Articles | Volume 21, issue 1
https://doi.org/10.5194/os-21-37-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-37-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new vision of the Adriatic Dense Water future under extreme warming
Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
Iva Tojčić
Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
Faculty of Science and Mathematics of Split, Ruđera Boškovića 33, 21000 Split, Croatia
Petra Pranić
Department of Physical Oceanography, Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia
Related authors
Cléa Denamiel
Ocean Sci., 21, 1909–1931, https://doi.org/10.5194/os-21-1909-2025, https://doi.org/10.5194/os-21-1909-2025, 2025
Short summary
Short summary
This study advances our understanding of Adriatic marine heatwaves (MHWs) under historical and far-future extreme warming scenarios, emphasizing the critical role of the Po River plume and Adriatic natural variability in shaping MHW dynamics. While the pseudo-global-warming (PGW) approach used in the study provides valuable insights, future research should adopt more comprehensive modelling frameworks to better capture the complexities of future climate change and its impacts on MHWs.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranić, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibić, and Maria Letizia Vitelletti
Ocean Sci., 21, 1003–1031, https://doi.org/10.5194/os-21-1003-2025, https://doi.org/10.5194/os-21-1003-2025, 2025
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (i.e. use of multiple simulations) allowing us to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a basis for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Cléa Denamiel
Ocean Sci., 21, 1909–1931, https://doi.org/10.5194/os-21-1909-2025, https://doi.org/10.5194/os-21-1909-2025, 2025
Short summary
Short summary
This study advances our understanding of Adriatic marine heatwaves (MHWs) under historical and far-future extreme warming scenarios, emphasizing the critical role of the Po River plume and Adriatic natural variability in shaping MHW dynamics. While the pseudo-global-warming (PGW) approach used in the study provides valuable insights, future research should adopt more comprehensive modelling frameworks to better capture the complexities of future climate change and its impacts on MHWs.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranić, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibić, and Maria Letizia Vitelletti
Ocean Sci., 21, 1003–1031, https://doi.org/10.5194/os-21-1003-2025, https://doi.org/10.5194/os-21-1003-2025, 2025
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (i.e. use of multiple simulations) allowing us to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a basis for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Cited articles
Akpinar, A., Yilmaz, E., Fach, B., and Salihoglu, B.: Physical oceanography of the Eastern Mediterranean Sea, in: The Turkish Part of the Mediterranean Sea, edited by: Turan, K., Salihoglu, B., Ozbek, E. O., and Ozturk, B., Turkish Marine Research Foundation, Turkey, 1–14, https://hdl.handle.net/11511/84668 (last access: 9 January 2025) 2016.
Androulidakis, Y. S., Kombiadou, K. D., Makris, C. V., Baltikas, V. N., and Krestenitis, Y. N.: Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions, Dynam. Atmos. Oceans, 71, 56–82, https://doi.org/10.1016/j.dynatmoce.2015.06.001, 2015.
Alpers, W., Ivanov, A., and Horstmann, J.: Observations of bora events over the Adriatic Sea and Black Sea by spaceborne synthetic aperture radar, Mon. Weather Rev., 137, 1150–1161, https://doi.org/10.1175/2008MWR2563.1, 2009.
Ballarin, L. and Frizzo, A.: Effects of environmental factors, including dense water flow, on mussel growth in the Adriatic Sea, Aquat. Ecol., 38, 541–549, 2004.
Belušić, D. and Klaić, Z. B.: Estimation of bora wind gusts using a limited area model, Tellus, 56, 296–307, https://doi.org/10.1111/j.1600-0870.2004.00068.x, 2004.
Belušić Vozila, A., Güttler, I., Ahrens, B., Obermann-Hellhund, A., and Telišman Prtenjak, M.: Wind over the Adriatic region in CORDEX climate change scenarios, J. Geophys. Res.-Atmos., 124, 110–130, https://doi.org/10.1029/2018JD028552, 2019.
Benetazzo, A., Fedele, F., Carniel, S., Ricchi, A., Bucchignani, E., and Sclavo, M.: Wave climate of the Adriatic Sea: a future scenario simulation, Nat. Hazard Earth Syst., 12, 2065–2076, https://doi.org/10.5194/nhess-12-2065-2012, 2012.
