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Abstract. We use the Adriatic Sea and Coast (AdriSC)
kilometer-scale atmosphere–ocean model to assess the im-
pact of a far-future extreme-warming scenario on the forma-
tion, spreading, and accumulation of North Adriatic Dense
Water (NAddW) over the entire basin, including the Jabuka
Pit accumulation site, and Adriatic Deep Water (AdDW) over
the Southern Adriatic Pit (SAP). Our key findings differ from
previous studies that used coarser Mediterranean climate
models and did not update the thresholds for dense-water
and deep-water definitions to account for the far-future back-
ground density changes caused by warmer sea surface tem-
peratures. We show that surface buoyancy losses at NAddW
generation sites, driven by evaporation, are expected to in-
crease by 15 % under extreme warming, despite a 25 % re-
duction in the intensity and spatial extent of Bora winds.
As a result, future NAddW formation will remain similar
to present conditions. However, the volume of dense wa-
ter in the Jabuka Pit will decrease due to the increased far-
future stratification. Additionally, dense-water transport be-
tween the Jabuka Pit and the deepest part of the SAP will
stop, as future NAddW will be lighter than the AdDW. Re-
garding Ionian–Adriatic exchanges, extreme warming will
not affect the impact of the bimodal oscillation system on
the Adriatic salinity variability, but future AdDW dynamics
will be determined by density changes in the northern Io-
nian Sea. Our findings highlight the complexity of climate
change impacts on Adriatic atmosphere–ocean processes and
the importance of high-resolution models for more accurate
far-future projections in the Adriatic Sea.

1 Introduction

Dense waters, generated by extreme air–sea buoyancy losses,
play a crucial role in the health and functioning of the oceans
worldwide. These waters drive local and basin-wide thermo-
haline circulation (Broecker, 1991; Rahmstorf, 2002), ven-
tilate deep ocean layers to support marine life, and facil-
itate the global carbon cycle (Emerson et al., 2001; Gru-
ber, 2011). They transport essential nutrients (e.g., nitrogen,
phosphorus, and iron) from the surface to deeper ocean lay-
ers, supporting primary production and marine ecosystems
and promoting the growth of phytoplankton and other organ-
isms at the base of the marine food web (Martin and Fitzwa-
ter, 1988; Boyd et al., 2007). Additionally, they drive vertical
mixing and upwelling, which enhances biological productiv-
ity and biodiversity in surface waters (Vélez-Belchi et al.,
2018; Doney et al., 2012). These processes influence regional
and global climate patterns by transporting heat, moisture,
and carbon dioxide across ocean basins (Rahmstorf et al.,
2015; IPCC, 2019). However, with ongoing and future global
warming, increased ocean stratification will inhibit the trans-
port of heat, oxygen, and carbon dioxide from the surface to
deeper layers, intensifying ocean acidification and impacting
the marine food chain (Li et al., 2020).

In the Mediterranean Sea, the densest waters (observed
potential density anomalies up to 30.6 kgm−3; Raicich et
al., 2013; Mihanović et al., 2013) are formed in the north-
ern Adriatic Sea (Fig. 1) during extreme winter windstorms
known as Bora events, which produce hurricane-strength
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gusts up to 50 ms−1 (Belušić and Klaić, 2004) and lead
to significant sea surface cooling (e.g., Ličer et al., 2016).
The dynamical properties of North Adriatic Dense Water
(NAddW; Zore-Armanda, 1963) in the present climate have
been extensively studied over the last 60 years, as sum-
marized by Vilibić et al. (2023). NAddW formation occurs
within the shallow northern Adriatic shelf (Fig. 1, NA sub-
domain) and Kvarner Bay (Fig. 1, KB subdomain) during
strong surface heat and freshwater losses between December
and March. The deepest part of Kvarner Bay (Fig. 1, DKB
subdomain) also acts as a dense-water collector. NAddW
then spreads southward along the western Adriatic coast and
is partially collected within the Jabuka Pit (Fig. 1, JP sub-
domain) and the Southern Adriatic Pit (SAP; Fig. 1). In the
SAP, Adriatic Deep Water (AdDW) is generated through
open-ocean convection and strongly preconditioned by the
presence of a permanent cyclonic gyre. Finally, the remain-
ing NAddW and AdDW exit the Adriatic basin through the
Strait of Otranto towards the northern Ionian Sea.

NAddW and AdDW are the main sources of East-
ern Mediterranean Deep Water (EMDW; Pollack, 1951;
Malanotte-Rizzoli et al., 1997), playing a significant role in
sustaining the Mediterranean overturning circulation (Li and
Tanhua, 2020) and shaping the biogeochemical processes
and ecosystem dynamics of the eastern Mediterranean Sea
(Herut et al., 2016; Thingstad et al., 2005; Rahav and Herut,
2016). Nonetheless, the impact of climate change on their dy-
namical properties has not been thoroughly assessed. Soto-
Navarro et al. (2020) analyzed the future evolution of deep-
water formation in the Adriatic Sea with the Med-CORDEX
ensemble of fully coupled regional climate models in the
Mediterranean Sea, while Parras-Berrocal et al. (2023) stud-
ied the impact of climate change on dense-water formation
in the eastern Mediterranean with one of the Med-CORDEX
models. However, the results from both studies were aver-
aged over the entire Adriatic Sea, and the Med-CORDEX
regional climate system models (RCSMs) have coarse res-
olutions – 25 km in the atmosphere and about 15 km in the
ocean – insufficient to represent the known NAddW dynam-
ics accurately. Indeed, Denamiel et al. (2021b) and Pranić et
al. (2023) have shown that only nonhydrostatic kilometer-
scale atmospheric models and ocean models with at least
1 km resolution can properly reproduce the dense-water dy-
namics within the Adriatic basin.

The kilometer-scale Adriatic Sea and Coast (AdriSC) cli-
mate model (Denamiel et al., 2019) is thus used in this study.
The abilities of the AdriSC model to simulate both extreme
Bora events in the atmosphere and dense-water dynamics
within the Adriatic basin have been assessed in the present
climate, with many studies demonstrating the added value of
such a kilometer-scale atmosphere–ocean climate approach
(Denamiel et al., 2020a, b, 2021a, b, 2022; Pranić et al., 2021,
2023, 2024; Tojčić et al., 2023, 2024). Consequently, the
present study focuses on understanding and analyzing in de-
tail the far-future impacts of an extreme-warming scenario on

the atmosphere–ocean processes driving NAddW and AdDW
dynamics. The article is structured as follows. The AdriSC
model and the methods used for the analyses are described
in Sect. 2, while the impacts of climate change on the Bora
events, Adriatic Dense Water dynamics, and Ionian–Adriatic
exchanges are assessed and discussed in Sect. 3. Finally, con-
clusions about the main findings of the study are presented in
Sect. 4.

