clovis Thouvenin-Masson, Jacqueline Boutin, Vincent Échevin, Alban Lazar, and Jean-Luc Vergely
Ocean Sci., 20, 1547–1566, https://doi.org/10.5194/os-20-1547-2024, https://doi.org/10.5194/os-20-1547-2024, 2024
Short summary
Short summary
We focus on understanding the impact of river runoff and precipitation on sea surface salinity (SSS) in the eastern North Tropical Atlantic (e-NTA) region off northwestern Africa. By analyzing regional simulations and observational data, we find that river flows significantly influence SSS variability, particularly after the rainy season. Our findings underscore that a main source of uncertainty representing SSS variability in this region is from river runoff estimates.
Salvatore Causio, Seimur Shirinov, Ivan Federico, Giovanni De Cillis, Emanuela Clementi, Lorenzo Mentaschi, and Giovanni Coppini
EGUsphere, https://doi.org/10.5194/egusphere-2024-3517, https://doi.org/10.5194/egusphere-2024-3517, 2024
Short summary
Short summary
This study examines how waves and ocean currents interact during severe weather, focusing on Medicane Ianos, one of the strongest storms in the Mediterranean. Using advanced modeling, we created a unique system to simulate these interactions, capturing effects like changes in water levels and wind impact on waves. We validated our approach with ideal tests and real data from the storm.
Stefan Hagemann, Thao Thi Nguyen, and Ha Thi Minh Ho-Hagemann
Ocean Sci., 20, 1457–1478, https://doi.org/10.5194/os-20-1457-2024, https://doi.org/10.5194/os-20-1457-2024, 2024
Short summary
Short summary
We have developed a methodology for the bias correction of simulated river runoff to force ocean models in which low, medium, and high discharges are corrected once separated at the coast. We show that the bias correction generally leads to an improved representation of river runoff in Europe. The methodology is suitable for model regions with a sufficiently high coverage of discharge observations, and it can be applied to river runoff based on climate hindcasts or climate change simulations.
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3320, https://doi.org/10.5194/egusphere-2024-3320, 2024
Short summary
Short summary
The West African coastal region sustains highly productive fisheries and marine ecosystems influenced by sea surface temperature. We use oceanic models to show that the freshwater input from land to ocean strengthens a surface northward (southward) coastal current north (south) of the Congo river mouth, promoting a transfer of cooler (warmer) waters to north (south) of the Congo discharge location. We highlight the significant impact of river discharge on ocean temperatures and circulation.
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3112, https://doi.org/10.5194/egusphere-2024-3112, 2024
Short summary
Short summary
This study explores ocean currents around Curaçao and how land-derived substances like pollutants and nutrients travel in the water. Most substances move northwest, following the main current, but at times, ocean eddies spread them in other directions. This movement may link polluted areas to pristine coral reefs, impacting marine ecosystems. Understanding these patterns helps inform conservation and pollution management around Curaçao.
Kunal Madkaiker, Ambarukhana D. Rao, and Sudheer Joseph
Ocean Sci., 20, 1167–1185, https://doi.org/10.5194/os-20-1167-2024, https://doi.org/10.5194/os-20-1167-2024, 2024
Short summary
Short summary
Using a high-resolution model, we estimated the volume, freshwater, and heat transports along Indian coasts. Affected by coastal currents, transport along the eastern coast is highly seasonal, and the western coast is impacted by intraseasonal oscillations. Coastal currents and equatorial forcing determine the relation between NHT and net heat flux in dissipating heat in coastal waters. The north Indian Ocean functions as a heat source or sink based on seasonal flow of meridional heat transport.
Marine Herrmann, Thai To Duy, and Patrick Marsaleix
Ocean Sci., 20, 1013–1033, https://doi.org/10.5194/os-20-1013-2024, https://doi.org/10.5194/os-20-1013-2024, 2024
Short summary
Short summary
In summer, deep, cold waters rise to the surface along and off the Vietnamese coast. This upwelling of water lifts nutrients, inducing biological activity that is important for fishery resources. Strong tides occur on the shelf off the Mekong Delta. By increasing the mixing of ocean waters and modifying currents, they are a major factor in the development of upwelling on the shelf, accounting for ~75 % of its average summer intensity.
