Articles | Volume 20, issue 4
https://doi.org/10.5194/os-20-981-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-981-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An emerging pathway of Atlantic Water to the Barents Sea through the Svalbard Archipelago: drivers and variability
Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Svalbard, Norway
Ragnheid Skogseth
Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Svalbard, Norway
Till M. Baumann
Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
Institute of Marine Research, Bergen, Norway
Eva Falck
Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Svalbard, Norway
Ilker Fer
Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Svalbard, Norway
Related authors
No articles found.
Eivind H. Kolås, Ilker Fer, and Till M. Baumann
Ocean Sci., 20, 895–916, https://doi.org/10.5194/os-20-895-2024, https://doi.org/10.5194/os-20-895-2024, 2024
Short summary
Short summary
In the northwestern Barents Sea, we study the Barents Sea Polar Front formed by Atlantic Water meeting Polar Water. Analyses of ship and glider data from October 2020 to February 2021 show a density front with warm, salty water intruding under cold, fresh water. Short-term variability is linked to tidal currents and mesoscale eddies, influencing front position, density slopes and water mass transformation. Despite seasonal changes in the upper layers, the front remains stable below 100 m depth.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Eivind H. Kolås, Tore Mo-Bjørkelund, and Ilker Fer
Ocean Sci., 18, 389–400, https://doi.org/10.5194/os-18-389-2022, https://doi.org/10.5194/os-18-389-2022, 2022
Short summary
Short summary
A turbulence instrument was installed on a light autonomous underwater vehicle (AUV) and deployed in the Barents Sea in February 2021. We present the data quality and discuss limitations when measuring turbulence from the AUV. AUV vibrations contaminate the turbulence measurements, yet the measurements were sufficiently cleaned when the AUV operated in turbulent environments. In quiescent environments the noise from the AUV became relatively large, making the turbulence measurements unreliable.
Johannes S. Dugstad, Pål Erik Isachsen, and Ilker Fer
Ocean Sci., 17, 651–674, https://doi.org/10.5194/os-17-651-2021, https://doi.org/10.5194/os-17-651-2021, 2021
Short summary
Short summary
We quantify the mesoscale eddy field in the Lofoten Basin using Lagrangian model trajectories and aim to estimate the relative importance of eddies compared to the ambient flow in transporting warm Atlantic Water to the Lofoten Basin as well as modifying it. Water properties are largely changed in eddies compared to the ambient flow. However, only a relatively small fraction of eddies is detected in the basin. The ambient flow therefore dominates the heat transport to the Lofoten Basin.
Zoe Koenig, Eivind H. Kolås, and Ilker Fer
Ocean Sci., 17, 365–381, https://doi.org/10.5194/os-17-365-2021, https://doi.org/10.5194/os-17-365-2021, 2021
Short summary
Short summary
The Arctic Ocean is a major sink for heat and salt for the global ocean. Ocean mixing contributes to this sink by mixing the Atlantic and Pacific waters with surrounding waters. We investigate the drivers of ocean mixing north of Svalbard based on observations collected during two research cruises in 2018 as part of the Nansen Legacy project. We found that wind and tidal forcing are the main drivers and that 1 % of the Atlantic Water heat loss can be attributed to vertical turbulent mixing.
Ilker Fer, Anthony Bosse, and Johannes Dugstad
Ocean Sci., 16, 685–701, https://doi.org/10.5194/os-16-685-2020, https://doi.org/10.5194/os-16-685-2020, 2020
Short summary
Short summary
We analyzed 14-month-long observations from moored instruments to describe the average features and the variability of the Norwegian Atlantic Slope Current at the Lofoten Escarpment (13°E, 69°N). The slope current varies strongly with depth and in time. Pulses of strong current occur, lasting for 1 to 2 weeks, and extend as deep as 600 m. The average volume transport is 2 x 106 m3 s-1.
Erik M. Bruvik, Ilker Fer, Kjetil Våge, and Peter M. Haugan
Ocean Sci., 16, 291–305, https://doi.org/10.5194/os-16-291-2020, https://doi.org/10.5194/os-16-291-2020, 2020
Short summary
Short summary
A concept of small and slow ocean gliders or profiling floats with wings is explored. These robots or drones measure the ocean temperature and currents. Even if the speed is very slow, only 13 cm s1, it is possible to navigate the (simulated) ocean using a navigation method called Eulerian roaming. The slow speed and size conserve a lot of energy and enable scientific missions of years at sea.