2 Model and methods

2.1 Adriatic Sea and Coast (AdriSC) model

2.1.1 AdriSC model setup

The kilometer-scale Adriatic Sea and Coast (AdriSC) climate
model (Denamiel et al., 2019) has been developed to repre-
sent the atmospheric and oceanic circulation over the Adri-
atic basin with greater accuracy than the available Mediter-
ranean regional climate system models (RCSMs). It is based
on the Coupled Ocean–Atmosphere–Wave–Sediment Trans-
port (COAWST) modeling system (Warner et al., 2010),
which dynamically couples the Weather Research and Fore-
casting (WRF; Skamarock et al., 2005) atmospheric model
and the Regional Ocean Modeling System (ROMS; Shchep-
etkin and McWilliams, 2009). As illustrated in Fig. 2a, two
nested grids of 15 km and 3 km resolution are used in the
WRF model, while two nested grids of 3 km and 1 km res-
olution are used in ROMS. Vertical, terrain-following coor-
dinates are used with 58 levels refined in the surface layer
for the atmosphere (Laprise, 1992) and 35 levels refined both
near the sea surface and the seafloor for the ocean (Shchep-
etkin and McWilliams, 2009).

The AdriSC modeling suite is installed and fully tested on
the European Centre for Medium-Range Weather Forecasts
(ECMWF) high-performance computing facilities. More de-
tails on the AdriSC setup can be found in Denamiel et al.
(2019, 2021a) and Pranić et al. (2021).

2.1.2 Pseudo-global-warming (PGW) approach

In this study, the impact of climate change is assessed with
two 31-year-long AdriSC climate simulations: a historical
run for the 1987–2017 period and a far-future extreme-
warming run (2070–2100 period) based on the Representa-
tive Concentration Pathway (RCP) 8.5 (hereafter RCP 8.5
simulation). As a rapid equilibrium is reached within the
AdriSC ocean models (Pranić et al., 2021), a 2-month spin-
up period allowing the atmosphere–ocean models to reach
a steady state is used in both simulations. For the historical
run, the initial and boundary conditions are provided to the
WRF 15 km model by the 6 hourly ERA-Interim reanalysis
fields at 0.75° resolution (Dee et al., 2011) and to the ROMS
3 km model by the Mediterranean Forecasting System (MFS)
MEDSEA reanalysis at 1/16° resolution (Simoncelli et al.,
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Figure 1. Topo-bathymetry of the AdriSC climate model with the locations of the five subdomains (colored polygons) and six transects
(dotted black and white lines) used in the study. MSL stands for mean sea level.

2019). The AdriSC historical climate run has already been
successfully evaluated (Denamiel et al., 2021a; Pranić et al.,
2021) and proven to reproduce the known Adriatic multi-
decadal dense-water dynamics (Pranić et al., 2024).

For the RCP 8.5 run, the pseudo-global-warming (PGW)
methodology is used to address both the relative slowness
of the AdriSC model (i.e., a month of results produced per
day) and the low temporal and spatial resolutions (i.e., few
vertical levels for daily or monthly results) of the Med-
CORDEX RCSMs available to force the AdriSC WRF 15 km
and ROMS 3 km models. The principle of the PGW sim-
ulations (Schär et al., 1996; Denamiel et al., 2020b) is to
impose an additional climatological change on the reanaly-
sis used to force the historical run. Here, the results of the
LMDZ4-NEMOMED8 RCSM (Hourdin et al., 2006; Beu-
vier et al., 2010) are used to produce the PGW forcing;
see Denamiel et al. (2020b) for a detailed description. For
the atmosphere, the ERA-Interim air temperature, relative
humidity, and horizontal wind velocities, defined on 37 at-
mospheric pressure levels, are modified between 1000 and
70 hPa with the climatological changes 1T , 1RH, 1U , and
1V , respectively. These changes are derived from the RCP
8.5 scenario of the LMDZ4-NEMOMED8 RCSM by sub-
tracting the atmospheric results of the 1987–2017 period
from those of the 2070–2100 period, producing 6-hourly
three-dimensional climatological changes for the 366 d of
the year. These new forcings are then used to provide the
boundary and initial conditions for the WRF 15 km model
in the PGW simulation. For the ocean, the MEDSEA ocean
temperature, salinity, and currents, defined on 72 unevenly
spaced vertical levels, are modified with the climatological

changes 1T ocean, 1S ocean, 1U ocean, and 1V ocean,
respectively. These changes are also derived from the RCP
8.5 scenario of the LMDZ4-NEMOMED8 RCSM to pro-
duce three-dimensional daily climatological changes for the
366 d of the year. These forcings are then used to provide the
boundary and initial conditions for the ROMS 3 km model in
the PGW simulation. In other words, the same climatologi-
cal changes are used to modify the boundary conditions for
each simulated year of the reanalysis period, and the PGW
simulations “inherit” the synoptic environment and weather
and ocean conditions from the atmosphere–ocean reanalyses
at the lateral boundaries. As a result, the main limitation of
this methodology, compared to traditional downscaling tech-
niques (Brogli et al., 2023), is that potential changes in intra-
annual and interannual variability may be missed in the PGW
projections. Additionally, in the presented RCP 8.5 simula-
tion, due to the location of the AdriSC ROMS 3 km boundary
conditions, the northern Ionian ocean dynamics may be more
influenced by the MEDSEA reanalysis than by the projected
climatic changes.

As illustrated in Fig. 2b, the PGW temperature forcing
imposed in the AdriSC RCP 8.5 simulation is about 1 °C
warmer for the air than the sea at the surface. It is also be-
low 0.5 °C in the ocean for all depths below 1000 m but can
reach up to 3.5 °C between the surface and 200 m depth for
the RCP 8.5 scenario. These strong vertical gradients of tem-
perature imposed on the ocean reanalysis are thus expected
to impact the density of the Adriatic Sea, which will be far
lower in the shallow areas of the basin (e.g., NA and KB sub-
domains) than in its deepest part (e.g., DA subdomain) in the
RCP 8.5 simulation.
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Figure 2. Spatial coverage and horizontal resolution of the different grids used in the AdriSC climate model (a) and pseudo-global-warming
temperature forcing imposed in the AdriSC extreme-warming simulation (b).

2.2 Methods

2.2.1 Bora events

To understand the impact of climate change on the air–sea in-
teractions driving NAddW formation, the atmospheric results
– derived from the AdriSC WRF 3 km daily fields – are only
examined over the northern Adriatic Sea (for latitudes above
43° N) during extreme Bora events, defined as wind speeds
at 10 m greater than 13 ms−1 (i.e., gale-force winds; Belušić
and Klaić, 2004). First, the validity of this simple criterion is

demonstrated by analyzing the median monthly wind speeds
at 10 m (≥ 13ms−1) during the 31 years of the historical sim-
ulation and comparing the obtained results with the known
Bora jet dynamics (Fig. 4). Second, the impact of climate
change on the selected Bora winds is assessed with spatial
plots of the climate adjustments (in percent, Fig. 5) defined,
during the 31 years of the simulations, as the difference be-
tween RCP 8.5 and historical median monthly wind speeds
divided by the historical median monthly wind speeds. Fol-
lowing this, monthly climatologies are presented as time se-
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ries of the median and 25th and 75th percentiles of the histor-
ical and RCP 8.5 results for eight different variables (Figs. 6
and 7): horizontal wind transport at 10 m; accumulated sur-
face buoyancy loss; total, sensible, and latent heat fluxes; air-
minus-sea-saturation-specific humidity (SAT); relative hu-
midity at 2 m; and freshwater fluxes (see Appendix A for the
mathematical definition of the variables). Finally, the results
are summarized with a box plot (Fig. 7) presenting the cli-
mate adjustments (in percent) for the eight variables, which
are defined as the difference between the RCP 8.5 and histor-
ical monthly results divided by the historical monthly results
during the December to March (DJFM) period when NAddW
is known to be formed.