Beuvier, J., Sevault, F., Herrmann, M., Kontoyiannis, H., Ludwig, W., Rixen, M., Stanev, E., Béranger, K., and Somot, S.: Modeling the Mediterranean Sea interannual variability during 1961–2000: Focus on the Eastern Mediterranean Transient, J. Geophys. Res.-Atmos., 115, C08017, https://doi.org/10.1029/2009JC005950, 2010.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Bonaldo, D., Bucchignani, E., Ricchi, A., and Carniel, S.: Wind storminess in the Adriatic Sea in a climate change scenario, Acta Adriat., 58, 195–208, 2017.
Boudouresque, C. F., Bernard, G., Pergent, G., Shili, A., and Verlaque, M.: Environmental factors affecting Posidonia oceanica in the Adriatic Sea, including the influence of water currents, Aquat. Bot., 90, 155–161, 2009.
Bowman, A. and Azzalini, A.: Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations, Oxford Univ. Press, ISBN 978-0198523963, 1997.
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., Coale, K. H., Cullen, J. J., de Baar, H. J. W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R. B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S., and Watson, A. S.: Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions, Science, 315, 612–617, 2007.
Broecker, W. S.: The great ocean conveyor, Oceanography, 4, 79–89, 1991.
Brogli, R., Heim, C., Mensch, J., Sørland, S. L., and Schär, C.: The pseudo-global-warming (PGW) approach: methodology, software package PGW4ERA5 v1.1, validation, and sensitivity analyses, Geosci. Model Dev., 16, 907–926, https://doi.org/10.5194/gmd-16-907-2023, 2023.
Cardin, V., Wirth, A., Khosravi, M., and Gačić, M.: South Adriatic recipes: Estimating the vertical mixing in the deep pit, Front. Mar. Sci., 7, 565982, https://doi.org/10.3389/fmars.2020.565982, 2020.
Cushman-Roisin, B., Gačić, M., and Poulain, P. M.: Physical oceanography of the Adriatic Sea: Past, present and future, Kluwer Academic Publishers, https://doi.org/10.1007/978-94-015-9819-4, 2001.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N, Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Denamiel, C.: AdriSC Climate Model: Evaluation Run, OSF [code], https://doi.org/10.17605/OSF.IO/ZB3CM, 2021.
Denamiel, C.: A New Vision of the Adriatic Dense Water Future under Extreme Warming, OSF [data set], https://doi.org/10.17605/OSF.IO/CXTFB, 2024a.
Denamiel, C.: Animation of the Adriatic dense- and deep- water under far-future extreme warming, OSF [video], https://doi.org/10.17605/OSF.IO/8EM3F, 2024b
Denamiel, C., Šepić, J., Ivanković, D., and Vilibić, I.: The Adriatic Sea and Coast modelling suite: Evaluation of the meteotsunami forecast component, Ocean Model., 135, 71–93, https://doi.org/10.1016/j.ocemod.2019.02.003, 2019.
Denamiel, C., Pranić, P., Quentin, F., Mihanović, H., and Vilibić, I.: Pseudo-global warming projections of extreme wave storms in complex coastal regions: The case of the Adriatic Sea, Clim. Dynam., 55, 2483–2509, https://doi.org/10.1007/s00382-020-05397-x, 2020a.
Denamiel, C., Tojčić, I., and Vilibić, I.: Far future climate (2060–2100) of the northern Adriatic air–sea heat transfers associated with extreme bora events, Clim. Dynam., 55, 3043–3066, https://doi.org/10.1007/s00382-020-05435-8, 2020b.
Denamiel, C., Pranić, P., Ivanković, D., Tojčić, I., and Vilibić, I.: Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based coupled atmosphere–ocean modelling suite: atmospheric dataset, Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, 2021a.
Denamiel, C., Tojčić, I., and Vilibić, I.: Balancing accuracy and efficiency of atmospheric models in the northern Adriatic during severe bora events, J. Geophys. Res.-Oceans, 126, e2020JD033516, https://doi.org/10.1029/2020JD033516, 2021b.
Denamiel, C., Tojčić, I., Pranić, P., and Vilibić, I.: Modes of the BiOS-driven Adriatic Sea thermohaline variability, Clim. Dynam., 59, 1097–1113, https://doi.org/10.1007/s00382-022-06178-4, 2022.
Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., Polovina, J., Rabalais, N. N., Sydeman, W. J., and Talley, L. D.: Climate change impacts on marine ecosystems, Annu. Rev. Mar. Sci., 4, 11–37, 2012.
Dukowicz, J. K.: Reduction of pressure and pressure gradient errors in ocean simulations, J. Phys. Oceanogr., 31, 1915–1921, https://doi.org/10.1175/1520-0485(2001)031<1915:RODAPG>2.0.CO;2, 2001.