Eivind Kolås and Ilker Fer
Ocean Sci., 14, 1603–1618, https://doi.org/10.5194/os-14-1603-2018, https://doi.org/10.5194/os-14-1603-2018, 2018
Short summary
Short summary
Measurements of ocean currents, stratification and microstructure collected northwest of Svalbard are used to characterize the evolution of the warm Atlantic current. The measured turbulent heat flux is too small to account for the observed cooling rate of the current. The estimated contribution of diffusion by eddies could be limited to one half of the observed heat loss. Mixing in the bottom boundary layer, driven by cross-slope flow of buoyant water, can be important.
Jenny E. Ullgren, Elin Darelius, and Ilker Fer
Ocean Sci., 12, 451–470, https://doi.org/10.5194/os-12-451-2016, https://doi.org/10.5194/os-12-451-2016, 2016
Short summary
Short summary
One-year long moored measurements of currents and hydrographic properties in the overflow region of the Faroe Bank Channel have provided a more accurate observational-based estimate of the volume transport, entrainment, and eddy diffusivities associated with the overflow plume. The data set resolves the temporal variability and covers the entire lateral and vertical extent of the plume.
E. Darelius, I. Fer, T. Rasmussen, C. Guo, and K. M. H. Larsen
Ocean Sci., 11, 855–871, https://doi.org/10.5194/os-11-855-2015, https://doi.org/10.5194/os-11-855-2015, 2015
Short summary
Short summary
Quasi-regular eddies are known to be generated in the outflow of dense water through the Faroe Bank Channel. One year long mooring records from the plume region show that (1) the energy associated with the eddies varies by a factor of 10 throughout the year and (2) the frequency of the eddies shifts between 3 and 6 days and is related to the strength of the outflow. Similar variability is shown by a high-resolution regional model and the observations agree with theory on baroclinic instability.
I. Fer, M. Müller, and A. K. Peterson
Ocean Sci., 11, 287–304, https://doi.org/10.5194/os-11-287-2015, https://doi.org/10.5194/os-11-287-2015, 2015
Short summary
Short summary
Over the Yermak Plateau northwest of Svalbard there is substantial energy conversion from barotropic to internal tides. Internal tides are trapped along the topography. An approximate local conversion-to-dissipation balance is found over
shallows and also in the deep part of the sloping flanks. Dissipation of
tidal energy can be a significant contributor to turbulent mixing and cooling of the Atlantic layer in the Arctic Ocean.
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
M. Bakhoday Paskyabi and I. Fer
Nonlin. Processes Geophys., 21, 713–733, https://doi.org/10.5194/npg-21-713-2014, https://doi.org/10.5194/npg-21-713-2014, 2014
E. Støylen and I. Fer
Nonlin. Processes Geophys., 21, 87–100, https://doi.org/10.5194/npg-21-87-2014, https://doi.org/10.5194/npg-21-87-2014, 2014
Related subject area
Approach: In situ Observations | Properties and processes: Mesoscale to submesoscale dynamics
The Polar Front in the northwestern Barents Sea: structure, variability and mixing
Tipping of the double-diffusive regime in the southern Adriatic Pit in 2017 in connection with record high-salinity values
Characterization of physical properties of a coastal upwelling filament with evidence of enhanced submesoscale activity and transition from balanced to unbalanced motions in the Benguela upwelling region
Relative dispersion and kinematic properties of the coastal submesoscale circulation in the southeastern Ligurian Sea
Stirring across the Antarctic Circumpolar Current's southern boundary at the prime meridian, Weddell Sea
Evaluating altimetry-derived surface currents on the south Greenland shelf with surface drifters
Eivind H. Kolås, Ilker Fer, and Till M. Baumann
Ocean Sci., 20, 895–916, https://doi.org/10.5194/os-20-895-2024, https://doi.org/10.5194/os-20-895-2024, 2024
Short summary
Short summary
In the northwestern Barents Sea, we study the Barents Sea Polar Front formed by Atlantic Water meeting Polar Water. Analyses of ship and glider data from October 2020 to February 2021 show a density front with warm, salty water intruding under cold, fresh water. Short-term variability is linked to tidal currents and mesoscale eddies, influencing front position, density slopes and water mass transformation. Despite seasonal changes in the upper layers, the front remains stable below 100 m depth.
Felipe L. L. Amorim, Julien Le Meur, Achim Wirth, and Vanessa Cardin
Ocean Sci., 20, 463–474, https://doi.org/10.5194/os-20-463-2024, https://doi.org/10.5194/os-20-463-2024, 2024
Short summary
Short summary
Analysis of a high-frequency time series of thermohaline data measured at the EMSO-E2M3A regional facility in the southern Adriatic Pit (SAP) reveals a significant change in the double-diffusive regime in 2017 associated with the intrusion of extremely salty waters into the area, suggesting salt fingering as the dominant regime. The strong heat loss at the surface during this winter allowed deep convection to transport this high-salinity water from the intermediate to deep layers of the pit.