2.2.2 Dense-water dynamics

In this study, all ocean variables are derived from the daily
AdriSC ROMS 1 km fields, and the potential density anoma-
lies (PDAs, σ ) and the thermal expansion and haline con-
traction coefficients are calculated with the equation of
state introduced by McDougall, Wright, Jackett, and Feis-
tel (MWJF; Levitus and Boyer, 1994; Levitus et al., 1994;
Dukowicz, 2001). Under the present climate, NAddW is
characterized by densities σ ≥ 29.2kgm−3 (Mantziafou and
Lascaratos, 2008). However, NAddW is formed in the shal-
lowest part of the Adriatic Sea, where a strong change
in background density is imposed by the PGW forcing
(Fig. 2b). Therefore, this threshold cannot be used to ana-
lyze the RCP 8.5 simulation. NAddW is known to exit the
Adriatic basin along the shallow western shelf of the Strait
of Otranto (Fig. 1, transect T6). In Fig. 3, the historical
and RCP 8.5 PDAs are presented as spatial plots of median
(over the 31 years of the simulations) along the T6 transect
and probability density functions – calculated with a kernel-
smoothing method (Bowman and Azzalini, 1997) and evalu-
ated for 100 equally spaced points – derived along the Strait
of Otranto at the bottom of the western shelf (Fig. 3a, black
box). This analysis reveals that a density of σ = 29.2kgm−3

is obtained for the 97th percentile of the historical PDAs,
which corresponds to σ = 28.4kgm−3 in the RCP 8.5 simu-
lation (Fig. 3b) and defines the criterion used to identify the
far-future NAddW. The SAP, which is the deepest area of the
Adriatic Sea, is also excluded from the following analyses.

The impact of climate change is first assessed for the
isopycnal depth (ID; see Appendix A for the mathemati-
cal definition) using spatial plots of the median (over the
31 years of the simulations) of both the historical monthly
maximums and the climate adjustments (in percent), defined
as the difference between RCP 8.5 and historical monthly
maximums divided by the historical monthly maximums
(Figs. 8 and 9). Following this, daily climatologies are pre-
sented as the median and 25th and 75th percentiles of the
historical and RCP 8.5 results for three different variables
(Figs. 10 to 12): dense-water volume (DWV) and stratifi-
cation index (SI) over four different subdomains (NA, KB,

DKB, and JP; Fig. 1) and outward (i.e., exiting the Adri-
atic basin) NAddW mass transport along five different tran-
sects (T1 to T5; Fig. 1) defined along the known dense-
water pathways (see Appendix A for the mathematical defi-
nition of the three variables). The NA and KB subdomains
are geographically defined. They cover the northern Adri-
atic shelf (with depths below 50 m) and Kvarner Bay (with
depths ranging from 0 to 100 m) and are previously identi-
fied dense-water formation sites (e.g., Zore-Armanda, 1963;
Pranić et al., 2024). Transects T1 and T2 are defined along
the open boundary of these subdomains. The DKB and JP
subdomains are defined for depths above 80 and 200 m, re-
spectively, and are accumulation sites. The dense waters gen-
erated in Kvarner Bay, which is much deeper than the ad-
jacent northern Adriatic shelf, are gravitationally attracted
in the DKB, while the JP is a well-researched dense-water
accumulation site (e.g., Zore-Armanda, 1963; Pranić et al.,
2024). Transects T3 and T4 are located north and south of
the JP subdomain with the aim of properly quantifying and
discriminating NAddW transported southward from the that
accumulated in the Jabuka Pit. Transect T5 is located north
of the deepest part of the Adriatic (SAP) to quantify how
much NAddW is reaching the middle Adriatic. Finally, all of
the above results are summarized with box plots (Fig. 13) of
the climate adjustments (in percent), defined as the difference
between the RCP 8.5 and historical daily results divided by
the historical daily results during DJFM for DWV and mass
transport and in December for SI, and further analyzed with
historical and RCP 8.5 PDA pycnoclines along the T3 to T5
transects and within the JP subdomain. An animation of the
isopycnal depth (ID) over the Adriatic Sea is also provided
for the RCP 8.5 simulation (Movie S1 in the Supplement).

2.2.3 Ionian–Adriatic exchanges

Due to the strong density gradients between the shallow and
deep areas of the Adriatic Sea under the RCP 8.5 scenario,
most of the AdDW exchanges within the SAP are expected to
occur with the northern Ionian Sea, a deep basin with depths
greater than 3500 m. An analysis of the PDAs for depths be-
low 800 m along the Strait of Otranto (Fig. 3a, white box)
reveals that the present climate deep-water density threshold
σ = 29.2kgm−3 (Gačić et al., 2001) is obtained for the 15th
percentile in the historical simulation, which corresponds to
σ = 29.09kgm−3 in the RCP 8.5 simulation (Fig. 3b). This
defines the criterion used to identify the far-future AdDW.

Empirical orthogonal functions (EOFs) are used to com-
pare, in space and time, the most important variability pat-
terns in the Adriatic and northern Ionian seas for both histor-
ical and RCP 8.5 simulations. Denamiel et al. (2022) demon-
strated that the long-term variability of the AdriSC model is
well described by the change in sign of the main EOF com-
ponents derived from sea surface height (SSH) in the north-
ern Ionian Sea. The main modes of variability of the Ionian–
Adriatic exchanges are thus derived from the AdriSC ROMS
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Figure 3. Spatial plots of the vertical transect along the Strait of Otranto for the median of the PDAs over the 31-year historical and RCP
8.5 simulations (a) and historical and RCP 8.5 PDA probability density functions at the bottom of the western shelf (black box) and for
depths greater than 800 m (white box) along the Strait of Otranto (b). It should be noted that historical and RCP 8.5 results are presented with
different extrema in density in the color plots for a better visualization but have identical ranges (0.3 kgm−3) to emphasize the increased
stratification.

3 km monthly northern Ionian SSH over the 31-year period
of the simulations, while their impact on the Adriatic Sea
is extracted from the AdriSC ROMS 1 km results. All pre-
sented spatial EOFs are obtained via a covariance matrix and
are normalized. The time series of the amplitudes associated

with each eigenvalue in the EOF are derived via the dot prod-
uct of the data and the EOF spatial patterns, with the mean
subtracted from each component time series.

The Ionian–Adriatic exchanges are also characterized with
time series of both inward and outward deep-water mass
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transports along the Strait of Otranto (T6 transect) for
the RCP 8.5 simulation and from the deep-water volume
and SI within the DA subdomain for both historical (σ ≥
29.2kgm−3 criterion) and RCP 8.5 (σ ≥ 29.09kgm−3 cri-
terion) simulations. The DA subdomain is defined for depths
above 1000 m and encompasses the SAP identically to the
study of Pranić et al. (2024). Additionally, an animation of
the isopycnal depth for deep water in the southern Adriatic
Sea for the RCP 8.5 simulation is provided (Movie S1).

