Articles | Volume 21, issue 4
https://doi.org/10.5194/os-21-1329-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-21-1329-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite altimetry and operational oceanography: from Jason-1 to SWOT
Pierre-Yves Le Traon
CORRESPONDING AUTHOR
Mercator Ocean International, Toulouse, 31400, France
Ifremer, Plouzané, 29280, France
Gérald Dibarboure
Centre National d'Études Spatiales, Toulouse, 31400, France
Jean-Michel Lellouche
Mercator Ocean International, Toulouse, 31400, France
Marie-Isabelle Pujol
CLS, Ramonville-Saint-Agne, 31520, France
Mounir Benkiran
Mercator Ocean International, Toulouse, 31400, France
Marie Drevillon
Mercator Ocean International, Toulouse, 31400, France
Yann Drillet
Mercator Ocean International, Toulouse, 31400, France
Yannice Faugère
Centre National d'Études Spatiales, Toulouse, 31400, France
Elisabeth Remy
Mercator Ocean International, Toulouse, 31400, France
Related authors
Antonio Novellino, Pierre-Yves Le Traon, and Andy Moore
State Planet, 5-opsr, 8, https://doi.org/10.5194/sp-5-opsr-8-2025, https://doi.org/10.5194/sp-5-opsr-8-2025, 2025
Short summary
Short summary
This paper discusses the vital role of observations in ocean predictions and forecasting, highlighting the need for effective access, management, and integration of data to improve models and decision-making. The paper also explores opportunities for standardizing protocols and the potential of citizen-based, cost-effective data collection methods.
Ségolène Berthou, John Siddorn, Vivian Fraser-Leonhardt, Pierre-Yves Le Traon, and Ibrahim Hoteit
State Planet, 5-opsr, 20, https://doi.org/10.5194/sp-5-opsr-20-2025, https://doi.org/10.5194/sp-5-opsr-20-2025, 2025
Short summary
Short summary
Ocean forecasting is traditionally done independently from atmospheric, wave, or river modelling. We discuss the benefits and challenges of bringing all these modelling systems together for ocean forecasting.
Pierre-Yves Le Traon, Antonio Novellino, and Andrew M. Moore
State Planet, 5-opsr, 7, https://doi.org/10.5194/sp-5-opsr-7-2025, https://doi.org/10.5194/sp-5-opsr-7-2025, 2025
Short summary
Short summary
Ocean prediction relies on the integration between models and satellite and in situ observations through data assimilation techniques. The authors discuss the role of observations in operational ocean forecasting systems, describing the state of the art of satellite and in situ observing networks and defining the paths for addressing multi-scale monitoring and forecasting.
Aliette Chenal, Gilles Garric, Charles-Emmanuel Testut, Mathieu Hamon, Giovanni Ruggiero, Florent Garnier, and Pierre-Yves Le Traon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3633, https://doi.org/10.5194/egusphere-2024-3633, 2024
Short summary
Short summary
This study proposes to improve the representation of ice and snow volumes in the Arctic and Antarctic based on a novel multivariate assimilation method using freeboard radar and snow depth satellite data. The approach leads to an improved sea ice and snow volume representation, even during summer when satellite data is limited. The performance of the assimilated system is better in the Arctic than in Antarctica, where ocean/ice interactions play a key role.
Mounir Benkiran, Pierre-Yves Le Traon, Elisabeth Rémy, and Yann Drillet
EGUsphere, https://doi.org/10.5194/egusphere-2024-420, https://doi.org/10.5194/egusphere-2024-420, 2024
Preprint archived
Short summary
Short summary
The assimilation of altimetry data corrects and improves the forecast of a global ocean forecasting system. Until now, the use of altimetry observations from nadir altimeters has had a major impact on the quality of ocean forecasts. Our study shows that the use of observations from swath altimeters will have a greater impact than the quality of these forecasts and will better constrain mesoscale structures.
Karina von Schuckmann, Lorena Moreira, and Pierre-Yves Le Traon
State Planet, 1-osr7, 1, https://doi.org/10.5194/sp-1-osr7-1-2023, https://doi.org/10.5194/sp-1-osr7-1-2023, 2023
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Mounir Benkiran, Pierre-Yves Le Traon, and Gérald Dibarboure
Ocean Sci., 18, 609–625, https://doi.org/10.5194/os-18-609-2022, https://doi.org/10.5194/os-18-609-2022, 2022
Short summary
Short summary
The SSH analysis and 7 d forecast error will be globally reduced by almost 50 %. Surface current forecast errors should be equivalent to today’s surface current analysis errors or alternatively will be improved (variance error reduction) by 30 % at the surface and 50 % for 300 m depth.
The resolution capabilities will be drastically improved and will be closer to 100 km wavelength as opposed to today where they are above 250 km (on average).
Antonio Bonaduce, Mounir Benkiran, Elisabeth Remy, Pierre Yves Le Traon, and Gilles Garric
Ocean Sci., 14, 1405–1421, https://doi.org/10.5194/os-14-1405-2018, https://doi.org/10.5194/os-14-1405-2018, 2018
Jean-Michel Lellouche, Eric Greiner, Olivier Le Galloudec, Gilles Garric, Charly Regnier, Marie Drevillon, Mounir Benkiran, Charles-Emmanuel Testut, Romain Bourdalle-Badie, Florent Gasparin, Olga Hernandez, Bruno Levier, Yann Drillet, Elisabeth Remy, and Pierre-Yves Le Traon
Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, https://doi.org/10.5194/os-14-1093-2018, 2018
Short summary
Short summary
In the coming decades, a strong growth of the ocean economy is expected. Scientific advances in operational oceanography will play a crucial role in addressing many environmental challenges and in the development of ocean-related economic activities. In this context, remarkable improvements have been achieved with the current Mercator Ocean system. 3-D water masses, sea level, sea ice and currents have been improved, and thus major oceanic variables are hard to distinguish from the data.
Simon Verrier, Pierre-Yves Le Traon, and Elisabeth Remy
Ocean Sci., 13, 1077–1092, https://doi.org/10.5194/os-13-1077-2017, https://doi.org/10.5194/os-13-1077-2017, 2017
V. Turpin, E. Remy, and P. Y. Le Traon
Ocean Sci., 12, 257–274, https://doi.org/10.5194/os-12-257-2016, https://doi.org/10.5194/os-12-257-2016, 2016
Short summary
Short summary
Argo profiling floats are continuously sampling the world ocean, providing temperature and salinity profiles of up to 2000 m depths. This article addresses the impact of the current Argo array on real-time ocean analyses and forecasts. One-year observing system experiments were carried out with the 0.25° global Mercator Ocean monitoring and forecasting system. The improvement due to the assimilation of the Argo profiles is estimated globally and regionally, showing a significant positive impact.
F. Ninove, P.-Y. Le Traon, E. Remy, and S. Guinehut
Ocean Sci., 12, 1–7, https://doi.org/10.5194/os-12-1-2016, https://doi.org/10.5194/os-12-1-2016, 2016
Short summary
Short summary
Argo floats are one of the main components of the in situ observation network in the ocean. Nowadays, more than 3500 profiling floats are sampling the world ocean. In this study, they are used to characterize spatial scales of temperature and salinity variations from the surface down to 1500m. The scales appear to be anisotropic and vary from about 100km at high latitudes to 700km in the Indian and Pacific equatorial and tropical regions.
K. von Schuckmann, J.-B. Sallée, D. Chambers, P.-Y. Le Traon, C. Cabanes, F. Gaillard, S. Speich, and M. Hamon
Ocean Sci., 10, 547–557, https://doi.org/10.5194/os-10-547-2014, https://doi.org/10.5194/os-10-547-2014, 2014
P. Y. Le Traon
Ocean Sci., 9, 901–915, https://doi.org/10.5194/os-9-901-2013, https://doi.org/10.5194/os-9-901-2013, 2013
Hélène Etienne, Clément Ubelmann, Fabrice Ardhuin, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2025-2890, https://doi.org/10.5194/egusphere-2025-2890, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study analyzes near-inertial oscillations (NIOs) in ocean surface currents using drifter data and the LLC2160 ocean-atmosphere model. It finds that NIOs have a typical spatial decorrelation scale around 100 km, varying with latitude. The model accurately captures these patterns, supporting the ODYSEA concept mission's goal to measure surface currents via Doppler radar and reduce NIO-related data aliasing for better ocean monitoring.
Liying Wan, Marcos Garcia Sotillo, Mike Bell, Yann Drillet, Roland Aznar, and Stefania Ciliberti
State Planet, 5-opsr, 15, https://doi.org/10.5194/sp-5-opsr-15-2025, https://doi.org/10.5194/sp-5-opsr-15-2025, 2025
Short summary
Short summary
Operating the ocean value chain requires the implementation of steps that must work systematically and automatically to generate ocean predictions and deliver this information. The paper illustrates the main challenges foreseen by operational chains in integrating complex numerical frameworks from the global to coastal scale and discusses existing tools that facilitate orchestration, including examples of existing systems and their capacity to provide high-quality and timely ocean forecasts.