Mingyu Li, Alessandro Stocchino, Zhongya Cai, and Tingting Zu
Ocean Sci., 20, 931–944, https://doi.org/10.5194/os-20-931-2024, https://doi.org/10.5194/os-20-931-2024, 2024
Short summary
Short summary
In this study, we explored how water accumulates in a coastal estuary, a key factor affecting the estuary's environmental health and ecosystem. We revealed significant bottom accumulations influenced by plume fronts and velocity convergence, with notable seasonal variability. By analyzing trajectories, we identified subregions with distinct accumulation patterns and examined their interconnections, highlighting the substantial impact of tides and river discharge on these dynamics.
Robert Lepper, Leon Jänicke, Ingo Hache, Christian Jordan, and Frank Kösters
Ocean Sci., 20, 711–723, https://doi.org/10.5194/os-20-711-2024, https://doi.org/10.5194/os-20-711-2024, 2024
Short summary
Short summary
Most coastal environments are sheltered by tidal flats and salt marshes. These habitats are threatened from drowning under sea level rise. Contrary to expectation, recent analyses in the Wadden Sea showed that tidal flats can accrete faster than sea level rise. We found that this phenomenon was facilitated by the nonlinear link between tidal characteristics and coastal bathymetry evolution. This link caused local and regional tidal adaptation with sharp increase–decrease edges at the coast.
Johannes Lawen
EGUsphere, https://doi.org/https://doi.org/10.48550/arXiv.2404.10878, https://doi.org/https://doi.org/10.48550/arXiv.2404.10878, 2024
Short summary
Short summary
A new Voronoi mesh-borne coastal ocean model has been developed. Recent publications encouraged the development of models that work with different mesh types. Voronoi meshes exhibit less acute polygon angles and less numerical diffusion. The developed model is sufficiently generalized to work with any mesh type (Delaunay triangles, Voronoi, structured, mixed). The model is suitable for wave-resolving simulations for coastal developments to resolve intricate changes in erosion and deposition.
Fangjing Deng, Feiyu Jia, Rui Shi, Shuwen Zhang, Qiang Lian, Xiaolong Zong, and Zhaoyun Chen
Ocean Sci., 20, 499–519, https://doi.org/10.5194/os-20-499-2024, https://doi.org/10.5194/os-20-499-2024, 2024
Short summary
Short summary
Southwesterly winds impact cross-estuary flows by amplifying the eddy viscosity component during smaller tides. Moreover, they modify along-estuary gravitational circulation by diminishing both the barotropic and baroclinic components. Stratification results in contrasting sheared flows, distinguished by different dominant components compared to destratified conditions. Additionally, the eddy viscosity component is governed by various subcomponents in diverse stratified waters.
Laura Bianucci, Jennifer M. Jackson, Susan E. Allen, Maxim V. Krassovski, Ian J. W. Giesbrecht, and Wendy C. Callendar
Ocean Sci., 20, 293–306, https://doi.org/10.5194/os-20-293-2024, https://doi.org/10.5194/os-20-293-2024, 2024
Short summary
Short summary
While the deeper waters in the coastal ocean show signs of climate-change-induced warming and deoxygenation, some fjords can keep cool and oxygenated waters in the subsurface. We use a model to investigate how these subsurface waters created during winter can linger all summer in Bute Inlet, Canada. We found two main mechanisms that make this fjord retentive: the typical slow subsurface circulation in such a deep, long fjord and the further speed reduction when the cold waters are present.
Zhongyuan Lin, Guang Zhang, Huazhi Zou, and Wenping Gong
Ocean Sci., 20, 181–199, https://doi.org/10.5194/os-20-181-2024, https://doi.org/10.5194/os-20-181-2024, 2024
Short summary
Short summary
From 2021 to 2022, a particular sub-estuary (East River estuary) suffered greatly from an enhanced salt intrusion. We conducted observation analysis, numerical simulations, and analytical solution to unravel the underlying mechanisms. This study is of help in the investigation of salt dynamics in sub-estuaries connected to main estuaries and of implications for mitigating salt intrusion problems in the regions.