3 Results

3.1 Bora events

3.1.1 Spatial extent and intensity

The spatial extent and intensity of the selected windstorms
and their associated climate adjustments are first presented
in Figs. 4 and 5. Between November and March in the his-
torical simulation (Fig. 4a–c, k, and l), the horizontal wind
speeds vary from north to south along the eastern Adriatic
coast, with intense jets above 16 ms−1 separated by weaker
speeds. This behavior is characteristic of the known Bora
wake and gap jet dynamics (e.g., Jiang and Doyle, 2005;
Gohm et al., 2008; Alpers et al., 2009; Signell et al., 2010),
and the historical simulation can reproduce the known Tri-
este, Senj, Karlobag, and Sukošan main Bora jets (see Fig. 4).
For the rest of the year, in accordance with the known litera-
ture, some Bora jets are still present, but their intensity is on
average decreased (≤ 14ms−1). Consequently, using wind
speeds≥ 13ms−1 to identify Bora winds is a simple but effi-
cient criterion, as windstorms are dominated by these events
over the northern Adriatic Sea.

In terms of climate adjustments (Fig. 5), the far-future in-
tensity of the Bora jets during DJFM is mostly reduced by
about 5 % within Kvarner Bay but increased by up to 15 %
(less than 5 % on average) along the Trieste jet. Additionally,
in October and December, the intensity of the selected Bora
winds is overall increased by 5 % to 15 %. Finally, for most
months, an alternation of strong reduction in intensity (up
to 15 % and 10 % on average) and moderate increase (up to
15 % but 5 % on average) along the known Bora jet locations
can be seen in Fig. 5. Consequently, in the RCP 8.5 simula-
tion, the locations of the main Bora jets are most probably
shifted in space while their intensity is reduced overall.

3.1.2 Monthly climatologies

For the selected Bora events, the impact of climate change
on the air–sea dynamics is presented separately for the his-
torical and RCP 8.5 simulations as monthly climatologies
of horizontal wind transports; accumulated surface buoy-
ancy losses; total, latent, and sensible heat fluxes (Fig. 6);
and air-minus-sea-saturation-specific humidity (SAT), rela-
tive humidity, and freshwater fluxes (Fig. 7).

For both historical and RCP 8.5 simulations, the strongest
horizontal wind transports (median value above 2.8×
109 m3 s−1) occur between November and March. Com-
pared to the historical results, the horizontal wind trans-
ports are overall reduced in the RCP 8.5 simulation, i.e., be-
tween 0.02× 109 m3 s−1 in February and 0.28× 109 m3 s−1

in March, but increased in January and August by about
0.17× 109 and 0.14× 109 m3 s−1, respectively. In terms of
the most extreme wind transports, defined as the 75th per-
centile, they are reduced in the RCP 8.5 simulation by up to
3.07×109 m3 s−1 in January and 1.25×109 m3 s−1 in Febru-
ary but are increased by up to 0.82×109 m3 s−1 in September
and 1.33× 109 m3 s−1 in December.

The strongest accumulated surface buoyancy losses occur
between September and March in both historical and RCP
8.5 simulations and can reach a monthly median of more
than 0.030 m2 s−2 in December. In contrast with the horizon-
tal wind transports, the median RCP 8.5 accumulated surface
buoyancy losses are overall increased by 0.004 m2 s−2 on av-
erage compared to the historical simulation. This increase
varies between 0.001 m2 s−2 in December and 0.017 m2 s−2

in November. The extreme RCP 8.5 buoyancy losses, defined
as the 75th percentile, are also increased all year long by
0.005 m2 s−2 on average and by a maximum of 0.015 m2 s−2

in November.
Regarding the total, latent, and sensible monthly heat

fluxes, both RCP 8.5 and historical simulations reach their
maximum losses (median value above 150 Wm−2) between
September and March. Overall, compared to the histori-
cal results, the RCP 8.5 total heat losses increase between
11 Wm−2 in February and 88 Wm−2 in November, with an
average of 35 Wm−2 between August and March, while the
RCP 8.5 total heat gain decreases by about 17 Wm−2 on av-
erage between May and July. In contrast, the RCP 8.5 la-
tent heat losses increase all year long by at least 3 Wm−2

in April and up to 72 Wm−2 in November (an average of
33 Wm−2), while the RCP 8.5 sensible losses decrease by
6 Wm−2 on average most of the year (except in March, Oc-
tober, and November, which have increased losses between 4
and 9 Wm−2). In terms of extremes, defined as the 25th per-
centile, the monthly RCP 8.5 latent heat losses are increased
by 40 Wm−2 on average and up to 42 Wm−2 in March and
52 Wm−2 in November.

For the remaining variables (Fig. 7), while the RCP 8.5
median monthly relative humidity changes by less than±1%
compared to the historical simulation, the median and ex-
treme (represented by the 25th percentile) monthly losses of
both air-minus-sea SAT and freshwater flux are expected to
increase all year long by an average of 0.8 gkg−1 and 1.15×
10−8 ms−1, respectively, and up to 1.5 gkg−1 in November
and 1.6× 10−8 ms−1 in October, respectively.
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Figure 4. Historical monthly climatology of the spatial extent, intensity, and direction (as vectors) of the selected windstorms (≥ 13ms−1)
defined as the monthly median wind speed at 10 m over the 31 years of the historical simulation.

3.1.3 Discussion

To summarize the results of the previous section, the monthly
climate adjustments are presented as box plots (Fig. 7d).
These reveal that the median (and extreme, given by the 25th
and 75th percentiles depending on the negative and positive
sign of the median, respectively) differences between RCP
8.5 and historical results are−25% (−52%) for the horizon-
tal wind transports at 10 m and −4% (−9%) for the sensi-
ble heat fluxes but +15% (+30%) for the buoyancy losses,

+8% (+20%) for the total heat fluxes, +17% (+24%) for
the latent heat fluxes, +20% (+27%) for the air-minus-sea
SAT, +1% (+2%) for the relative humidity at 2 m, and fi-
nally +17% (+24%) for the freshwater fluxes.

Consequently, a strong reduction in the intensity and spa-
tial extent of the winter Bora winds is projected in the AdriSC
RCP 8.5 far-future simulation. This confirms the findings of
other regional- and kilometer-scale atmospheric long-term
models (e.g., Benetazzo et al., 2012; Androulidakis et al.,
2015; Bonaldo et al., 2017; Belušić Vozila et al., 2019) and
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Figure 5. Monthly climatology of the climate adjustments (in percent) associated with the selected Bora events (wind speeds at 10 m
≥ 13ms−1) and defined, over the 31 years of the simulations, as the difference between RCP 8.5 and historical monthly medians divided by
historical monthly medians.

the 3 d long AdriSC climate simulations (Denamiel et al.,
2020a, b). As previously seen in Denamiel et al. (2020a), the
accumulated buoyancy losses, particularly the latent heat and
freshwater losses, are strongly increased (by more than 15 %)
in the RCP 8.5 simulation, leading to strong cooling at the
air–sea interface. In contrast with what was previously hy-
pothesized in Denamiel et al. (2020a), the changes in relative
humidity at 2 m are minor and cannot explain this increase.
However, as with the latent heat losses, the air-minus-sea

SAT and the freshwater losses are projected to increase by
at least 17 %, and the increase in the buoyancy losses under
the RCP 8.5 conditions is mainly controlled by the increased
evaporation and not by the decrease in Bora wind intensity
and spatial extent. Given these results, in contrast with the
findings of Parras-Berrocal et al. (2023), NAddW formation
is expected to be similar in far-future and present climates.
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Figure 6. This figure shows the selected Bora events, monthly climatologies of the median and 25th and 75th percentiles of the horizontal
wind transport at 10 m (a); the accumulated surface buoyancy loss (b); and the total (c), latent (d), and sensible (e) heat fluxes defined over
the 31 years for the historical, RCP 8.5, and RCP 8.5 minus historical conditions.