Antonio Novellino, Pierre-Yves Le Traon, and Andy Moore
State Planet, 5-opsr, 8, https://doi.org/10.5194/sp-5-opsr-8-2025, https://doi.org/10.5194/sp-5-opsr-8-2025, 2025
Short summary
Short summary
This paper discusses the vital role of observations in ocean predictions and forecasting, highlighting the need for effective access, management, and integration of data to improve models and decision-making. The paper also explores opportunities for standardizing protocols and the potential of citizen-based, cost-effective data collection methods.
Ségolène Berthou, John Siddorn, Vivian Fraser-Leonhardt, Pierre-Yves Le Traon, and Ibrahim Hoteit
State Planet, 5-opsr, 20, https://doi.org/10.5194/sp-5-opsr-20-2025, https://doi.org/10.5194/sp-5-opsr-20-2025, 2025
Short summary
Short summary
Ocean forecasting is traditionally done independently from atmospheric, wave, or river modelling. We discuss the benefits and challenges of bringing all these modelling systems together for ocean forecasting.
Marcos Garcia Sotillo, Marie Drevillon, and Fabrice Hernandez
State Planet, 5-opsr, 16, https://doi.org/10.5194/sp-5-opsr-16-2025, https://doi.org/10.5194/sp-5-opsr-16-2025, 2025
Short summary
Short summary
Operational forecasting systems require best practices for assessing the quality of ocean products. The authors discuss the role of the observing network in performing validation of ocean models, identifying current gaps but also emphasizing the need of new metrics. An analysis on the level of maturity of validation processes from global to regional systems is provided. A rich variety of approaches exists. An example is provided of how the Copernicus Marine Service organizes product quality information.
Pierre-Yves Le Traon, Antonio Novellino, and Andrew M. Moore
State Planet, 5-opsr, 7, https://doi.org/10.5194/sp-5-opsr-7-2025, https://doi.org/10.5194/sp-5-opsr-7-2025, 2025
Short summary
Short summary
Ocean prediction relies on the integration between models and satellite and in situ observations through data assimilation techniques. The authors discuss the role of observations in operational ocean forecasting systems, describing the state of the art of satellite and in situ observing networks and defining the paths for addressing multi-scale monitoring and forecasting.
Yann Drillet, Matthew Martin, Yosuke Fujii, Eric Chassignet, and Stefania Ciliberti
State Planet, 5-opsr, 2, https://doi.org/10.5194/sp-5-opsr-2-2025, https://doi.org/10.5194/sp-5-opsr-2-2025, 2025
Short summary
Short summary
This article describes the various stages of research and development that have been carried out over the last few decades to produce an operational reference service for global ocean monitoring and forecasting.
Michael J. Bell, Andreas Schiller, and Stefania Ciliberti
State Planet, 5-opsr, 10, https://doi.org/10.5194/sp-5-opsr-10-2025, https://doi.org/10.5194/sp-5-opsr-10-2025, 2025
Short summary
Short summary
We provide an introduction to physical ocean models, at elementary and intermediate levels, describing the properties they represent, the principles and equations they use to evolve these properties, the physical phenomena they simulate, and the wider context and prospects for their further development. We also outline, at a more technical level, the methods and approximations that they use and the difficulties that limit their accuracy or reliability.
Clément Ubelmann, J. Thomas Farrar, Bertrand Chapron, Lucile Gaultier, Laura Gómez-Navarro, Marie-Hélène Rio, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2025-1149, https://doi.org/10.5194/egusphere-2025-1149, 2025
Short summary
Short summary
This study models wind-driven ocean currents using observed wind stress and an empirically estimated impulse response function based on drifting buoys. By convolving this function with wind forcing from ERA5, the estimates align well with independent observations across latitudes. Additionally, the response function serves as a valuable indicator of subsurface properties.
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig Donlon
Ocean Sci., 21, 343–358, https://doi.org/10.5194/os-21-343-2025, https://doi.org/10.5194/os-21-343-2025, 2025
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first phase. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ± 0.1 mm yr-1 (16–84 % confidence level) on a global scale for time intervals between the tandem phases of 4 years or more.
Michel Tchilibou, Loren Carrere, Florent Lyard, Clément Ubelmann, Gérald Dibarboure, Edward D. Zaron, and Brian K. Arbic
Ocean Sci., 21, 325–342, https://doi.org/10.5194/os-21-325-2025, https://doi.org/10.5194/os-21-325-2025, 2025
Short summary
Short summary
Sea level observations along the swaths of the new SWOT (Surface Water and Ocean Topography) mission were used to characterize internal tides at three semidiurnal frequencies off the Amazon shelf in the tropical Atlantic during the SWOT calibration/validation period. The atlases were derived using harmonic analysis and principal component analysis. The SWOT-derived internal tide atlas outperforms the reference atlas previously used to correct SWOT observations.
Gerald Dibarboure, Cécile Anadon, Frédéric Briol, Emeline Cadier, Robin Chevrier, Antoine Delepoulle, Yannice Faugère, Alice Laloue, Rosemary Morrow, Nicolas Picot, Pierre Prandi, Marie-Isabelle Pujol, Matthias Raynal, Anaelle Tréboutte, and Clément Ubelmann
Ocean Sci., 21, 283–323, https://doi.org/10.5194/os-21-283-2025, https://doi.org/10.5194/os-21-283-2025, 2025
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath-altimetry products. In this paper, we describe how we extended the Level-3 algorithms to handle SWOT’s unique swath-altimeter data. We also illustrate and discuss the benefits, relevance, and limitations of Level-3 swath-altimeter products for various research domains.
Florence Birol, François Bignalet-Cazalet, Mathilde Cancet, Jean-Alexis Daguze, Wassim Fkaier, Ergane Fouchet, Fabien Léger, Claire Maraldi, Fernando Niño, Marie-Isabelle Pujol, and Ngan Tran
Ocean Sci., 21, 133–150, https://doi.org/10.5194/os-21-133-2025, https://doi.org/10.5194/os-21-133-2025, 2025
Short summary
Short summary
We take advantage of the availability of several algorithms for most of the terms/corrections used to calculate altimetry sea level data to quantify and analyze the sources of uncertainty associated with the approach to the coast. The results highlight their hierarchy. Tidal corrections and mean sea surface height contribute to coastal sea level data uncertainties. Improving the retracking algorithm is today the main factor to bring accurate altimetry sea level data closer to the shore.
Maxime Ballarotta, Clément Ubelmann, Valentin Bellemin-Laponnaz, Florian Le Guillou, Guillaume Meda, Cécile Anadon, Alice Laloue, Antoine Delepoulle, Yannice Faugère, Marie-Isabelle Pujol, Ronan Fablet, and Gérald Dibarboure
Ocean Sci., 21, 63–80, https://doi.org/10.5194/os-21-63-2025, https://doi.org/10.5194/os-21-63-2025, 2025
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented swath altimetry data. This study examines SWOT's impact on mapping systems, showing a moderate effect with the current nadir altimetry constellation and a stronger impact with a reduced one. Integrating SWOT with dynamic mapping techniques improves the resolution of satellite-derived products, offering promising solutions for studying and monitoring sea-level variability at finer scales.
Michel Tchilibou, Simon Barbot, Loren Carrere, Ariane Koch-Larrouy, Gérald Dibarboure, and Clément Ubelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3947, https://doi.org/10.5194/egusphere-2024-3947, 2025
Short summary
Short summary
This study presents the annual and monthly MIOST (MIOST24) internal tide atlases for the Indo-Philippine archipelago and the region off the Amazon shelf. Derived from 25 years of altimetry data and an updated wavelength database, the atlases reveal significant monthly variability of internal tides in both regions. The new atlas improves the correction of internal tides in altimetry data and outperforms MIOST 2022 and HRET existing atlases, thus supporting the development of a global atlas.
Aliette Chenal, Gilles Garric, Charles-Emmanuel Testut, Mathieu Hamon, Giovanni Ruggiero, Florent Garnier, and Pierre-Yves Le Traon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3633, https://doi.org/10.5194/egusphere-2024-3633, 2024
Short summary
Short summary
This study proposes to improve the representation of ice and snow volumes in the Arctic and Antarctic based on a novel multivariate assimilation method using freeboard radar and snow depth satellite data. The approach leads to an improved sea ice and snow volume representation, even during summer when satellite data is limited. The performance of the assimilated system is better in the Arctic than in Antarctica, where ocean/ice interactions play a key role.
Amélie Loubet, Simon J. van Gennip, Romain Bourdallé-Badie, and Marie Drevillon
State Planet Discuss., https://doi.org/10.5194/sp-2024-31, https://doi.org/10.5194/sp-2024-31, 2024
Revised manuscript accepted for SP
Short summary
Short summary
Marine Heatwaves (MHWs) are intensifying due to climate change. In 2023, the Copernicus Marine forecast system tracked a significant MHW event in the North Tropical Atlantic. Here we show this event was unprecedented, at the surface and at depth. It peaked in the northeast in May, spreading southwest to reach the Caribbean by fall. In the east and centre, the MHW remained within the surface layers, while in the Caribbean, it reached deeper levels due to warm waters advected by equatorial eddies.