Ryan P. North, Julia Dräger-Dietel, and Alexa Griesel
Ocean Sci., 20, 103–121, https://doi.org/10.5194/os-20-103-2024, https://doi.org/10.5194/os-20-103-2024, 2024
Short summary
Short summary
The Benguela upwelling region off the coast of Namibia supplies cold water from the deep ocean that is transported offshore in finger-like structures called filaments. We investigate one major filament using measurements from a ship that crossed it multiple times and with mutiple buoys that follow the ocean currents. We find that the motions associated with the filament enhance the kinetic energy at small scales and provide a pathway for mixing of water and turbulent dissipation of energy.
Pierre-Marie Poulain, Luca Centurioni, Carlo Brandini, Stefano Taddei, Maristella Berta, and Milena Menna
Ocean Sci., 19, 1617–1631, https://doi.org/10.5194/os-19-1617-2023, https://doi.org/10.5194/os-19-1617-2023, 2023
Short summary
Short summary
Drifters and a profiling float were deployed in the coastal waters of the southeastern Ligurian Sea to characterize the near-surface circulation at a scale of ~10 km. The drifters were trapped in an offshore-flowing filament and a cyclonic eddy that developed at the southwestern extremity of the filament. Drifter velocities are used to estimate differential kinematic properties and relative dispersion statistics of the surface currents.
Ria Oelerich, Karen J. Heywood, Gillian M. Damerell, Marcel du Plessis, Louise C. Biddle, and Sebastiaan Swart
Ocean Sci., 19, 1465–1482, https://doi.org/10.5194/os-19-1465-2023, https://doi.org/10.5194/os-19-1465-2023, 2023
Short summary
Short summary
At the southern boundary of the Antarctic Circumpolar Current, relatively warm waters encounter the colder waters surrounding Antarctica. Observations from underwater vehicles and altimetry show that medium-sized cold-core eddies influence the southern boundary's barrier properties by strengthening the slopes of constant density lines across it and amplifying its associated jet. As a result, the ability of exchanging properties, such as heat, across the southern boundary is reduced.
Arthur Coquereau and Nicholas P. Foukal
Ocean Sci., 19, 1393–1411, https://doi.org/10.5194/os-19-1393-2023, https://doi.org/10.5194/os-19-1393-2023, 2023
Short summary
Short summary
Understanding meltwater circulation around Greenland is crucial as it could influence climate variability but difficult as data are scarce. Here, we use 34 surface drifters to evaluate satellite-derived surface currents and show that satellite data recover the general structure of the flow and can recreate the pathways of particles around the southern tip of Greenland. This result permits a wide range of work to proceed looking at long-term changes in the circulation of the region since 1993.
Cited articles
Arntsen, M., Sundfjord, A., Skogseth, R., Błaszczyk, M., and Promińska, A.: Inflow of Warm Water to the Inner Hornsund Fjord, Svalbard: Exchange Mechanisms and Influence on Local Sea Ice Cover and Glacier Front Melting, J. Geophys. Res.-Oceans, 124, 1915–1931, https://doi.org/10.1029/2018JC014315, 2019. a
Årthun, M. and Schrum, C.: Ocean Surface Heat Flux Variability in the Barents Sea, J. Marine Syst., 83, 88–98, https://doi.org/10.1016/j.jmarsys.2010.07.003, 2010. a
Årthun, M., Ingvaldsen, R. B., Smedsrud, L. H., and Schrum, C.: Dense Water Formation and Circulation in the Barents Sea, Deep-Sea Res. Pt. I, 58, 801–817, https://doi.org/10.1016/j.dsr.2011.06.001, 2011. a
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., and Ingvaldsen, R. B.: Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat, J. Climate, 25, 4736–4743, https://doi.org/10.1175/JCLI-D-11-00466.1, 2012. a, b