Emerson, S., Mecking, S., and Abell, J.: The biological pump in the subtropical North Pacific Ocean: Nutrient sources, Redfield ratios, and recent changes, Global Biogeochem. Cy., 15, 535–554, https://doi.org/10.1029/2000GB001320, 2001.
Gačić, M., Lascaratos, A., Manca, B. B., and Mantziafou, A.: Adriatic Deep Water and Interaction with the Eastern Mediterranean Sea, in: Physical Oceanography of the Adriatic Sea, edited by: Cushman-Roisin, B., Gačić, M., Poulain, P. M., Artegiani, A., Springer, Dordrecht, 111–142, https://doi.org/10.1007/978-94-015-9819-4_4, 2001.
Gačić, M., Borzelli, G. E., Civitarese, G., Cardin, V., and Yari, S.: Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example, Geophys. Res. Lett., 37, L09608, https://doi.org/10.1029/2010GL043216, 2010.
Gohm, A., Mayr, G. J., Fix, A., and Giez, A.: On the onset of bora and the formation of rotors and jumps near a mountain gap, Q. J. Roy. Meteor. Soc., 134, 21–46, https://doi.org/10.1002/qj.206, 2008.
Gruber, N.: Warming up, turning sour, losing breath: Ocean biogeochemistry under global change, Philos. T. Roy. Soc. A, 369, 1980–1996, 2011.
Grubišić, L., Višnjić, M., and Tolić, D.: Role of dense water in sustaining deep-sea coral populations and other benthic species in the Adriatic Sea, Deep-Sea Res. Pt. I, 83, 1–12, 2014.
Herut, B., Krom, M. D., Pan, G., Mortimer, R. J., and Carbo, P.: Microbial communities related to biogeochemical processes in the eastern Mediterranean deep sea, Limnol. Oceanogr., 61, 1916–1932, 2016.
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J. L., Fairhead, L., Filiberti, M. A., Friedlingstein, P., Grandpeix, J. Y., Krinner, G., LeVan, P., Li, Z. X., and Lott, F.: The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection, Clim. Dynam., 27, 787–813, https://doi.org/10.1007/s00382-006-0158-0, 2006.
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp., https://doi.org/10.1017/9781009157964, 2019.
Jiang, Q. and Doyle, J. D.: Wave breaking induced surface wakes and jets observed during a bora event, Geophys. Res. Lett., 32, L17807, https://doi.org/10.1029/2005GL022398, 2005.
Klein, B., Roether, W., Manca, B. B., Bregant, D., Beitzel, V., Kovacevic, V., and Luchetta, A.: The large deep water transient in the Eastern Mediterranean, Deep-Sea Res. Pt. I, 46, 371–414, https://doi.org/10.1016/s0967-0637(98)00075-2, 1999.
Laprise, R.: The Euler Equations of motion with hydrostatic pressure as independent variable, Mon. Weather Rev., 120, 197–207, https://doi.org/10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2, 1992.
Levitus, S. and Boyer, T. P.: World Ocean Atlas 1994, Volume 4: Temperature, NOAA Atlas NESDIS 4, US Dept. of Commerce, https://repository.library.noaa.gov/view/noaa/1381 (last access: 9 January 2025) 1994.
Levitus, S., Burgett, R., and Boyer, T. P.: World Ocean Atlas 1994, Volume 3: Salinity, NOAA Atlas NESDIS 3, US Dept. Commerce, 1994.
Li, G., Cheng, L., Zhu, J., Trenberth, K. E., Mann, M. E., and Abraham, J. P.: Increasing ocean stratification over the past half-century, Nat. Clim. Change, 10, 1116–1123, https://doi.org/10.1038/s41558-020-00918-2, 2020.
Li, P. and Tanhua, T.: Recent changes in deep ventilation of the Mediterranean Sea; Evidence from long-term transient tracer observations, Front. Mar. Sci., 7, 594, https://doi.org/10.3389/fmars.2020.00594, 2020.
Ličer, M., Smerkol, P., Fettich, A., Ravdas, M., Papapostolou, A., Mantziafou, A., Strajnar, B., Cedilnik, J., Jeromel, M., Jerman, J., Petan, S., Malačič, V., and Sofianos, S.: Modeling the ocean and atmosphere during an extreme bora event in northern Adriatic using one-way and two-way atmosphere–ocean coupling, Ocean Sci., 12, 71–86, https://doi.org/10.5194/os-12-71-2016, 2016.