Antonio Sánchez-Román, Flora Gues, Romain Bourdalle-Badie, Marie-Isabelle Pujol, Ananda Pascual, and Marie Drévillon
State Planet, 4-osr8, 4, https://doi.org/10.5194/sp-4-osr8-4-2024, https://doi.org/10.5194/sp-4-osr8-4-2024, 2024
Short summary
Short summary
This study investigates the changing pattern of the Gulf Stream over the last 3 decades as observed in the altimetric record (1993–2022). Changes in the Gulf Stream path have an effect on its speed (and associated energy) and also on waters transported towards the subpolar North Atlantic, impacting Europe's climate. The observed shifts in the paths seem to be linked to variability in the North Atlantic Ocean during winter that may play an important role.
Alice Laloue, Malek Ghantous, Yannice Faugère, Alice Dalphinet, and Lotfi Aouf
State Planet, 4-osr8, 6, https://doi.org/10.5194/sp-4-osr8-6-2024, https://doi.org/10.5194/sp-4-osr8-6-2024, 2024
Short summary
Short summary
Satellite altimetry shows that daily mean significant wave heights (SWHs) and extreme SWHs have increased in the Southern Ocean, the South Atlantic, and the southern Indian Ocean over the last 2 decades. In winter in the North Atlantic, SWH has increased north of 45°N and decreased south of 45°N. SWHs likely to be exceeded every 100 years have also increased in the North Atlantic and the eastern tropical Pacific. However, this study also revealed the need for longer and more consistent series.
Andrea Storto, Giulia Chierici, Julia Pfeffer, Anne Barnoud, Romain Bourdalle-Badie, Alejandro Blazquez, Davide Cavaliere, Noémie Lalau, Benjamin Coupry, Marie Drevillon, Sebastien Fourest, Gilles Larnicol, and Chunxue Yang
State Planet, 4-osr8, 12, https://doi.org/10.5194/sp-4-osr8-12-2024, https://doi.org/10.5194/sp-4-osr8-12-2024, 2024
Short summary
Short summary
The variability in the manometric sea level (i.e. the sea level mass component) in three ocean basins is investigated in this study using three different methods (reanalyses, gravimetry, and altimetry in combination with in situ observations). We identify the emerging long-term signals, the consistency of the datasets, and the influence of large-scale climate modes on the regional manometric sea level variations at both seasonal and interannual timescales.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Sylvain Cailleau, Laurent Bessières, Léonel Chiendje, Flavie Dubost, Guillaume Reffray, Jean-Michel Lellouche, Simon van Gennip, Charly Régnier, Marie Drevillon, Marc Tressol, Matthieu Clavier, Julien Temple-Boyer, and Léo Berline
Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024, https://doi.org/10.5194/gmd-17-3157-2024, 2024
Short summary
Short summary
In order to improve Sargassum drift forecasting in the Caribbean area, drift models can be forced by higher-resolution ocean currents. To this goal a 3 km resolution regional ocean model has been developed. Its assessment is presented with a particular focus on the reproduction of fine structures representing key features of the Caribbean region dynamics and Sargassum transport. The simulated propagation of a North Brazil Current eddy and its dissipation was found to be quite realistic.
Mounir Benkiran, Pierre-Yves Le Traon, Elisabeth Rémy, and Yann Drillet
EGUsphere, https://doi.org/10.5194/egusphere-2024-420, https://doi.org/10.5194/egusphere-2024-420, 2024
Preprint archived
Short summary
Short summary
The assimilation of altimetry data corrects and improves the forecast of a global ocean forecasting system. Until now, the use of altimetry observations from nadir altimeters has had a major impact on the quality of ocean forecasts. Our study shows that the use of observations from swath altimeters will have a greater impact than the quality of these forecasts and will better constrain mesoscale structures.
Karina von Schuckmann, Lorena Moreira, and Pierre-Yves Le Traon
State Planet, 1-osr7, 1, https://doi.org/10.5194/sp-1-osr7-1-2023, https://doi.org/10.5194/sp-1-osr7-1-2023, 2023
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Antonio Sánchez-Román, M. Isabelle Pujol, Yannice Faugère, and Ananda Pascual
Ocean Sci., 19, 793–809, https://doi.org/10.5194/os-19-793-2023, https://doi.org/10.5194/os-19-793-2023, 2023
Short summary
Short summary
This paper assesses the performance of the latest version (DT2021) of global gridded altimetry products distributed through the CMEMS and C3S Copernicus programs on the retrieval of sea level in the coastal zone of the European seas with respect to the previous DT2018 version. This comparison is made using an external independent dataset. DT2021 sea level products better solve the signal in the coastal band.
Oscar Vergara, Rosemary Morrow, Marie-Isabelle Pujol, Gérald Dibarboure, and Clément Ubelmann
Ocean Sci., 19, 363–379, https://doi.org/10.5194/os-19-363-2023, https://doi.org/10.5194/os-19-363-2023, 2023
Short summary
Short summary
Recent advances allow us to observe the ocean from space with increasingly higher detail, challenging our knowledge of the ocean's surface height signature. We use a statistical approach to determine the spatial scale at which the sea surface height signal is no longer dominated by geostrophic turbulence but in turn becomes dominated by wave-type motions. This information helps us to better use the data provided by ocean-observing satellites and to gain knowledge on climate-driving processes.
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
Marie-Isabelle Pujol, Stéphanie Dupuy, Oscar Vergara, Antonio Sánchez-Román, Yannice Faugère, Pierre Prandi, Mei-Ling Dabat, Quentin Dagneaux, Marine Lievin, Emeline Cadier, Gérald Dibarboure, and Nicolas Picot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-292, https://doi.org/10.5194/essd-2022-292, 2022
Manuscript not accepted for further review
Short summary
Short summary
An altimeter sea level along-track level-3 product with a 5 Hz (~1.2 km) sampling is proposed. It takes advantage of recent advances in radar altimeter processing, and improvements made to different stages of the processing chain. Compared to the conventional 1 Hz (~7 km) product, it significantly improves the observability of the short wavelength signal in open ocean and near coast areas (> 5 km). It also contributes to improving high resolution numerical model outputs via data assimilation.
Mounir Benkiran, Pierre-Yves Le Traon, and Gérald Dibarboure
Ocean Sci., 18, 609–625, https://doi.org/10.5194/os-18-609-2022, https://doi.org/10.5194/os-18-609-2022, 2022
Short summary
Short summary
The SSH analysis and 7 d forecast error will be globally reduced by almost 50 %. Surface current forecast errors should be equivalent to today’s surface current analysis errors or alternatively will be improved (variance error reduction) by 30 % at the surface and 50 % for 300 m depth.
The resolution capabilities will be drastically improved and will be closer to 100 km wavelength as opposed to today where they are above 250 km (on average).
Clément Ubelmann, Loren Carrere, Chloé Durand, Gérald Dibarboure, Yannice Faugère, Maxime Ballarotta, Frédéric Briol, and Florent Lyard
Ocean Sci., 18, 469–481, https://doi.org/10.5194/os-18-469-2022, https://doi.org/10.5194/os-18-469-2022, 2022
Short summary
Short summary
The signature of internal tides has become an important component for high-resolution altimetry over oceans. Several studies have proposed some solutions to resolve part of these internal tides based on the altimetry record. Following these studies, we propose here a new inversion approach aimed to mitigate aliasing with other dynamics. After a description of the methodology, the solution for the main tidal components has been successfully validated against independent observations.
Cori Pegliasco, Antoine Delepoulle, Evan Mason, Rosemary Morrow, Yannice Faugère, and Gérald Dibarboure
Earth Syst. Sci. Data, 14, 1087–1107, https://doi.org/10.5194/essd-14-1087-2022, https://doi.org/10.5194/essd-14-1087-2022, 2022
Short summary
Short summary
The new global Mesoscale Eddy Trajectory Atlases (META3.1exp) provide eddy identification and trajectories from altimetry maps. These atlases comprise an improvement to and continuation of the historical META2.0 product. Changes in the detection parameters and tracking were tested by comparing the eddies from the different datasets. In particular, the eddy contours available in META3.1exp are an asset for multi-disciplinary studies.
Pierre Prandi, Jean-Christophe Poisson, Yannice Faugère, Amandine Guillot, and Gérald Dibarboure
Earth Syst. Sci. Data, 13, 5469–5482, https://doi.org/10.5194/essd-13-5469-2021, https://doi.org/10.5194/essd-13-5469-2021, 2021
Short summary
Short summary
We investigate how mapping sea level in the Arctic Ocean can benefit from combining data from three satellite radar altimeters: CryoSat-2, Sentinel-3A and SARAL/AltiKa. A dedicated processing for SARAL/AltiKa provides a baseline for the cross-referencing of CryoSat-2 and Sentinel-3A before mapping. We show that by combining measurements coming from three missions, we are able to increase the resolution of gridded sea level fields in the ice-covered Arctic Ocean.
Sandrine Mulet, Marie-Hélène Rio, Hélène Etienne, Camilia Artana, Mathilde Cancet, Gérald Dibarboure, Hui Feng, Romain Husson, Nicolas Picot, Christine Provost, and P. Ted Strub
Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, https://doi.org/10.5194/os-17-789-2021, 2021
Short summary
Short summary
Satellite altimetry has revolutionized ocean observation by allowing the sea level to be monitored with very good spatiotemporal coverage. However, only the sea level anomalies are retrieved; to monitor the whole oceanic signal a temporal mean (called mean dynamic topography, MDT) must be added to these anomalies. In this study we present the newly updated CNES-CLS18 MDT. An evaluation of this new solution shows significant improvements in both strong currents and coastal areas.