Elina Miettunen, Laura Tuomi, Antti Westerlund, Hedi Kanarik, and Kai Myrberg
Ocean Sci., 20, 69–83, https://doi.org/10.5194/os-20-69-2024, https://doi.org/10.5194/os-20-69-2024, 2024
Short summary
Short summary
We studied circulation and transports in the Archipelago Sea (in the Baltic Sea) with a high-resolution hydrodynamic model. Transport dynamics show different variabilities in the north and south, so no single transect can represent transport through the whole area in all cases. The net transport in the surface layer is southward and follows the alignment of the deeper channels. In the lower layer, the net transport is southward in the northern part of the area and northward in the southern part.
Julio Salcedo-Castro, Antonio Olita, Freddy Saavedra, Gonzalo S. Saldías, Raúl C. Cruz-Gómez, and Cristian D. De la Torre Martínez
Ocean Sci., 19, 1687–1703, https://doi.org/10.5194/os-19-1687-2023, https://doi.org/10.5194/os-19-1687-2023, 2023
Short summary
Short summary
Considering the relevance and impact of river discharges on the coastal environment, it is necessary to understand the processes associated with river plume dynamics in different regions and at different scales. Modeling studies focused on the eastern Pacific coast under the influence of the Humboldt Current are scarce. Here, we conduct for the first time an interannual modeling study of two river plumes off central Chile and discuss their characteristics.
Qiyan Ji, Lei Han, Lifang Jiang, Yuting Zhang, Minghong Xie, and Yu Liu
Ocean Sci., 19, 1561–1578, https://doi.org/10.5194/os-19-1561-2023, https://doi.org/10.5194/os-19-1561-2023, 2023
Short summary
Short summary
Accurate wave forecasts are essential to marine engineering safety. The research designs a model with combined signal decomposition and multiple neural network algorithms to predict wave parameters. The hybrid wave prediction model has good robustness and generalization ability. The contribution of the various algorithms to the model prediction skill was analyzed by the ablation experiments. This work provides a neoteric view of marine element forecasting based on artificial intelligence.
Cited articles
Allen, S., Dinniman, M., Klinck, J., Gorby, D., Hewett, A., and Hickey, B.: On vertical advection truncation errors in terrain-following numerical models: Comparison to a laboratory model for upwelling over submarine canyons, J. Geophys. Res., 108, 3003, https://doi.org/10.1029/2001JC000978, 2003. a
Allen, S. E. and Durrieu de Madron, X.: A review of the role of submarine canyons in deep-ocean exchange with the shelf, Ocean Sci., 5, 607–620, https://doi.org/10.5194/os-5-607-2009, 2009. a
Allen, S. E. and Hickey, B. M.: Dynamics of advection-driven upwelling over a shelf break submarine canyon, J. Geophys. Res.-Oceans, 115, C08018, https://doi.org/10.1029/2009JC005731, 2010. a
Austin, J. A. and Barth, J. A.: Drifter behavior on the Oregon–Washington shelf during downwelling-favorable winds, J. Phys. Oceanogr., 32, 3132–3144, 2002. a
Austin, J. A. and Lentz, S. J.: The inner shelf response to wind-driven upwelling and downwelling, J. Phys. Oceanogr., 32, 2171–2193, 2002. a
Brink, K.: Continental shelf baroclinic instability. Part I: Relaxation from upwelling or downwelling, J. Phys. Oceanogr., 46, 551–568, 2016. a
Brink, K.: The effect of alongshore wind stress on a buoyancy current’s stability, Cont. Shelf Res., 272, 105149, https://doi.org/10.1016/j.csr.2023.105149, 2024. a
Brun, L., Pairaud, I., Jacinto, R. S., Garreau, P., and Dennielou, B.: Strong hydrodynamic processes observed in the Mediterranean Cassidaigne submarine canyon, Front. Mar. Sci., 10, 1078831, https://doi.org/10.3389/fmars.2023.1078831, 2023. a