3.2 Adriatic Dense Water dynamics

3.2.1 Spatial extent and intensity

The changes in the spatial extent and intensity of the dense-
water formation, propagation, and accumulation under the
far-future extreme warming are first presented as spatial plots
of the monthly historical ID and their associated climate ad-
justments (Figs. 8 and 9). Importantly, the dynamical behav-
ior of the SAP will be discussed in Sect. 3.3 and will not be
analyzed here.

In the historical simulation, the ID (σ ≥ 29.2kgm−3 crite-
rion) reaches a maximum within the northern Adriatic shelf
(between 40 m in the shallow areas and 75 m in the deepest
parts) and the Kvarner Bay (above 75 m) between Decem-

ber and April when NAddW is formed and fills the forma-
tion sites (NA and KB subdomains). Within the deepest parts
of Kvarner Bay (i.e., DKB subdomain), the ID is still about
25 m in May and decreases to below 5 m in September when
no dense water is left in this accumulation site before De-
cember. In the Jabuka Pit accumulation site, the ID peaks in
February and March (above 160 m) but remains above 125 m
all year long in the deepest parts of the middle and western
areas of the pit. Along the Italian coast (i.e., the western side
of the SAP), where the dense water is known to exit the Adri-
atic basin, the ID peaks in December and February (above
100 m) but varies between 5 and 75 m the rest of the year
when exchanges of dense water occur between the Jabuka
Pit and the SAP.
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Figure 7. This figure shows the selected Bora events, monthly climatologies of the median and 25th and 75th percentiles of the air-minus-
sea-saturation-specific humidity (a), the relative humidity at 2 m (b), and the freshwater flux (c) defined over the 31 years of the historical,
RCP 8.5, and RCP 8.5 minus historical conditions. Climate adjustments (in percent) for the eight variables used in the Bora event analyses
are presented as box plots during DJFM (d).

In terms of climate adjustments (Fig. 9), the RCP 8.5 ID
presents changes smaller than ±10% compared to the his-
torical simulation all year long within the northern Adriatic,
except between April and May when it decreases up to 60 %
in the area where the dense waters are known to exit Kvarner
Bay. However, during December the RCP 8.5 ID increases
by up to 100 %. Within and off Kvarner Bay the RCP 8.5 ID
decreases by up to 25 % in April but increases by up to 15 %
between July and September and by up to more than 100 %
in October when dense water will still be present within the
DKB subdomain in the RCP 8.5 simulation. It is thus ex-
pected that less NAddW is transported from Kvarner Bay
between April and June. However, the biggest changes in

RCP 8.5 ID (up to ±100%) occur all year long within the
Jabuka Pit, where it decreases between 10 % in June and up
to 100 % in February and March, and along the western side
of the SAP, where it increases between 10 % in April and
100 % in July but decreases by up to 100 % between January
and March.

3.2.2 Daily climatologies

The impact of climate change on dense-water dynamics is
presented separately for the historical and RCP 8.5 simula-
tions. These are shown as monthly climatologies of dense-
water volume (DWV; Fig. 10) and stratification index (SI;
Fig. 11) within the NA, KB, DKB, and JP subdomains
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Figure 8. Historical monthly climatology of the median isopycnal depth (ID; defined for σ ≥ 29.2kgm−3) over the 31 years of the historical
simulation.

(Fig. 1) and dense-water transports (Fig. 12) along the tran-
sects T1 to T5 (Fig. 1).

For both historical and RCP 8.5 simulations (Fig. 10),
the largest DWV (defined for σ ≥ 29.2kgm−3 and σ ≥

28.4kgm−3, respectively) occurs between December and
March (without much variability between the 25th and 75th
percentiles) within the NAddW formation sites (up to 5 and
3.7× 1011 m3 for the NA and KB subdomains, respectively)
and within the DKB accumulation site (up to 0.55×1011 m3).
However, for the JP subdomain, this occurs only between

February and May (with variability reaching 4 and 2.5×
1011 m3 for the historical and RCP 8.5 simulations, respec-
tively). Compared to the historical results, the RCP 8.5 DWV
is overall identical within the NA, KB, and DKB subdomains
(differences below 0.1× 1011 m3 for both the mean and ex-
trema) but is reduced within the Jabuka Pit by an average of
less than 0.2×1011 m3 but reaching an extreme (represented
by the 75th percentile) of up to 1.7× 1011 m3 in March.

The highest values of the SI (Fig. 11) occur across all sub-
domains during summer (JAS) when the sea surface temper-
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Figure 9. Monthly climatology of the climate adjustments (in percent) associated with the ID and defined, over the 31 year of the simulations,
as the difference between RCP 8.5 and historical monthly medians divided by historical monthly medians.

ature is at its maximum. During DJFM, when NAddW is
formed, the SI is always below 0.1 m2 s−2, except for the
JP subdomain where it varies between 0.2 and 0.7 m2 s−2

and 0.4 and 1.1 m2 s−2 in the historical and RCP 8.5 sim-
ulations, respectively. During this period, the RCP 8.5 SI
median (and extreme, represented by the 75th percentile)
gains compared to the historical simulation reach up to 0.01
(0.04) m2 s−2 for NA, 0.02 (0.04) m2 s−2 for KB and DKB,
and 0.2 (0.3) m2 s−2 for JP.

In terms of the NAddW transports (Fig. 12), they mostly
occur between December and May outward of the formation
sites: up to 18.0× 106 kgs−1 along T1 in March and also in
January for the RCP 8.5 simulation; up to 7.5× 106 kgs−1

along T2 in February and December for the historical and
RCP 8.5 simulations, respectively; and up to nearly 35.0×
106 kgs−1 along T3 in March. In both simulations the trans-
ports towards the Ionian Sea are overall reduced along T4
compared to T3 by up to 10.0× 106 kgs−1 in March in the
historical simulation and 15.0× 106 kgs−1 in December in
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Figure 10. Daily climatologies of the median and 25th and 75th percentiles of the dense-water volume (DWV) defined over the NA (a),
KB (b), DKB (c), and JP (d) subdomains for the 31 years of the historical (defined for σ ≥ 29.2kgm−3), RCP 8.5 (defined for
σ ≥ 28.4kgm−3), and RCP 8.5 minus historical conditions.

the RCP 8.5 simulation. Finally, along T5, the transports
are overall reduced under the RCP 8.5 conditions compared
to the historical simulation by 5.0× 106 kgs−1 and up to
9.0× 106 kgs−1 in March.

3.2.3 Discussion

The presented results contrast with the study by Parras-
Berrocal et al. (2023), which used the same threshold to de-
fine NAddW in the present and future climates and consid-
ered NAddW and AdDW as deep water without distinction
due to the coarser resolution of their RCSM. They demon-
strate that under far-future RCP 8.5 conditions the median
accumulated buoyancy losses are expected to increase by
15 % (Fig. 7d) and NAddW formation within the NA and
KB subdomains and the accumulation within the DKB sub-
domain are expected to remain identical. Indeed, there is no
major change in median DWV (Fig. 13a). It should be noted
that despite the increase between 15 % and 32 %, the median
RCP 8.5 SI remains really small in these areas during De-
cember (Fig. 11 and Fig. 13a, middle panel). Furthermore,
for both historical and RCP 8.5 simulations, more NAddW

is transported through T3 than through T1 and T2 combined,
which means some NAddW is probably formed offshore of
the NA and KB sites. Under the RCP 8.5 scenario, the off-
shore formation of NAddW is expected to increase as the me-
dian NAddW transports increase by 13 % along T3, decrease
by 9 % along T2, and do not change along T1 (Fig. 13a, right
panel).