Guillaume Taburet, Antonio Sanchez-Roman, Maxime Ballarotta, Marie-Isabelle Pujol, Jean-François Legeais, Florent Fournier, Yannice Faugere, and Gerald Dibarboure
Ocean Sci., 15, 1207–1224, https://doi.org/10.5194/os-15-1207-2019, https://doi.org/10.5194/os-15-1207-2019, 2019
Short summary
Short summary
This paper deals with sea level altimetery products. These geophysical data are distributed as along-track and gridded data through Copernicus programs CMEMS and C3S. We present in detail a new reprocessing of the data (DT2018) from 1993 to 2017. The main changes and their impacts since the last version (DT2014) are carefully discussed. This comparison is made using an independent dataset. DT2018 sea level products are improved at the global and regional scale, especially in coastal areas.
Maxime Ballarotta, Clément Ubelmann, Marie-Isabelle Pujol, Guillaume Taburet, Florent Fournier, Jean-François Legeais, Yannice Faugère, Antoine Delepoulle, Dudley Chelton, Gérald Dibarboure, and Nicolas Picot
Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, https://doi.org/10.5194/os-15-1091-2019, 2019
Short summary
Short summary
This study investigates the resolving capabilities of the DUACS gridded products delivered through the CMEMS catalogue. Our method is based on the noise-to-signal ratio approach. While altimeter along-track data resolve scales on the order of a few tens of kilometers, we found that the merging of these along-track data into continuous maps in time and space leads to effective resolution ranging from ~ 800 km wavelength at the Equator to 100 km wavelength at high latitude.
Benoît Tranchant, Elisabeth Remy, Eric Greiner, and Olivier Legalloudec
Ocean Sci., 15, 543–563, https://doi.org/10.5194/os-15-543-2019, https://doi.org/10.5194/os-15-543-2019, 2019
Short summary
Short summary
This work deals with the use of sea surface salinity measurements from space in the context of operational oceanography. The salinity plays an important role in the ocean–atmosphere coupling, especially when an El Niño event occurs in the tropical Pacific. However, it is still difficult to use such data in ocean models due to a large extent to large-scales biases. This study shows that from recent data with a suitable bias correction scheme, it is possible to improve our forecast skill.
Antonio Bonaduce, Mounir Benkiran, Elisabeth Remy, Pierre Yves Le Traon, and Gilles Garric
Ocean Sci., 14, 1405–1421, https://doi.org/10.5194/os-14-1405-2018, https://doi.org/10.5194/os-14-1405-2018, 2018
Jean-Michel Lellouche, Eric Greiner, Olivier Le Galloudec, Gilles Garric, Charly Regnier, Marie Drevillon, Mounir Benkiran, Charles-Emmanuel Testut, Romain Bourdalle-Badie, Florent Gasparin, Olga Hernandez, Bruno Levier, Yann Drillet, Elisabeth Remy, and Pierre-Yves Le Traon
Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, https://doi.org/10.5194/os-14-1093-2018, 2018
Short summary
Short summary
In the coming decades, a strong growth of the ocean economy is expected. Scientific advances in operational oceanography will play a crucial role in addressing many environmental challenges and in the development of ocean-related economic activities. In this context, remarkable improvements have been achieved with the current Mercator Ocean system. 3-D water masses, sea level, sea ice and currents have been improved, and thus major oceanic variables are hard to distinguish from the data.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Simon Verrier, Pierre-Yves Le Traon, and Elisabeth Remy
Ocean Sci., 13, 1077–1092, https://doi.org/10.5194/os-13-1077-2017, https://doi.org/10.5194/os-13-1077-2017, 2017
Marie-Isabelle Pujol, Yannice Faugère, Guillaume Taburet, Stéphanie Dupuy, Camille Pelloquin, Michael Ablain, and Nicolas Picot
Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, https://doi.org/10.5194/os-12-1067-2016, 2016
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
V. Turpin, E. Remy, and P. Y. Le Traon
Ocean Sci., 12, 257–274, https://doi.org/10.5194/os-12-257-2016, https://doi.org/10.5194/os-12-257-2016, 2016
Short summary
Short summary
Argo profiling floats are continuously sampling the world ocean, providing temperature and salinity profiles of up to 2000 m depths. This article addresses the impact of the current Argo array on real-time ocean analyses and forecasts. One-year observing system experiments were carried out with the 0.25° global Mercator Ocean monitoring and forecasting system. The improvement due to the assimilation of the Argo profiles is estimated globally and regionally, showing a significant positive impact.
F. Ninove, P.-Y. Le Traon, E. Remy, and S. Guinehut
Ocean Sci., 12, 1–7, https://doi.org/10.5194/os-12-1-2016, https://doi.org/10.5194/os-12-1-2016, 2016
Short summary
Short summary
Argo floats are one of the main components of the in situ observation network in the ocean. Nowadays, more than 3500 profiling floats are sampling the world ocean. In this study, they are used to characterize spatial scales of temperature and salinity variations from the surface down to 1500m. The scales appear to be anisotropic and vary from about 100km at high latitudes to 700km in the Indian and Pacific equatorial and tropical regions.
F. d'Ovidio, A. Della Penna, T. W. Trull, F. Nencioli, M.-I. Pujol, M.-H. Rio, Y.-H. Park, C. Cotté, M. Zhou, and S. Blain
Biogeosciences, 12, 5567–5581, https://doi.org/10.5194/bg-12-5567-2015, https://doi.org/10.5194/bg-12-5567-2015, 2015
Short summary
Short summary
Field campaigns are instrumental in providing ground truth for understanding and modeling global ocean biogeochemical budgets. A survey however can only inspect a fraction of the global oceans, typically a region hundreds of kilometers wide for a temporal window of the order of (at most) several weeks. In this spatiotemporal domain, mesoscale variability can mask climatological contrasts. Here we propose the use of multisatellite-based Lagrangian diagnostics to solve this issue.
Y. Drillet, J. M. Lellouche, B. Levier, M. Drévillon, O. Le Galloudec, G. Reffray, C. Regnier, E. Greiner, and M. Clavier
Ocean Sci., 10, 1013–1029, https://doi.org/10.5194/os-10-1013-2014, https://doi.org/10.5194/os-10-1013-2014, 2014
K. von Schuckmann, J.-B. Sallée, D. Chambers, P.-Y. Le Traon, C. Cabanes, F. Gaillard, S. Speich, and M. Hamon
Ocean Sci., 10, 547–557, https://doi.org/10.5194/os-10-547-2014, https://doi.org/10.5194/os-10-547-2014, 2014
P. Y. Le Traon
Ocean Sci., 9, 901–915, https://doi.org/10.5194/os-9-901-2013, https://doi.org/10.5194/os-9-901-2013, 2013
Related subject area
Approach: Operational Oceanography | Properties and processes: Mesoscale to submesoscale dynamics
Uncertainties in the finite-time Lyapunov exponent in an ocean ensemble prediction model
Assessing the impact of future altimeter constellations in the Met Office global ocean forecasting system
Transient Attracting Profiles in the Great Pacific Garbage Patch
Machine learning methods to predict sea surface temperature and marine heatwave occurrence: a case study of the Mediterranean Sea
Mateusz Matuszak, Johannes Röhrs, Pål Erik Isachsen, and Martina Idžanović
Ocean Sci., 21, 401–418, https://doi.org/10.5194/os-21-401-2025, https://doi.org/10.5194/os-21-401-2025, 2025
Short summary
Short summary
Lagrangian coherent structures (LCSs) describe material transport in ocean flow by describing transport and accumulation regions. We discuss the implications of model flow field uncertainty for finite-time Lyapunov exponents (FTLEs), which under certain conditions approximate LCSs. FTLEs add value to forecasting when they are certain and long-lived. Averaging FTLEs reveals where they are more certain and long-lived, often influenced by bottom topography.
Robert R. King, Matthew J. Martin, Lucile Gaultier, Jennifer Waters, Clément Ubelmann, and Craig Donlon
Ocean Sci., 20, 1657–1676, https://doi.org/10.5194/os-20-1657-2024, https://doi.org/10.5194/os-20-1657-2024, 2024
Short summary
Short summary
We use simulations of our ocean forecasting system to compare the impact of additional altimeter observations from two proposed future satellite constellations. We found that, in our system, an altimeter constellation of 12 nadir altimeters produces improved predictions of sea surface height, surface currents, temperature, and salinity compared to a constellation of 2 wide-swath altimeters.
Luca Kunz, Alexa Griesel, Carsten Eden, Rodrigo Duran, and Bruno Sainte-Rose
Ocean Sci., 20, 1611–1630, https://doi.org/10.5194/os-20-1611-2024, https://doi.org/10.5194/os-20-1611-2024, 2024
Short summary
Short summary
Transient Attracting Profiles (TRAPs) indicate the most attracting regions of the flow and have the potential to facilitate offshore cleanups in the Great Pacific Garbage Patch. We study the characteristics of TRAPs and the prospects for predicting debris transport from a mesoscale-permitting dataset. Our findings show the relevance of TRAP lifetime estimations to an operational application, and our TRAP tracking algorithm may even benefit other challenges that are related to search at sea.