Castelao, R. M. and Barth, J. A.: The relative importance of wind strength and along-shelf bathymetric variations on the separation of a coastal upwelling jet, J. Phys. Oceanogr., 36, 412–425, 2006. a
Ceramicola, S., Amaro, T., Amblas, D., Cagatay, N., Carniel, S., Chiocci, F. L., and Briand, F.: Submarine canyon dynamics–executive summary, in: CIESM monograph 47 submarine canyon dynamics in the Mediterranean and tributary seas – An integrated geological, oceanographic and biological perspective, edited by: Briand, F., CIESM Publisher, p. 232, https://ciesm.org/online/monographs/full/CIESM_Workshop_Monograph_47.pdf (last access: 12 March 2025), 2015. a
Chapman, D. C.: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model, J. Phys. Oceanogr., 15, 1060–1075, 1985. a
Clavel-Henry, M., Solé, J., Ahumada-Sempoal, M.-Á., Bahamon, N., Briton, F., Rotllant, G., and Company, J. B.: Influence of the summer deep-sea circulations on passive drifts among the submarine canyons in the northwestern Mediterranean Sea, Ocean Sci., 15, 1745–1759, https://doi.org/10.5194/os-15-1745-2019, 2019. a, b, c
Dawe, J. T. and Allen, S. E.: Solution convergence of flow over steep topography in a numerical model of canyon upwelling, J. Geophys. Res.-Oceans, 115, C05008, https://doi.org/10.1029/2009JC005597, 2010. a, b, c
Delandmeter, P. and van Sebille, E.: The Parcels v2.0 Lagrangian framework: new field interpolation schemes, Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, 2019. a
De Leo, F. C., Smith, C. R., Rowden, A. A., Bowden, D. A., and Clark, M. R.: Submarine canyons: hotspots of benthic biomass and productivity in the deep sea, P. Roy. Soc. B, 277, 2783–2792, 2010. a
Dinniman, M. S. and Klinck, J. M.: The influence of open versus periodic alongshore boundaries on circulation near submarine canyons, J. Atmos. Ocean. Tech., 19, 1722–1737, 2002. a
Durski, S. M. and Allen, J.: Finite-amplitude evolution of instabilities associated with the coastal upwelling front, J. Phys. Oceanogr., 35, 1606–1628, 2005. a
Flather, R.: A tidal model of the northwest European continental shelf, Mem. Soc. Roy. Sci. Liege, 10, 141–164, 1976. a
Flexas, M. d. M., Boyer, D., Espino, M., Puigdefàbregas, J., Rubio, A., and Company, J.: Circulation over a submarine canyon in the NW Mediterranean, J. Geophys. Res.-Oceans, 113, C12002, https://doi.org/10.1029/2006JC003998, 2008. a, b, c
Gan, J. and Allen, J. S.: On open boundary conditions for a limited-area coastal model off Oregon. Part 1: Response to idealized wind forcing, Ocean Model., 8, 115–133, 2005. a
Hickey, B. M.: The response of a steep-sided, narrow canyon to time-variable wind forcing, J. Phys. Oceanogr., 27, 697–726, 1997. a
Kämpf, J.: Transient wind-driven upwelling in a submarine canyon: A process-oriented modeling study, J. Geophys. Res.-Oceans, 111, C11011, https://doi.org/10.1029/2006JC003497, 2006. a, b
Kämpf, J.: On the interaction of time-variable flows with a shelfbreak canyon, J. Phys. Oceanogr., 39, 248–260, 2009. a
Kämpf, J.: Lee effects of localized upwelling in a shelf-break canyon, Cont. Shelf Res., 42, 78–88, 2012. a
Kämpf, J.: On the dynamics of canyon–flow interactions, J. Mar. Sci. Eng., 6, 129, https://doi.org/10.3390/jmse6040129, 2018. a
Li, X., Zhang, W., and Rong, Z.: The Interaction Between Warm-Core Rings and Submarine Canyons and Its Influence on the Onshore Transport of Offshore Waters, J. Geophys. Res.-Oceans, 126, e2021JC017989, https://doi.org/10.1029/2021JC017989, 2021. a
Lin, P., Pickart, R. S., Fissel, D. B., Borg, K., Melling, H., and Wiese, F. K.: On the nature of wind-forced upwelling and downwelling in Mackenzie Canyon, Beaufort Sea, Prog. Oceanogr., 198, 102674, https://doi.org/10.1016/j.pocean.2021.102674, 2021. a
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875, 1982. a