Malanotte-Rizzoli, P., Manca, B. B., D'Alcalà, M. R., Theocharis, A., Bergamasco, A., Bregant, D., Budillon, G., Civitarese, G., Georgopoulos, D., Michelato, A., Sansone, E., Scarazzato, P., and Souvermezoglou, E.: A synthesis of the Ionian Sea hydrography, circulation, and water mass pathways during POEM-Phase I, Prog. Oceanogr., 39, 153–204, https://doi.org/10.1016/S0079-6611(97)00013-X, 1997.
Mantziafou, A. and Lascaratos, A.: Deep-water formation in the Adriatic Sea: interannual simulations for the years 1979–1999, Deep-Sea Res. Pt. I, 55, 1403–1427, https://doi.org/10.1016/j.dsr.2008.06.005, 2008.
Martin, J. H. and Fitzwater, S. E.: Iron deficiency limits phytoplankton growth in Antarctic waters, Global Biogeochem. Cy., 2, 139–150, 1988.
Mihanović, H., Vilibić, I., Carniel, S., Tudor, M., Russo, A., Bergamasco, A., Bubić, N., Ljubešić, Z., Viličić, D., Boldrin, A., Malačič, V., Celio, M., Comici, C., and Raicich, F.: Exceptional dense water formation on the Adriatic shelf in the winter of 2012, Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, 2013.
Pais, A., Deidun, A., Andaloro, F., and Tiralongo, F.: Distribution patterns of Paracentrotus lividus in relation to water currents and temperature in the Adriatic Sea, Marine Ecology, 33, 471–478, 2012.
Parras-Berrocal, I. M., Vázquez, R., Cabos, W., Sein, D. V., Álvarez, O., Bruno, M., and Izquierdo, A.: Dense water formation in the eastern Mediterranean under a global warming scenario, Ocean Sci., 19, 941–952, https://doi.org/10.5194/os-19-941-2023, 2023.
Pollack, M. J.: The sources of the deep water of the eastern Mediterranean Sea, J. Mar. Res., 10, 128–152, 1951.
Pranić, P., Denamiel, C., and Vilibić, I.: Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based one-way coupled atmosphere–ocean modelling suite: ocean results, Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, 2021.
Pranić, P., Denamiel, C., Janeković, I., and Vilibić, I.: Multi-model analysis of the Adriatic dense-water dynamics, Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, 2023.
Pranić, P., Denamiel, C., and Vilibić, I.: Kilometer-scale assessment of the Adriatic dense water multi-decadal dynamics, J. Geophys. Res.-Oceans, 129, e2024JC021182, https://doi.org/10.1029/2024JC021182, 2024.
Rahmstorf, S.: Ocean circulation and climate during the past 120,000 years, Nature, 419, 207–214, 2002.
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., and Schaffernicht, E. J.: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation, Nat. Clim. Change, 5, 475–480, 2015.
Rahav, E. and Herut, B.: Response of East Mediterranean surface water to Saharan dust: On-board microcosm experiment and field observations, Limnol. Oceanogr, 61, 1746–1762, 2016.
Raicich, F, Malačič, V., Celio, M., Giaiotti, D., Cantoni, C, Colucci, R. R., Čermelj, B., and Pucillo, A.: Extreme air-sea interactions in the Gulf of Trieste (north Adriatic) during the strong bora event in winter 2012, J. Geophys. Res.-Oceans, 118, 5238–5250, https://doi.org/10.1002/jgrc.20398, 2013.
Roether, W., Manca, B. B., Klein, B., Bregant, D., Georgopoulos, D., Beitzel, V., Beitzel, V., Kovačević, V., and Luchetta, A.: Recent changes in eastern Mediterranean deep waters, Science, 271, 333–335, https://doi.org/10.1126/science.271.5247.333, 1996.
Roether, W., Klein, B., Manca, B. B., Theocharis, A., and Kioroglou, S.: Transient Eastern Mediterranean deep waters in response to themassive dense-water output of the Aegean Sea in the 1990's, Prog. Oceanogr., 74, 540–571, https://doi.org/10.1016/j.pocean.2007.03.001, 2007.
Sallée, J. B., Pellichero, V., Akhoudas, C., Pauthenet, E., Vignes, L., Schmidtko, S., Naveira Garabato, A., Sutherland, P., and Kuusela, M.: Summertime increases in upper-ocean stratification and mixed-layer depth, Nature, 591, 592–598. https://doi.org/10.1038/s41586-021-03303-x, 2021.
Santojanni, A., Arneri, E., and Giannetti, G.: Environmental conditions and sardine populations in the Adriatic Sea: A study on nutrient upwelling, Mar. Ecol. Prog. Ser., 318, 243–255, 2006a.