Giulia Bonino, Giuliano Galimberti, Simona Masina, Ronan McAdam, and Emanuela Clementi
Ocean Sci., 20, 417–432, https://doi.org/10.5194/os-20-417-2024, https://doi.org/10.5194/os-20-417-2024, 2024
Short summary
Short summary
This study employs machine learning to predict marine heatwaves (MHWs) in the Mediterranean Sea. MHWs have far-reaching impacts on society and ecosystems. Using data from ESA and ECMWF, the research develops accurate prediction models for sea surface temperature (SST) and MHWs across the region. Notably, machine learning methods outperform existing forecasting systems, showing promise in early MHW predictions. The study also highlights the importance of solar radiation as a predictor of SST.
Cited articles
Ablain, M., Cazenave, A., Valladeau, G., and Guinehut, S.: A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008, Ocean Sci., 5, 193–201, https://doi.org/10.5194/os-5-193-2009, 2009.
Ablain, M., Jugier, R., Zawadki, L., and Taburet, N.: The TOPEX-A Drift and Impacts on GMSL Time Series; Ocean Surface Topography Science Team meeting, https://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/Poster_OSTST17_GMSL_Drift_TOPEX-A.pdf (last access: 10 July 2025), 2017.
Ablain, M., Meyssignac, B., Zawadzki, L., Jugier, R., Ribes, A., Spada, G., Benveniste, J., Cazenave, A., and Picot, N.: Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration, Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019, 2019.
Auger, M., Prandi, P., and Sallée, J. B.: Southern Ocean sea level anomaly in the sea ice-covered sector from multimission satellite observations, Sci. Data, 9., 70, https://doi.org/10.1038/s41597-022-01166-z, 2022.
Aviso+: Timeline of modern radar altimetry missions, version 03/2024, https://doi.org/10.24400/527896/A02-2022.001, 2022.
Ballarotta, M., Ubelmann, C., Pujol, M. I., Taburet, G., Fournier, F., Legeais, J. F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure, G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, 2019.
Ballarotta, M., Ubelmann, C., Veillard, P., Prandi, P., Etienne, H., Mulet, S., Faugère, Y., Dibarboure, G., Morrow, R., and Picot, N.: Improved global sea surface height and current maps from remote sensing and in situ observations, Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, 2023.
Ballarotta, M., Ubelmann, C., Bellemin-Laponnaz, V., Le Guillou, F., Meda, G., Anadon, C., Laloue, A., Delepoulle, A., Faugère, Y., Pujol, M.-I., Fablet, R., and Dibarboure, G.: Integrating wide-swath altimetry data into Level-4 multi-mission maps, Ocean Sci., 21, 63–80, https://doi.org/10.5194/os-21-63-2025, 2025a.
Ballarotta, M., Pujol, M.-I., and SL-TAC team: Quality Information Document for Sea Level TAC – DUACS products, Issue 13.0, https://documentation.marine.copernicus.eu/QUID/CMEMS-SL-QUID-008-032-068.pdf (last access: 8 July 2025), 2025b.
Bell, M. J., Lefebvre, M., Le Traon, P. Y., Smith, N., and Wilmer-Becker, K.: The Global Ocean Data Assimilation Experiment, Oceanography, 22, 14–21, 2009.
Bell, M. J., Schiller, A., Le Traon, P. Y., Smith, N. R., Dombrowsky, E., and Wilmer-Becker, K.: An introduction to GODAE OceanView, J. Operat. Oceanogr., 8, s2–s11, https://doi.org/10.1080/1755876X.2015.1022041, 2015.
Benkiran, M. and Greiner, E.: Impact of the Incremental Analysis Updates on a Real-Time System of the North Atlantic Ocean, J. Atmos. Ocean. Tech., 25, 2055–2073, 2008.
Benkiran, M., Ruggiero, G., Greiner, E., Le Traon, P. Y., Remy, E., Lellouche, J. M., Bourdallé-Badie, R., Drillet Y., and Tchonang, B.: Assessing the Impact of the Assimilation of SWOT Observations in a Global High-Resolution Analysis and Forecasting System Part 1: Methods, Front. Mar. Sci., 8, 691955, https://doi.org/10.3389/fmars.2021.691955, 2021.
Benkiran, M., Le Traon, P. Y., Remy, E., and Drillet, Y.: Impact of two high resolution altimetry mission concepts on ocean forecasting, Front. Mar. Sci., 11, 1465065, https://doi.org/10.3389/fmars.2024.1465065, 2024.
Benkiran, M., Fouchet, E., Le Traon, P. Y., Remy, E., and Drillet, Y.: SWOT and swath altimetry: a breakthrough for global ocean prediction, Geophys. Res. Lett., in review, 2025.
Birol, F., Bignalet-Cazalet, F., Cancet, M., Daguze, J.-A., Fkaier, W., Fouchet, E., Léger, F., Maraldi, C., Niño, F., Pujol, M.-I., and Tran, N.: Understanding uncertainties in the satellite altimeter measurement of coastal sea level: insights from a round-robin analysis, Ocean Sci., 21, 133–150, https://doi.org/10.5194/os-21-133-2025, 2025.
Brasseur, P. and Verron, J.: The SEEK filter method for data assimilation in oceanography: a synthesis, J. Ocean Dynam., 56, 650– 661, https://doi.org/10.1007/s10236-006-0080-3, 2006.
Caballero, A., Mulet, S., Ayoub, N., Manso-Narvarte, I., Davila, X., Boone, C., Toublanc, F., and Rubio, A.: Integration of HF Radar Observations for an Enhanced Coastal Mean Dynamic Topography, Front. Mar. Sci., 7, 588713, https://doi.org/10.3389/fmars.2020.588713, 2020.
Cadier, E., Courcol, B., Prandi, P., Quet, V., Moreau, T., Maraldi, C., Bignalet-Cazalet, F., Dinardo, S., Martin-Puig, C., and Donlon, C.: Assessment of Sentinel-6MF low resolution numerical retracker over ocean: Continuity on reference orbit and improvements, Adv. Space Rese., 75, 30–52, https://doi.org/10.1016/j.asr.2024.11.045, 2025.
Carrere, L., Lyard, F., Allain, D., Cancet, M., Picot, N., Guillot, A., Faugère, Y., Dupuy, S., and Baghi, R.: Final version of the FES2014 global ocean tidal model, which includes a new loading tide solution, OSTST, La Rochelle, France, https://ostst.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/Poster_FES2014b_OSTST_2016.pdf (last access: 10 July 2025), 2016.
Carrere, L., Lyard, F., Cancet, M., Allain, D., Dabat, M.-L., Fouchet, E., Sahuc, E., Faugere, Y., Dibarboure, G., and Picot, N.: A new barotropic model for global ocean : FES2022. OSTST, https://ostst.aviso.altimetry.fr/programs/abstracts-details.html?tx_ausyclsseminar_pi2%5bobjAbstracte%5d=3287&cHash=X (last access: 10 July 2025), 2023.
Chassignet, E. P., Pascual, A., Tintoré, J., and Verron, J. (Eds.): New Frontiers in Operational Oceanography, GODAE OceanView, 815 pp., https://doi.org/10.17125/gov2018, 2018.
Ciliberti, S. A., Jansen, E., Coppini, G., Peneva, E., Azevedo, D., Causio, S., Stefanizzi, L., Creti', S., Lecci, R., Lima, L., Ilicak, M., Pinardi, N., and Palazov, A.: The Black Sea Physics Analysis and Forecasting System within the Framework of the Copernicus Marine Service, J. Mar. Sci. Eng., 10, 48, https://doi.org/10.3390/jmse10010048, 2022.
Cooper, M. and Haines, K.: Data assimilation with water property conservation, J. Geophys. Res., 101, 1059–1077, 1996.
D'Addezio, J. M., Smith, S., Jacobs, G. A., Helber, R. W., Rowley, C., Souopgui, I., and Carrier, M. J.: Quantifying wavelengths constrained by simulated SWOT observations in a submesoscale resolving ocean analysis/forecasting system, Ocean Model., 135, 40–55, https://doi.org/10.1016/j.ocemod.2019.02.001, 2019.
Dibarboure, G. and Lambin, J.: Monitoring the ocean surface topography virtual constellation: Lessons learned from the contribution of SARAL/AltiKa, Mar. Geod., 38, 684–703, 2015.
Dibarboure, G. and Morrow, R.: Value of the Jason-1 geodetic phase to study rapid oceanic changes and importance for defining a Jason-2 geodetic orbit, J. Atmos. Ocean. Tech., 33, 1913–1930, 2016.
Dibarboure, G., Pujol, M. I., Pascual, A., and Bronner, E. : Using short scale content of OGDR data improve the Near Real Time products of SSALTO/DUACS, OSTST 2009, https://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2009/oral/Dibarboure.pdf (last access: 20 January 2025), 2009.
Dibarboure, G., Pujol, M. I., Briol, F., Le Traon, P. Y., Larnicol, G., Picot, N., Mertz, F., and Ablain, M.: Jason-2 in DUACS: Updated System Description, First Tandem Results and Impact on Processing and Products, Mar. Geod., 34, 214–241, 2011.