Within the Jabuka Pit accumulation site, the main cascad-
ing and accumulation of NAddW shifts from March in the
historical simulation to December under the RCP 8.5 condi-
tions (i.e., the maximum reduction in dense-water transports
between T3 and T4 that frame the JP is obtained in March
under the historical conditions and in December under the
RCP 8.5 conditions; Fig. 12). However, despite the increase
in transports by 13 % along T3 and their decrease by 19 %
along T4 (Fig. 13a, right panel), the RCP 8.5 DWV within
the Jabuka Pit is reduced by 5 % compared to the historical
simulation (Fig. 13a, left panel). Comparing the pycnoclines
along T3, JP, T4, and T5 (Fig. 13b) reveals that there are
more occurrences of NAddW filling the full water column in
the historical simulation than under the RCP 8.5 conditions;
i.e., above 100 m depth, the area between 29.2 kgm−3 and the
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Figure 11. Daily climatologies of the median and 25th and 75th percentiles of the stratification index (SI) defined over the NA (a), KB (b),
DKB (c), and JP (d) subdomains for the 31 years of the historical, RCP 8.5, and RCP 8.5 minus historical conditions.

99th percentile (in blue) is twice as large as the area between
28.4 kgm−3 and the 99th percentile (in red). Over the Jabuka
Pit, the increase by 40 % of the RCP 8.5 SI is thus likely to
hamper vertical mixing, causing a diminution of the RCP 8.5
DWV despite the presence of RCP 8.5 NAddW varying be-
tween 28.5 and 29.2 kgm−3 at the bottom of the pit below
200 m depth (Fig. 13b).

Finally, the reduction in the RCP 8.5 transports by 13 %
along T4 and 34 % along T5 compared to historical condi-
tions (Fig. 13a, right panel) can have two explanations. First,
the accumulated NAddW from the Jabuka Pit cannot cascade
within the deepest part of the SAP where the densities are
higher and, hence, in contrast with the historical results, no
strong density current is present. Second, the decrease in den-
sities of NAddW (from the Jabuka Pit to transect T5) due to
the interaction with the ambient Adriatic waters is greater
for the RCP 8.5 than the historical conditions, up to 0.3
and 0.2 kgm−3, respectively (Fig. 13b). This suggests that
most NAddW exits the Adriatic Sea along the western side
of the SAP under RCP 8.5 conditions, which also explains
the increase in ID in this area between April and November
(Fig. 9).

3.3 Ionian–Adriatic exchanges

In this section, the SSH EOFs over the northern Ionian Sea
are used to define the main modes of the Ionian–Adriatic ex-
changes. First, for both historical and RCP 8.5 simulations,
the first SSH EOFs are linked to the interannual variability
and are not displayed here. Second, both an analysis and dis-
cussion of the results are presented together below.

3.3.1 Bimodal oscillation system (BiOS)

For the historical simulation, as described in Denamiel et al.
(2022), the second SSH EOF, representing nearly 10 % of
the total signal (Fig. 14a, left panels), is linked to the Ionian–
Adriatic bimodal oscillation system or BiOS (Gačić et al.,
2010). In the present climate, the BiOS connects the quasi-
decadal reversals of the North Ionian Gyre (NIG) circulation
to the salinity variability in the Adriatic Sea. During the an-
ticyclonic phase of the NIG, the southern Adriatic Sea salin-
ity decreases due to the advection of lower-salinity Atlantic
Water. During the cyclonic phase of the NIG, the salinity in-
creases due to the advection of high-salinity Levantine and
eastern Mediterranean waters.
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Figure 12. Daily climatologies of the median and 25th and 75th percentiles of the dense-water transport defined along the T1 to T5 (a–e)
transects for the 31 years of the historical, RCP 8.5, and RCP 8.5 minus historical conditions.

In the RCP 8.5 simulation, the BiOS signal appears as
the third SSH EOF and represents only 8 % of the total sig-
nal (Fig. 14a, right panels). From these results, the expected
BiOS signal in the Ionian Sea for the RCP 8.5 scenario is
similar in both spatial pattern and time series to the one ob-
tained for the historical simulation. Furthermore, under RCP
8.5 conditions, the correlations between the BiOS signal and
the first salinity EOFs at 100 m depth and the bottom of the
Adriatic Sea – representing 74 % and 56 % of the total signal,
respectively (Fig. 14b) – reach more than 60 % with a 2-year
lag.

Consequently, as these results are similar to those found
for the historical simulation by Denamiel et al. (2022), the
BiOS remains the main driver of Adriatic salinity variability
under the presented PGW extreme-warming scenario. Impor-
tantly, at the bottom of the Adriatic Sea, the BiOS does not
affect the deepest part of the SAP (i.e., the DA subdomain).

Finally, for the RCP 8.5 simulation, the Adriatic BiOS-
driven salinity phases strongly impact the renewal of the
Jabuka Pit collector site (Fig. 14d): during the cyclonic
phases (Fig. 14b, in blue in the EOF time series), both
PDA and DWV increase (up to 29.2 kgm−3 and 5.0×
1011 m3, respectively), whereas during the anticyclonic
phases (Fig. 14b, in red in the EOF time series), the PDA
is largely decreased over the entire water column (down to
below 28.2 kgm−3), while no (or very little, below 0.5×
1011 m3) dense water is present in the Jabuka Pit collector.

3.3.2 Deep-water exchanges

In the RCP 8.5 simulation, the second SSH EOF – repre-
senting about 15 % of the total signal over the Ionian Sea
(Fig. 15a, right panels) – is a mode of Ionian–Adriatic ex-
changes that is not present in the historical simulation. The
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Figure 13. Climate adjustments (in percent) for the three variables used in the NAddW dynamics analyses are presented as box plots during
DJFM for DWV and mass transports and in December for SI (a). Variability of the historical and RCP 8.5 pycnoclines defined between the
median and 99th percentile of the PDA along the T3 to T5 transects and within the Jabuka Pit during DJFM (b).

anti-correlation, without lag, between this new mode and the
first EOF of the bottom PDA over the SAP – representing
about 63 % of the total PDA signal for depths below 800 m
– reaches more than 80 %. Consequently, this mode controls
the deep-water content of the deepest part of the SAP (i.e.,
the DA subdomain) and hence the presence of AdDW un-
der the PGW RCP 8.5 scenario. The first phase of this mode
(Fig. 15a, in blue in the EOF time series of SSH over the Io-
nian Sea) is present for 7 years at the beginning of the RCP
8.5 simulation. The second phase (Fig. 15a, in red in the EOF
time series of SSH over the Ionian Sea) lasts for 20 years,
while during the last 4 years of the simulation, the mode re-
verts to the first phase.