Santojanni, A., Arneri, E., and Giannetti, G.: Impact of nutrient availability on anchovy populations in the Adriatic Sea, Mar. Ecol. Prog. Ser., 318, 257–268, 2006b.
Schär, C., Frei, C., Luthi, D., and Davies, H. C.: Surrogate climate-change scenarios for regional climate models, Geophys. Res. Lett., 23, 669–672, https://doi.org/10.1029/96GL00265, 1996.
Shchepetkin, A. F. and McWilliams, J. C.: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., Journal of Computational Physics, 227, pp. 3595–3624, J. Comput. Phys. 228, 8985–9000, https://doi.org/10.1016/j.jcp.2009.09.002, 2009.
Signell, R. P., Chiggiato, J., Horstmann, J., Doyle, J. D., Pullen, J., and Askari, F.: High-resolution mapping of Bora winds in the northern Adriatic Sea using synthetic aperture radar, J. Geophys. Res.-Oceans, 115, C04020, https://doi.org/10.1029/2009JC005524, 2010.
Simoncelli, S., Fratianni, C., Pinardi, N., Grandi, A., Drudi, M., Oddo, P., and Dobricic, S.: Mediterranean Sea Physical Reanalysis (CMEMS MED-Physics), Version 1, Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/MEDSEA_REANALYSIS_PHYS_006_004, 2019.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A description of the Advanced Research WRF Version 2, NCAR Technical Note NCAR/TN468+STR, https://doi.org/10.5065/D6DZ069T, 2005.
Soto-Navarro, J., Jordá, G., Amores, A., Cabos, W., Somot, S., Sevault, F., Macias, D., Djurdjevic, V., Sannino, G., Li, L., and Sein, D.: Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX ensemble, Clim. Dynam., 54, 2135–2165, https://doi.org/10.1007/s00382-019-05105-4, 2020.
Thingstad, T. F., Krom, M. D., Mantoura, R. F., Flaten, G. A. F., Groom, S., Herut, B., Kress, N., Law, C. S., Pasternak, A., Pitta, P., Psarra, S., Rassoulzadegan, F., Tanaka, T., Tselepides, A., Wassmann, P., Woodward, E. M. S., Wexels Riser, C., Zodiatis, G., and Zohary, T.: Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean, Science, 309, 1068–1071, 2005.
Tojčić, I., Denamiel, C., and Vilibić, I.: Kilometer-scale trends and variability of the Adriatic present climate (1987–2017), Clim. Dynam., 61, 2521–2545, https://doi.org/10.1007/s00382-023-06700-2, 2023.
Tojčić, I., Denamiel, C., and Vilibić, I.: Kilometer-scale trends, variability, and extremes of the Adriatic far-future climate (RCP 8.5, 2070–2100), Front. Mar. Sci., 11, 1329020, https://doi.org/10.3389/fmars.2024.1329020, 2024.
Turner, J.: Buoyancy effects in fluids: Cambridge monographs on mechanics and applied mathematics, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511608827, 1973.
Velaoras, D., Papadopoulos, V. P., Kontoyiannis, H., Papageorgiou, D. K., and Pavlidou, A.: The response of the Aegean Sea (eastern Mediterranean) to the extreme 2016–2017 winter, Geophys. Res. Lett., 44, 9416–9423, https://doi.org/10.1002/2017gl074761, 2017.
Vélez-Belchi, P. J., Anfuso, G., and Gracia, F. J.: Numerical simulation of the hydrodynamics in the nearshore of Alicante (SE Spain) during a coastal upwelling event, Ocean Coast. Manage., 162, 96–108, 2018.
Vilibić, I., Pranić, P., and Denamiel, C.: North Adriatic Dense Water: lessons learned since the pioneering work of Mira Zore-Armanda 60 years ago, Acta Adriat., 38, 100527, https://doi.org/10.32582/aa.64.1.11, 2023.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, Ocean Model., 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Wernberg, T., Thomsen, M. S., Tuya, F., and Kendrick, G. A.: Biogenic habitat structure of seaweeds change along a latitudinal gradient in ocean temperature, J. Exp. Mar. Biol. Ecol., 400, 264–271, https://doi.org/10.1016/j.jembe.2011.02.017, 2011.
Zore-Armanda, M.: Les masses d'eau de la mer Adriatique, Acta Adriat., 10, 5–88, 1963.
Short summary
We use a high-resolution atmosphere–ocean model to project Adriatic Dense Water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
We use a high-resolution atmosphere–ocean model to project Adriatic Dense Water dynamics under...