Dibarboure, G., Anadon, C., Briol, F., Cadier, E., Chevrier, R., Delepoulle, A., Faugère, Y., Laloue, A., Morrow, R., Picot, N., Prandi, P., Pujol, M.-I., Raynal, M., Tréboutte, A., and Ubelmann, C.: Blending 2D topography images from the Surface Water and Ocean Topography (SWOT) mission into the altimeter constellation with the Level-3 multi-mission Data Unification and Altimeter Combination System (UACS), Ocean Sci., 21, 283–323, https://doi.org/10.5194/os-21-283-2025, 2025.
Drake, P., Edwards, C. A., Arango, H. G., Wilkin, J., TajalliBakhsh, T., Powell, B., and Moore, A. M.: Forecast Sensitivity-based Observation Impact (FSOI) in an analysis–forecast system of the California Current Circulation, Ocean Model., 182, 102159, https://doi.org/10.1016/j.ocemod.2022.102159, 2023.
Drévillon, M., Bourdallé-Badie, R., Derval, C., Lellouche, J. M., Rémy, E., Tranchant, B., Benkiran, M., Grenier, E., Guinehut, S., Verbrugge, N., Garric, G., Testut, C. E., Laborie, M., Nouel, L., Bahurel, P., Bricaud, C., Crosnier, L., Dombrowsky, E., Durand, E., Ferry, N., Hernandez, F., Le Galloudec, O., Messal, F., and Parent, L.: The GODAE/Mercator-Ocean global ocean forecasting system: results, applications and prospects, J. Oper. Oceanogr., 1, 51–57, https://doi.org/10.1080/1755876X.2008.11020095, 2008.
Ducet, N., Le Traon, P. Y., and Reverdin, G.: Global high-resolution mapping of ocean circulation from the combination of T/P and ERS-1/2, J. Geophys. Res., 105, 19477–19498, 2000.
El Aouni, A., Gaudel, Q., Regnier, C., Van Gennip, S., Drevillon, M., Drillet, Y., and Lellouche, J. M.: GLONET: Mercator's End-to-End Neural Forecasting System, arXiv [preprint], https://doi.org/10.48550/arXiv.2412.05454, 2024.
Faugère, Y., Taburet, G., Ballarotta, M., Pujol, I., Legeais, J. F., Maillard, G., Durand, C., Dagneau, Q., Lievin, M., Sanchez Roman, A., and Dibarboure, G.: DUACS DT2021: 28 years of reprocessed sea level altimetry products, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7479, https://doi.org/10.5194/egusphere-egu22-7479, 2022.
Fennel, K., Gehlen, M., Brasseur, P., Brown, C. W., Ciavatta, S., Cossarini, G., Crise, A., Edwards, C. A., Ford, D., Friedrichs, M. A. M., Gregoire, M., Jones, E., Kim, H.-C., Lamouroux, J., Murtugudde, R., Perruche, C., and the GODAE OceanView Marine Ecosystem Analysis and Prediction Task Team: Advancing Marine Biogeochemical and Ecosystem Reanalyses and Forecasts as Tools for Monitoring and Managing Ecosystem Health, Front. Mar. Sci., 6, 89, https://doi.org/10.3389/fmars.2019.00089, 2019.
Ferry, N., Remy, E., Brasseur, P., and Maes, C.: The Mercator Ocean operational analysis/forecast system: assessment and validation of a 11-year reanalysis, J. Mar. Syst., 65, 540–560, https://doi.org/10.1016/j.jmarsys.2005.08.004, 2007.
Flechtner, F., Sneeuw, N., and Schuh, W. D. (Eds.): Observation of the System Earth from Space – CHAMP, GRACE, GOCE and future missions, in: Advanced Technologies in Earth Sciences, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-32135-1, 2014.
Francis, P., Jithin, A., Effy, J., Chatterjee, A., Chakraborty, K., Paul, A., Balaji, B., Shenoi, S., Biswamoy, P., Mukherjee, A., Singh, P., Deepsankar, B., Reddy, S., Vinayachandran, P., Kumar, M., Bhaskar, T., Ravichandran, M., Unnikrishnan, A., Shankar, D., Prakash, A., Aparna, S., Harikumar, R., Kaviyazhahu, K., Suprit, K., Shesu, R., Kumar, N., Rao, N., Annapurnaiah, K., Venkatesan, R., Rao, A., Rajagopal, E., Prasad, V., Gupta, M., Nair, T., Rao, E., and Satyanarayana, B.: High-Resolution Operational Ocean Forecast and Reanalysis System for the Indian Ocean, B. Am. Meteorol. Soc., 101, E1340–E1356, https://doi.org/10.1175/BAMS-D-19-0083.1, 2020.
Fu, L. L. and Cazenave, A.: Satellite Altimetry and Earth Sciences. A Handbook of Techniques and Applications. Preface, in: International Geophysics, Vol. 69, edited by: Fu, L.-L. and Cazenave, A., Academic Press, https://doi.org/10.1016/S0074-6142(01)80145-5, 2001.
Fu, L.-L., Pavelsky, T., Cretaux, J.-F., Morrow, R., Farrar, J. T., Vaze, P., Sengenes, P., Vinogradova-Shiffer, N., Sylvestre-Baron, A., Picot, N., and Dibarboure, G.: The Surface Water and Ocean Topography Mission: A breakthrough in radar remote sensing of the ocean and land surface water, Geophys. Res. Lett., 51, e2023GL107652, https://doi.org/10.1029/2023GL107652, 2024.
Fujii, Y., Rémy, E., Zuo, H., Oke, P., Halliwell, G., Gasparin, F., Benkiran, M., Loose, N., Cummings, J., Xie, J., Xue, Y., Masuda, S., Smith, G. C., Balmaseda, M., Germineaud, C., Lea, D. J., Larnicol, G., Bertino, L., Bonaduce, A., Brasseur, P., Donlon, C., Heimbach, P., Kim, Y., Kourafalou, V., Le Traon, P. Y., Martin, M., Paturi, S., Tranchant, B., and Usui, N.: Observing System Evaluation Based on Ocean Data Assimilation and Prediction Systems: On-Going Challenges and a Future Vision for Designing and Supporting Ocean Observational Networks, Front. Mar. Sci., 6, 417, https://doi.org/10.3389/fmars.2019.00417, 2019.
Gasparin, F., Cravatte, S., Greiner, E., Perruche, C., Hamon, M., Van Gennip, S., and Lellouche, J. M.: Excessive Productivity and Heat Content in Tropical Pacific Analyses: Disentangling the Effects of In Situ and Altimetry Assimilation, Ocean Model., 160, 101768, https://doi.org/10.1016/j.ocemod.2021.101768, 2021.
Gasparin, F., Lellouche, J. M., Cravatte, S., Ruggiero, G., Rohith, B., Le Traon, P. Y., and Rémy E.: On the control of spatial and temporal oceanic scales by existing and future observing systems: An observing system simulation experiment approach, Front. Mar. Sci., 10, 1021650, https://doi.org/10.3389/fmars.2023.1021650, 2023.
Guérou, A., Meyssignac, B., Prandi, P., Ablain, M., Ribes, A., and Bignalet-Cazalet, F.: Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated measurement uncertainty, Ocean Sci., 19, 431–451, https://doi.org/10.5194/os-19-431-2023, 2023.
Hamon, M., Greiner, E., Le Traon, P. Y., and Remy, E.: Impact of multiple altimeter data and mean dynamic topography in a global analysis and forecasting system, J. Atmos. Ocean. Tech., 36, 1255–1266, https://doi.org/10.1175/JTECH-D-18-0236.1, 2019.
Heimbach, P., Fukumori, I., Hill, C. N., Ponte, R. M., Stammer, D., Wunsch, C., Campin, J. M., Cornuelle, B., Fenty, I., Forget, G., Köhl, A., Mazloff, M., Menemenlis, D., Nguyen, A. T., Piecuch, C., Trossman, D., Verdy, A., Wang, O., and Zhang, H.: Putting It All Together: Adding Value to the Global Ocean and Climate Observing Systems with Complete Self-Consistent Ocean State and Parameter Estimates, Front. Mar. Sci., 6, 55, https://doi.org/10.3389/fmars.2019.00055, 2019.
Heimbach, P., O'Donncha, F., Garcia-Valdecasas, J. M., Arnaud, A., and Wan, L.: Crafting the Future: Machine Learning for Ocean Forecasting, State Planet Discuss. [preprint], https://doi.org/10.5194/sp-2024-18, in review, 2024.
Hernandez, F. and Schaeffer, P.: Altimetric Mean Sea Surfaces and Gravity Anomaly Maps Inter-Comparisons; AVISO Tech. Rep. AVI-NT-011-5242-CLS, Centre Nationale d'Etudes Spatiales, Toulouse, France, 2002.
Hirose, N., Usui, N., Sakamoto, K., Tsujino, H., Yamanaka, G., Nakano, H., Urakawa, S., Toyoda, T., Fujii, Y., and Kohno, N.: Development of a new operational system for monitoring and forecasting coastal and open-ocean states around Japan, Ocean Dynam., 69, 1333–1357, https://doi.org/10.1007/s10236-019-01306-x, 2019.
International Altimetry Team: Altimetry for the future: Building on 25 years of progress, Adv. Space Res., 68, 319–363, 2021.
Jacobs, G., D'Addezio, J. M., Ngodock, H., and Souopgui, I.: Observation and model resolution implications to ocean prediction, Ocean Model., 159, 101760, https://doi.org/10.1016/j.ocemod.2021.101760, 2021.