Moors-Murphy, H. B.: Submarine canyons as important habitat for cetaceans, with special reference to the Gully: a review, Deep-Sea Res. Pt. II, 104, 6–19, 2014. a
Mordy, C. W., Stabeno, P. J., Kachel, N. B., Kachel, D., Ladd, C., Zimmermann, M., Hermann, A. J., Coyle, K. O., and Doyle, M. J.: Patterns of flow in the canyons of the northern Gulf of Alaska, Deep-Sea Res. Part II, 165, 203–220, 2019. a
Orlanski, I.: A simple boundary condition for unbounded hyperbolic flows, J. Comput. Phys., 21, 251–269, 1976. a
Ramos-Musalem, K. and Allen, S. E.: The impact of locally enhanced vertical diffusivity on the cross-shelf transport of tracers induced by a submarine canyon, J. Phys. Oceanogr., 49, 561–584, 2019. a
Rennie, S. J., Pattiaratchi, C. B., and McCauley, R. D.: Numerical simulation of the circulation within the Perth Submarine Canyon, Western Australia, Cont. Shelf Res., 29, 2020–2036, 2009. a
Santora, J. A., Zeno, R., Dorman, J. G., and Sydeman, W. J.: Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem, Sci. Rep., 8, 7579, https://doi.org/10.1038/s41598-018-25742-9, 2018. a
Shchepetkin, A. F. and McWilliams, J. C.: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate, J. Geophys. Res., 108, 3090, https://doi.org/10.1029/2001JC001047, 2003. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model., 9, 347–404, 2005. a
Shchepetkin, A. F. and McWilliams, J. C.: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624, J. Comput. Phys., 228, 8985–9000, 2009. a
Skliris, N., Goffart, A., Hecq, J.-H., and Djenidi, S.: Shelf-slope exchanges associated with a steep submarine canyon off Calvi (Corsica, NW Mediterranean Sea): A modeling approach, J. Geophys. Res.-Oceans, 106, 19883–19901, 2001. a
Skliris, N., Hecq, J.-H., and Djenidi, S.: Water fluxes at an ocean margin in the presence of a submarine canyon, J. Mar. Syst., 32, 239–251, 2002. a
Sobarzo, M., Saldías, G. S., Tapia, F. J., Bravo, L., Moffat, C., and Largier, J. L.: On subsurface cooling associated with the Biobio River Canyon (Chile), J. Geophys. Res.-Oceans, 121, 4568–4584, 2016. a
Song, Y. and Haidvogel, D.: A semi-implicit ocean circulation model using a generalized topography-following coordinate system, J. Comput. Phys., 115, 228–244, 1994. a
Vergara, O. A., Figueroa, P. A., Salas, C., Vásquez, S. I., Muñoz, R., and Saldías, G. S.: The influence of the Biobio Canyon on the circulation and coastal upwelling/downwelling off central Chile, Cont. Shelf Res., 282, 105335, https://doi.org/10.1016/j.csr.2024.105335, 2024. a
Wang, H., Gong, D., Friedrichs, M. A., Harris, C. K., Miles, T., Yu, H.-C., and Zhang, Y.: A Cycle of Wind-Driven Canyon Upwelling and Downwelling at Wilmington Canyon and the Evolution of Canyon-Upwelled Dense Water on the MAB Shelf, Front. Mar. Sci., 9, 866075, https://doi.org/10.3389/fmars.2022.866075, 2022. a, b, c
Whitney, M. M. and Allen, J.: Coastal wind-driven circulation in the vicinity of a bank. Part I: Modeling flow over idealized symmetric banks, J. Phys. Oceanogr., 39, 1273–1297, 2009. a
Zhang, T. and Yankovsky, A. E.: On the nature of cross-isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves, J. Geophys. Res.-Oceans, 121, 3058–3074, 2016. a
Short summary
Submarine canyons are topographic features found along the continental slope worldwide. Here we use numerical simulations to study how a submarine canyon influences the circulation near the coast when winds moving poleward influence the region. Our results show that submarine canyons modify the circulation near the coast, causing strong velocities perpendicular to the coast. These changes can trap particles inside the canyon, an important mechanism to explain its role as a biological hotspot.
Submarine canyons are topographic features found along the continental slope worldwide. Here we...