The switch between the first and second phase of this new
mode corresponds to the year 1994 in the historical simula-

tion, which marks the shift in dominant deep-water source in
the northern Ionian Sea from the Adriatic Sea to the Aegean
Sea. In the historical simulation, this event – known as the
Eastern Mediterranean Transient (EMT) – is characterized
by massive dense-water formation triggered by extreme heat
losses and high salinity in the Aegean Sea during winter
1992–1993 (Roether et al., 1996, 2007; Klein et al., 1999;
Velaoras et al., 2017). During the EMT, the northern Ionian
Sea is filled with very dense water from the Aegean Sea, and
the intrusion of water originating from the Adriatic into the
Levantine basin is blocked (Akpinar et al., 2016; Li and Tan-
hua, 2020). As the PGW method uses the historical bound-
ary forcing, the RCP 8.5 scenario presented in this study is
also forced with the EMT signal modified with an extreme-
warming climatological change.
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Figure 14. Normalized spatial EOF components and associated time series of amplitude for both the historical and RCP 8.5 AdriSC ROMS
3 km sea surface height (SSH) over the northern Ionian Sea (a). RCP 8.5 AdriSC ROMS 1 km salinity at 100 m and at the bottom of the
Adriatic Sea (b). Time series of the daily vertical potential density anomaly (PDA) and dense-water volume (DWV) in the JP subdomain for
the RCP 8.5 simulation (c).

In the RCP 8.5 simulation, for σ ≥ 29.09kgm−3, no deep
water is present within the DA subdomain before the EMT.
First, most NAddW (defined for σ ≥ 28.4kgm−3) is too light
to cascade into the deepest part of the SAP (which has an

ambient density of about 29.0 kgm−3 before the EMT). Sec-
ond, over the DA subdomain, the RCP 8.5 stratification in-
dex (SI) is multiplied by at least 7 compared to the histor-
ical conditions (Fig. 15d), which greatly hampers the far-
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Figure 15. Normalized spatial EOF components and associated time series of amplitude for the RCP 8.5 AdriSC ROMS 3 km sea surface
height (SSH) over the northern Ionian Sea and the RCP 8.5 AdriSC ROMS 1 km bottom PDA for depths greater than 800 m in the Adriatic
Sea (a). Time series of the daily deep-water transport along the T6 transect for the RCP 8.5 simulation (b). DWV (c) and SI (d) over the DA
subdomain for the historical and RCP 8.5 simulations.

future deep-ocean convection. This strongly contrasts with
the present climate conditions for which NAddW is known
to partly transform into AdDW during deep-convection pro-
cesses over the SAP. However, after 7 years of simulation, the
EMT triggers new Ionian–Adriatic exchanges of deep wa-
ter, and the DA subdomain is filled with deep water coming
from the northern Ionian Sea – i.e., inward transports and
DWV within the DA subdomain up to 10.0× 106 kg s−1 and
5.0× 1012 m3, respectively (see Movie S1 and Fig. 15b).

In the far-future simulation, the amount of dense water
within the DA subdomain is thus controlled by the Ionian–
Adriatic exchanges and is far lower than under the historical
conditions (Fig. 15c). Under present climate conditions, the
ventilation of the deepest part of the SAP by NAddW is in-
deed known to occur regularly (Cardin et al., 2020). This is
marked by strong peaks in DWV occurring every 3 to 5 years
over the DA subdomain in the historical simulation and their
absence in the RCP 8.5 simulation.
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Figure 16. Visual summary of the study. Adriatic Dense Water and Adriatic Deep Water far-future dynamics as seen by the kilometer-scale
atmosphere–ocean AdriSC model under the pseudo-global-warming assumption. The numbers and letters correspond to the description of
the different findings as described in Sect. 4.

Interestingly, these results can be compared to the study
of Soto-Navarro et al. (2020), who found that most Med-
CORDEX models project a reduction in the intensity of the
deep-convection events, while one model projects an intensi-
fication of the convection in the Aegean Sea similar to what
happened during the EMT in the 1990s. However, in the
Aegean, Soto-Navarro et al. (2020) found that most Med-
CORDEX models project a reduction in the dense water for-
mation, and hence the EMT-like situation seen in the AdriSC
model under the PGW assumption is unlikely to occur.

4 Conclusions

In this study, an analysis of the dynamics of North Adriatic
Dense Water (NAddW) and Adriatic Deep Water (AdDW)
is presented using the kilometer-scale atmosphere–ocean
AdriSC model under the pseudo-global-warming (PGW) as-
sumption. Several findings differing from previous studies
based on coarser Mediterranean climate models are revealed
and summarized in Fig. 16 and as follows.

First, employing PGW forcing in the far-future simula-
tion and thus imposing a strong vertical temperature gradi-

ent to the AdriSC ROMS 3 km initial and boundary condi-
tions clearly emphasizes the necessity to update thresholds
for defining dense and deep waters to account for background
density changes. In fact, this result is aligned with the supple-
mentary study done by Parras-Berrocal et al. (2023), which
demonstrates that the choice of threshold significantly influ-
ences the results of dense-water formation within the Adri-
atic basin. However, this study reduces the NAddW threshold
to 28.4 kgm−3, while the lowest threshold tested by Parras-
Berrocal et al. (2023) is 28.8 kgm−3.

Second, analysis of air–sea interactions at NAddW gen-
eration sites demonstrates a 15 % increase in winter surface
accumulated buoyancy losses under extreme warming. This
finding contrasts with previous studies that did not repro-
duce the changes in coastal evaporation which compensate
for the well-known reduction in intensity and spatial extent
of far-future Bora winds (found to be, on average, 25 % in
this study).

Third, as a consequence of the first two points, the major
finding of this study is that far-future NAddW formation un-
der extreme warming is expected to remain similar to present
conditions. However, in terms of NAddW transport and ac-
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cumulation, the volume of dense water in the Jabuka Pit is
projected to decrease due to higher stratification hampering
the vertical mixing, while transports between the Jabuka Pit
and the deepest part of the Southern Adriatic Pit (SAP) are
expected to stop because NAddW will be lighter than AdDW
in the far future.

Fourth, the deepest part of the Adriatic basin is found to be
mostly disconnected from the NAddW dynamics, and the far-
future AdDW dynamics are expected to depend on density
changes in the northern Ionian Sea. However, the presented
RCP 8.5 AdDW results are strongly influenced by bound-
ary conditions imposed on the AdriSC ROMS 3 km in the
northern Ionian Sea and using the PGW methodology. Con-
sequently, exchanges between the northern Ionian Sea and
the deepest part of the SAP should be further investigated,
for example, with kilometer-scale models capable of prop-
erly representing (and sampling) the Strait of Otranto and
having open boundaries away from the Ionian Sea.

Finally, under the PGW assumption, this study finds that
extreme warming is unlikely to affect the impact of the bi-
modal oscillation system (BiOS) on salinity variability in the
Adriatic basin. However, similar to the previous point, the
impact of extreme warming on the BiOS itself (i.e., on the re-
versal of the North Ionian Gyre) is likely not captured by the
AdriSC modeling suite due to the strong influence of bound-
ary conditions imposed in the northern Ionian Sea.