Jacobs, G., D'Addezio, J. M., Bartels, B., DeHaan, C., Barron, C., Carrier, M., Shcherbina, A., and Dever, M.: Adapting constrained scales to observation resolution in ocean forecasts, Ocean Model., 186, 102252, https://doi.org/10.1016/j.ocemod.2023.102252, 2023.
Johannessen, J. A., Le Traon, P. Y., Robinson, I., Nittis, K., Bell, M. J., Pinardi, N., and Bahurel, P.: Marine Environment and Security for the European Area, B. Am. Meteorol. Soc., 87, 1081–1090, https://doi.org/10.1175/BAMS-87-8-1081, 2006.
Jousset, S., Mulet, S., Greiner, E., Wilkin, J., Vidar, L., Dibarboure, G., and Picot, N.: New Global Mean Dynamic Topography CNES-CLS-22 Combining Drifters, Hydrological Profiles and High Frequency Radar Data, Authorea Preprints, https://essopenarchive.org/doi/pdf/10.22541/essoar.170158328.85804859 (last access: September 2024), 2023.
Kocha, C., Lievin, M., Philipps, S., Pageot, Y., Rubin, C., Quet, V., Dibarboure, G., Nogueira Loddo, C., Denis, I., and Guinle, T.: 30 years of sea level multi-mission reprocessed to improve climate and mesoscale satellite data record, in: 30 Years of Progress in Radar Altimetry Symposium, Montpellier, France, https://az659834.vo.msecnd.net/eventsairwesteuprod/production-nikal-public/db505ebc90764a88911bb465efa7bb09 (last access: 27 December 2024), 2024.
Kocha, C., Lievin, M., Pageot, Y., Rubin, C., Philipps, S., Pujol, M. I., Dibarboure G., Denis, I., Nogueira Loddo, C., and Guinle, T.: 30 years of sea level multi-mission satellite dataset reprocessed to improve climate and mesoscale, in preparation, 2025.
Kvas, A., Brockmann, J. M., Krauss, S., Schubert, T., Gruber, T., Meyer, U., Mayer-Gürr, T., Schuh, W. D., Jäggi, A., and Pail, R.: GOCO06s – a Satellite-Only Global Gravity Field Model, Earth Syst. Sci. Data, 13, 99–118, https://doi.org/10.5194/essd-13-99-2021, 2021.
Laloue, A., Schaeffer, P., Pujol, M.-I., Veillard, P., Andersen, O., Sandwell, D., Delepoulle, A., Dibarboure, G., and Faugere, Y.: Merging recent Mean Sea Surface into a 2023 Hybrid model (from Scripps, DTU, CLS and CNES), Earth Space Sci., 12, e2024EA003836, https://doi.org/10.1029/2024EA003836, 2025.
Lellouche, J.-M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner, E., Garric, G., Ferry, N., Desportes, C., Testut, C.-E., Bricaud, C., Bourdallé-Badie, R., Tranchant, B., Benkiran, M., Drillet, Y., Daudin, A., and De Nicola, C.: Evaluation of global monitoring and forecasting systems at Mercator Océan, Ocean Sci., 9, 57–81, https://doi.org/10.5194/os-9-57-2013, 2013.
Lellouche, J.M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018.
Lellouche, J. M., Greiner, E., Bourdallé-Badie, R., Garric, G., Melet, A., Drevillon, M., Bricaud, C., Hamon, M., Le Galloudec, O., Regnier, C., Candela, T., Testut, C. E., Gasparin, F., Ruggiero, G., Benkiran, M., Drillet, Y., and Le Traon, P. Y.: The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis, Front. Earth Sci., 9, 698876., https://doi.org/10.3389/feart.2021.698876, 2021.
Lellouche, J. M., Greiner, E., Ruggiero, G., Bourdallé-Badie, R., Testut, C. E., Le Galloudec, O., Benkiran, M., and Garric, G.: Evolution of the Copernicus Marine Service global ocean analysis and forecasting high-resolution system: potential benefit for a wide range of users, Proceeding Eurogoos, 242–251, http://hdl.handle.net/10793/1883 (last access: 10 July 2025), 2023.
Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn, D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B., Torrence, M. H., Wang, Y. M., Williamson, R. G., Pavlis, E. C., Rapp, R. H., and Olson, T. R.: The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, Rep. NASA/TP-1998-206861, NASA Goddard Space Flight Cent., Greenbelt, MD, 1998.
Le Traon, P. Y.: From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography, Ocean Sci., 9, 901–915, https://doi.org/10.5194/os-9-901-2013, 2013.
Le Traon, P. Y., Rienecker, M., Smith, N., Bahurel, P., Bell, M., Hurlburt, H., and Dandin, P.: Operational oceanography and prediction – a GODAE perspective, in: Observing the Oceans in the 21st Century, edited by: Koblinsky, C. J. and Smith, N. R., ARCHIMER, http://archimer.ifremer.fr/doc/00090/20096/ (last access: 10 July 2025), 2001.
Le Traon, P. Y., Dibarboure, G., Jacobs, G., Martin, M., Remy, E., and Schiller, A.: Use of satellite altimetry for operational oceanography in Satellite Altimetry Over Oceans and Land Surfaces, CRC Press, 581–608, https://doi.org/10.1201/9781315151779-18 2017.
Le Traon, P. Y., Reppucci, A., Alvarez Fanjul, E., et al.: From Observation to Information and Users: The Copernicus Marine Service Perspective, Front. Mar. Sci., 6, 234, https://doi.org/10.3389/fmars.2019.00234, 2019.
Le Traon, P. Y., Abadie, V., Ali, A., et al.: The Copernicus Marine Service from 2015 to 2021: six years of achievements, Mercator Ocean J., 57, 220 pp., https://doi.org/10.48670/moi-cafr-n813, 2021.
Mercator Ocean International (MOi): Copernicus Marine Service requirements for the Evolution of the Copernicus Satellite Component – V2 April 2024, Copernicus Marine Space Requirements, https://marine.copernicus.eu/sites/default/files/media/pdf/2024-06/Copernicus_Marine_Space_Requirements_2024.pdf (last access: 10 July 2025), 2024.
Metzger, E. J., Smedstad, O. M., Thoppil, P. G., Hurlburt, H. E., Cummings, J. A., Wallcraft, A. J., Zamudio, L., Franklin, D. S., Posey, P. G., Phelps, M. W., Hogan, P. J., Bub, F. L., and DeHaan, C. J.: US Navy operational global ocean and Arctic ice prediction systems, Oceanography, 27, 32–43, https://doi.org/10.5670/oceanog.2014.66, 2014.
Moreau, T., Cadier, E., Boy, F., Aublanc, J., Rieu, P., Raynal, M., Labroue, S., Thibaut, P., Dibarboure, G., Picot, N., Phalippou, L., Demeestere, F., Borde, F., and Mavrocordatos, C.: High-performance altimeter Doppler processing for measuring sea level height under varying sea state conditions, Adv. Space Res., 67, 1870–1886, https://doi.org/10.1016/j.asr.2020.12.038, 2021.
Morrow, R., Fu, L. L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E., d'Ovidio, F., Farrar, J. T., Gille, S. T., Lapeyre, G., Le Traon, P. Y., Pascual, A., Ponte, A., Qiu, B., Rascle, N., Ubelmann, C., Wang, J., and Zaron, E. D.: Global Observations of Fine-Scale Ocean Surface Topography With the Surface Water and Ocean Topography (SWOT) Mission, Front. Mar. Sci., 6, 232, https://doi.org/10.3389/fmars.2019.00232, 2019.
Mulet, S., Rio, M. H., Etienne, H., Artana, C., Cancet, M., Dibarboure, G., Feng, H., Husson, R., Picot, N., Provost, C., and Strub, P. T.: The new CNES-CLS18 global mean dynamic topography, Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, 2021.
Pinardi, N., Alvarez Fanjul, E., Kouroufalou, V., Tintoré, J., Heslop, E., Coppini, G., Federico I., Bahurel, P., Valentini, A., and Drillet, Y.: Assessing ocean prediction capabilities for sustainable development, State of the Ocean Report, IOC-UNESCO, Paris, 45–51, https://doi.org/10.25607/4wbg-d349, 2024.
Prandi, P., Meyssignac, B., Ablain, M., Spada, G., Ribes, A., and Benveniste, J.: Local sea level trends, accelerations and uncertainties over 1993–2019, Sci. Data, 8, 1, https://doi.org/10.1038/s41597-020-00786-7, 2021a.
Prandi, P., Poisson, J.-C., Faugère, Y., Guillot, A., and Dibarboure, G.: Arctic sea surface height maps from multi-altimeter combination, Earth Syst. Sci. Data, 13, 5469–5482, https://doi.org/10.5194/essd-13-5469-2021, 2021b.
Pujol, M. I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., and Picot, N.: DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years, Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, 2016.
Pujol, M. I., Schaeffer, P., Faugère, Y., Raynal, M., Dibarboure, G., and Picot, N.: Gauging the Improvement of Recent Mean Sea Surface Models: A New Approach for Identifying and Quantifying Their Errors, J. Geophys. Res.-Oceans, 123, 5889–5911, https://doi.org/10.1029/2017JC013503, 2018.
Pujol, M. I., Dupuy, S., Vergara, O., Sánchez Román, A., Faugère, Y., Prandi, P., Dabat, M.L., Dagneux, Q., Lievin, M., Cadier, E., Dibarboure, G., and Picot, N.: Refining the Resolution of DUACS Along-Track Level-3 Sea Level Altimetry Products, Remote Sens., 15, 793, https://doi.org/10.3390/rs15030793, 2023.
Pujol, M.-I., Ballarotta, M., Taburet, G., Delepoulle, A., Dupuy, S., Kocha, C., Jenn-Alet, M., Dagneaux, Q., Dibarboure, D., and Faugère, Y.: DUACS DT-2024: the new reprocessing of the sea level anomaly Level-3&4 altimeter products. 30 Years of Progress in Radar Altimetry Symposium, Montpellier, France, https://az659834.vo.msecnd.net/eventsairwesteuprod/production-nikal-public/28e0b1c170034be19bebd6fefa5a383d (last access: 27 December 2024), 2024a.
Pujol, M.-I., Ballarotta, M.,Taburet, G., Delepoulle, A., Dupuy, S., Vergara, O., Veillard, P., Treboutte, A., Dibarboure, G., and Faugère, Y.: 30 years of altimetry Sea Level L3/L4 products record: major improvements in recent decades. 30 Years of Progress in Radar Altimetry Symposium, Montpellier, France, https://az659834.vo.msecnd.net/eventsairwesteuprod/production-nikal-public/e9c9f65e5cca420ebfa7591efc20380f (last access: 27 December 2024), 2024b.
Qiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L. L., and Menemenlis, D.: Seasonality in Transition Scale from Balanced to Unbalanced Motions in the World Ocean, J. Phys. Oceanogr., 48, 591–605, https://doi.org/10.1175/JPO-D-17-0169.1, 2018.
Raynal, M., Labroue, S., Moreau, T., Boy, F., and Picot, N.: From conventional to Delay Doppler altimetry: A demonstration of continuity and improvements with the Cryosat-2 mission, Adv. Space Res., 62, 1564–1575, https://doi.org/10.1016/j.asr.2018.01.006, 2018.
Rio, M.-H. and Hernandez, F.: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model, J. Geophys. Res., 109, C12032, https://doi.org/10.1029/2003JC002226, 2004.
Rio, M. H., Guinehut, S., and Larnicol, G.: New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements, J. Geophys. Res., 116, C07018, https://doi.org/10.1029/2010JC006505, 2011.
Rio, M. H., Mulet, S., and Picot, N.: Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett., 41, 8918–8925, https://doi.org/10.1002/2014GL061773, 2014.
Roemmich, D., Boebel, O., Desaubies, Y., Freeland, F., Kim, K., King, B., Le Traon, P. Y., Molinari, B., Owens, B., Riser, S., Send, U., Takeuchi, K., and Wijffels, S.: Argo: The Global Array of Profiling Floats, in: Observing the Oceans in the 21st Century, edited by: Koblinsky, C. J. and Smith, N. R., GODAE Project Office, Bureau of Meteorology, 248–258, 2001.
Schaeffer P., Faugere, Y, Legeais J. F., Picot, N., and Bronner, E.: The CNES_CLS11 Global Mean Sea Surface computed from 16 years of satellite altimeter data, Mar. Geod., 35, 3–19, https://doi.org/10.1080/01490419.2012.718231, 2012.
Schaeffer, P., Pujol, M. I., Veillard, P., Faugere, Y., Dagneaux, Q., Dibarboure, G., and Picot, N.: The CNES CLS 2022 Mean Sea Surface: Short Wavelength Improvements from CryoSat-2 and SARAL/AltiKa High-Sampled Altimeter Data, Remote Sens., 15, 2910, https://doi.org/10.3390/rs15112910, 2023.
Schiller, A., Brassington, G. B., Oke, P., Cahill, M., Divakaran, P., Entel, Freeman, J., Griffin, D., Herzfeld, M., Hoeke, R., Huang, X., Jones, E., King, E., Parker, B., Pitman, T., Rosebrock, U., Sweeney, J., Taylor, A., Thatcher, M., Woodham, R., and Zhong, A.: Bluelink ocean forecasting Australia: 15 years of operational ocean service delivery with societal, economic and environmental benefits, J. Oper. Oceanogr., 13, 1–18, https://doi.org/10.1080/1755876X.2019.1685834, 2019.
Smith, N. and Lefebvre, M.: The Global Ocean Data Assimilation Experiment (GODAE), in: Monitoring the oceans in the 2000s: an integrated approach, International Symposium, 15–17 October 1997, Biarritz, 1997.
Soufflet, Y., Marchesiello, P., Lemarié, F., Jouanno, J., Capet, X., Debreu, L., and Benshila, R.: On effective resolution in ocean models, Ocean Model., 98, 36–50, https://doi.org/10.1016/j.ocemod.2015.12.004, 2016.
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M. I., Legeais, J. F., Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT-2018: 25 years of reprocessed sea level altimeter products, Ocean Sci., 15, 1207–1224, https://doi.org/10.5194/os-15-1207-2019, 2019.
Tchilibou, M., Carrere, L., Lyard, F., Ubelmann, C., Dibarboure, G., Zaron, E. D., and Arbic, B. K.: Internal tides off the Amazon shelf in the western tropical Atlantic: analysis of SWOT Cal/Val mission data, Ocean Sci., 21, 325–342, https://doi.org/10.5194/os-21-325-2025, 2025.
Tchonang, B. C., Benkiran, M., Le Traon, P. Y., van Gennip, S. J., Lellouche, J. M., and Ruggiero, G.: Assessing the Impact of the Assimilation of SWOT Observations in a Global High-Resolution Analysis and Forecasting System – Part 2: Results, Front. Mar. Sci., 8, 687414, https://doi.org/10.3389/fmars.2021.687414, 2021.
Tran, N., Vandemark, D., Zaron, E., Thibaut, P., Dibarboure, G., and Picot, N.: Assessing the effects of sea-state related errors on the precision of high-rate Jason-3 altimeter sea level data, Adv. Space Res., 68, 963–977, https://doi.org/10.1016/j.asr.2019.11.034, 2021.
Ubelmann, C., Dibarboure, G., Gaultier, L., Ponte, A., Ardhuin, F., Ballarotta, M., and Faugère, Y.: Reconstructing ocean surface current combining altimetry and future spaceborne Doppler data, J. Geophys. Res.-Oceans, 126, e2020JC016560, https://doi.org/10.1029/2020JC016560, 2021.
Veillard, P., Prandi, P., Pujol, M. I., Daguzé, J. A., Piras, F., Dibarboure, G., and Faugère, Y.: Arctic and Southern Ocean polar sea level maps and along-tracks from multi-mission satellite altimetry from 2011 to 2021, Front. Mar. Sci., 11, 1419132, https://doi.org/10.3389/fmars.2024.1419132, 2024.
Verrier, S., Le Traon, P. Y., and Remy, E.: Assessing the impact of multiple altimeter missions and Argo in a global eddy-permitting data assimilation system, Ocean Sci., 13, 1077–1092, https://doi.org/10.5194/os-13-1077-2017, 2017.
Verrier, S., Le Traon, P. Y., Remy, E., and Lellouche, J. M.: Assessing the impact of SAR altimetry for global ocean analysis and forecasting, J. Oper. Oceanogr., 11, 82–86, https://doi.org/10.1080/1755876X.2018.1505028, 2018.
Verron, J., Bonnefond, P., Andersen, O., Ardhuin, F., Bergé-Nguyen, M., Bhowmick, S., Blumstein, D., Boy, F., Brodeau, L., Crétaux, J. F., Dabat, M. L., Dibarboure, G., Fleury, S., Garnier, F., Gourdeau, L., Marks, K., Queruel, N., Sandwell, D., Smith, W. H. F., and Zaron, E. D.: The SARAL/AltiKa mission: A step forward to the future of altimetry, Adv. Space Rese., 68, 808–828, https://doi.org/10.1016/j.asr.2020.01.030, 2021.
Vignudelli, S., Kostianoy, A. G., Cipollini, P., and Benveniste, J. (Eds.): Coastal altimetry, Springer Science & Business Media, Berlin, 565 pp., https://doi.org/10.1007/978-3-642-12796-0, 2011.
von Schuckmann, K., Moreira, L., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen, J., and Neukermans, G. (Eds.): 8th edition of the Copernicus Ocean State Report (OSR8), State Planet, 4-osr8, https://doi.org/10.5194/sp-4-osr8, 2024.
Yu, Y., Sandwell, D. T., and Dibarboure, G.: Abyssal marine tectonics from the SWOT mission, Science, 386, 1251–1256, 2024.
Short summary
By providing all weather, global, and real-time observations of sea level, a key variable to constrain ocean analysis and forecasting systems, satellite altimetry has had a profound impact on the development of operational oceanography. This paper provides an overview of the development and evolution of satellite altimetry and operational oceanography over the past 20 years from the launch of Jason-1 in 2001 to the launch of SWOT (Surface Water and Ocean Topography) in 2022.
By providing all weather, global, and real-time observations of sea level, a key variable to...
Special issue