Beyond the presented results, dense-water formation in the
Adriatic Sea plays a crucial role in sustaining a variety of ma-
rine species, ranging from deep-sea corals (Cushman-Roisin
et al., 2001; Grubišić et al., 2014) to shallow-water mussels
(Ballarin and Frizzo, 2004), sea urchins (Pais et al., 2012),
and seagrasses (Boudouresque et al., 2009). Pelagic species
such as European pilchards and anchovies also benefit indi-
rectly from nutrient upwelling caused by dense-water forma-
tion, which increases plankton availability (Santojanni et al.,
2006a, b). Currently, the impact of climate change on these
species has not been comprehensively studied in the Adri-
atic Sea but has only been addressed in global assessments
(e.g., Wernberg et al., 2011; Doney et al., 2012; Bopp et al.,
2013). As demonstrated in this study, which provides new
insights into far-future NAddW dynamics, climate change
impacts on Adriatic atmosphere–ocean processes are highly
complex and necessitate the use of high-resolution models.
These processes also influence the biogeochemistry of the
Adriatic basin, suggesting that this study may pave the way
for new assessments of the impact of extreme warming on
ecology and fisheries in the Adriatic Sea.

Appendix A

A1 Atmospheric variables

U10 horizontal wind speed at 2 m [ms−1]
Ua horizontal wind speed at 2 m [ms−1]
Ta air temperature at 2 m [°C]
rh relative humidity at 2 m [%]
ρa density of moist air at 2 m [kgm−3]
ρw density of freshwater [kgm−3]
Pa mean sea level pressure [hPa]
Cpa = 1004.67 specific heat capacity of the air [JK−1 kg−1]

A2 Ocean variables

Ts sea surface temperature [°C]
TsK sea surface temperature [K]
Ss sea surface salinity [PSU]
g = 9.81 gravitational acceleration [ms−2]
ρ0 = 1025 reference density of seawater [kgm−3]
Cp0 = 3991.87 specific heat capacity of

seawater
[J K−1 kg−1]

α thermal expansion coefficient [K−1]
β haline contraction coefficient [PSU−1]
σ potential density anomaly

(PDA)
[kgm−3]

σT PDA threshold for dense or
deep
waters

[kgm−3]

ρ density of the seawater [kgm−3]

A3 Horizontal wind transport

The horizontal wind transport is defined as the integration of
gale-force winds (i.e., horizontal wind speeds at 10 m greater
than 13 ms−1) over the area where they occur in the north-
ern Adriatic Sea (for latitudes above 43° N). In this study,
the monthly median of the horizontal wind transports is used
as a proxy to quantify the impact of climate change on the
intensity and spatial extent of the extreme Bora events.

Twind =
∫∫
U10 (U10 ≥ 13)dxdy [m3 s−1]

A4 Total, sensible, latent heat, and freshwater fluxes

For comparison purposes, the air–sea fluxes are calculated in
the same way as in Denamiel et al. (2020a, b). In this study,
the monthly medians of the total, latent, and sensible heat
fluxes; relative humidity at 2 m; air-minus-sea-saturation-
specific humidity (SAT); and freshwater fluxes are used to
quantify the impact of climate change on the air–sea interac-
tions over the northern Adriatic during extreme Bora events
(U10 ≥ 13).
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Qswn net shortwave
radiation

[Wm−2]

Qlwd downward longwave
wave radiation

[Wm−2]

ε = 0.97 infrared emissivity

σStef-Bolt

= 5.670374419× 10−8 Stefan–Boltzmann
constant

[Wm−2 K−4]

Qlwn

=Qlwd− εσStef-BoltT
4

sK
net longwave
radiation

[Wm−2]

esat(T ) saturation vapor
pressure

[hPa]

L(T )= 2501000− 2370T latent heat
of vaporization

[Jkg−1]

CH,CE turbulent transfer
coefficients

qa

≈
0.62197(0.01 rh esat (Ta))

pa

air-saturation-specific
humidity at 2 m

[kgkg−1]

qs

≈
0.62197(0.98esat (Ts))

pa

sea-surface-saturation-
specific
humidity

[kgkg−1]

Qs = ρaCHCpaUa (Ta− Ts) sensible heat flux [Wm−2]

Ql

= ρaCEUaL(Ts)(qa− qs)
latent heat flux [Wm−2]

Ev =
ρa
ρw
CEUa (qa− qs) evaporation rate [ms−1]

Pr precipitation rate [ms−1]

QTotal

=Qswn+Qlwn+Qs+Ql
total heat fluxes [Wm−2]

FWF= Pr−Ev freshwater fluxes
over the sea

[ms−1]

A5 Surface buoyancy fluxes and losses

In this study, the monthly accumulated surface buoyancy
losses (BLs) are used to quantify the air–sea fluxes over the
northern Adriatic Sea during extreme Bora events (U10 ≥

13). The surface buoyancy fluxes (BFs) are defined as in
Parras-Berrocal et al. (2023), but the buoyancy losses (BLs)
are calculated monthly instead of over the DJFM period.

BF= g
(
αQTotal
ρ0Cpw

+βSSFWF
)

surface buoyancy
fluxes

[m2 s−3]

BL=−
∫

BFdt monthly surface
buoyancy losses

[m2 s−2]

A6 Isopycnal depth and volume for dense and deep
water

The isopycnal depth (ID) for dense and deep waters is cal-
culated over the vertical for a specific isopycnic surface (σT)
assuming that the water column is stable. It is used to derive
the dense-water or deep-water volume (DWV) quantifying
the amount of dense and deep water present within the spe-
cific subdomains chosen in this study.

δσσT =

{
0 if σ < σT

1 if σ ≥ σT
Kronecker delta

ID=
∫
δσσT dz isopycnal depth [m]

DWV=
∫∫

IDdxdy dense- or deep-water volume [m3]

A7 Stratification index

The stratification index (SI; Turner, 1973) is used in this
study to assess the daily water column stratification (i.e., low
values indicate a weak stratification and vice versa). For com-
parison purposes, the same vertical integration is used as in
Parras-Berrocal et al. (2023), but the SI is defined as the me-
dian value over the specific subdomains chosen in this study
and not over the whole Adriatic Sea.

N2
=

g
ρ0

∂ρ
∂z

with N the Brunt–Väisälä
frequency

[s−2]

SI=
∫ h

0 N
2zdz stratification index with

h= 650m
[m2 s−2]

A8 Dense- or deep-water inward and outward
transports along a vertical transect T

The dense- and deep-water transports are calculated along
the transects selected in this study and can be outward trans-
ports (i.e., exiting the Adriatic basin) or inward transports
(i.e., entering the Adriatic basin).

UN ocean velocity normal
to the transect T

[ms−1]

xT distance along
the transect T

[m]

MT_outwards

=

∫∫
σ (σ ≥ σT)

UN (UN ≤ 0)dxTdz

[kgs−1]

MT_inwards

=

∫∫
σ (σ ≥ σT)UN

(UN ≥ 0)dxTdz

[kgs−1]

Code availability. The code of the COAWST model, the ecFlow
pre-processing scripts, and the input data needed to re-run the
AdriSC climate model can be obtained under the Open Science
Framework (OSF) data repository (Denamiel, 2021) under the MIT
License.

Data availability. The model results used to produce this article
can be obtained under the Open Science Framework (OSF) FAIR
data repository (Denamiel, 2024a) under the CC-By Attribution 4.0
International License.

Video supplement. The animation of the daily AdriSC results for
the 31-year long RCP 8.5 simulation is showing the evolution of
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the Adriatic dense- and deep-water under far-future extreme warm-
ing. It is provided under the Open Science Framework (OSF) data
repository (Denamiel, 2024b) under the CC-BY Attribution 4.0 In-
ternational License.
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