Årthun, M., Onarheim, I. H., Dörr, J., and Eldevik, T.: The Seasonal and Regional Transition to an Ice-Free Arctic, Geophys. Res. Lett., 48, e2020GL090825, https://doi.org/10.1029/2020GL090825, 2021. a
Asbjørnsen, H., Årthun, M., Skagseth, Ø., and Eldevik, T.: Mechanisms Underlying Recent Arctic Atlantification, Geophys. Res. Lett., 47, e2020GL088036, https://doi.org/10.1029/2020GL088036, 2020. a, b
Barton, B. I., Lenn, Y.-D., and Lique, C.: Observed Atlantification of the Barents Sea Causes the Polar Front to Limit the Expansion of Winter Sea Ice, J. Phys. Oceanogr., 48, 1849–1866, https://doi.org/10.1175/jpo-d-18-0003.1, 2018. a, b
Bloshkina, E. V., Pavlov, A. K., and Filchuk, K.: Warming of Atlantic Water in Three West Spitsbergen Fjords: Recent Patterns and Century-Long Trends, Polar Res., 40, 5392, https://doi.org/10.33265/polar.v40.5392, 2021. a
Brown, N. J., Mauritzen, C., Li, C., Madonna, E., Isachsen, P. E., and LaCasce, J. H.: Rapid Response of the Norwegian Atlantic Slope Current to Wind Forcing, J. Phys. Oceanogr., 53, 389–408, https://doi.org/10.1175/JPO-D-22-0014.1, 2023. a, b
Dalpadado, P., Arrigo, K. R., van Dijken, G. L., Skjoldal, H. R., Bagøien, E., Dolgov, A. V., Prokopchuk, I. P., and Sperfeld, E.: Climate Effects on Temporal and Spatial Dynamics of Phytoplankton and Zooplankton in the Barents Sea, Prog. Oceanogr., 185, 102320, https://doi.org/10.1016/j.pocean.2020.102320, 2020. a
Dickson, R. R., Midttun, L. S., and Mukhin, A. I.: The hydrographic conditions in the Barents Sea in August–September 1965–1968, in: International 0-Group Fish Survey in the Barents Sea, edited by: Dragesund, O., ICES Cooperative Research Reports (CRR) Ser. A, 18, 3–24, International Council for the Exploration of the Sea, https://doi.org/10.17895/ices.pub.8051, 1970. a
Dörr, J., Årthun, M., Docquier, D., Li, C., and Eldevik, T.: Causal Links Between Sea-Ice Variability in the Barents-Kara Seas and Oceanic and Atmospheric Drivers, Geophys. Res. Lett., 51, e2024GL108195, https://doi.org/10.1029/2024GL108195, 2024. a
Eriksen, E., Skjoldal, H. R., Gjøsæter, H., and Primicerio, R.: Spatial and Temporal Changes in the Barents Sea Pelagic Compartment during the Recent Warming, Prog. Oceanogr., 151, 206–226, https://doi.org/10.1016/j.pocean.2016.12.009, 2017. a
Eriksen, E., Gjøsæter, H., Prozorkevich, D., Shamray, E., Dolgov, A., Skern-Mauritzen, M., Stiansen, J. E., Kovalev, Y., and Sunnanå, K.: From Single Species Surveys towards Monitoring of the Barents Sea Ecosystem, Prog. Oceanogr., 166, 4–14, https://doi.org/10.1016/j.pocean.2017.09.007, 2018. a
Erofeeva, S. and Egbert, G.: Arc5km2018: Arctic Ocean Inverse Tide Model on a 5 Kilometer Grid, 2018, Arctic Data Center [data set], https://doi.org/10.18739/A21R6N14K, 2020. a
Fer, I.: Physical Oceanography Data from the Cruise KB 2018616 with R.V. Kristine Bonnevie, Norwegian Marine Data Centre [data set], https://doi.org/10.21335/NMDC-2047975397, 2020. a
Fer, I., Skogseth, R., Astad, S. S., Baumann, T., Elliott, F., Falck, E., Gawinski, C., and Kolås, E. H.: SS-MSC2 Process Cruise/Mooring Service 2020: Cruise Report, The Nansen Legacy Report Series, https://doi.org/10.7557/nlrs.5798, 2021. a
Geoffroy, M., Berge, J., Majaneva, S., Johnsen, G., Langbehn, T. J., Cottier, F., Mogstad, A. A., Zolich, A., and Last, K.: Increased Occurrence of the Jellyfish Periphylla Periphylla in the European High Arctic, Polar Biol., 41, 2615–2619, https://doi.org/10.1007/s00300-018-2368-4, 2018. a
Gerland, S., Ingvaldsen, R. B., Reigstad, M., Sundfjord, A., Bogstad, B., Chierici, M., Hop, H., Renaud, P. E., Smedsrud, L. H., Stige, L. C., Årthun, M., Berge, J., Bluhm, B. A., Borgå, K., Bratbak, G., Divine, D. V., Eldevik, T., Eriksen, E., Fer, I., Fransson, A., Gradinger, R., Granskog, M. A., Haug, T., Husum, K., Johnsen, G., Jonassen, M. O., Jørgensen, L. L., Kristiansen, S., Larsen, A., Lien, V. S., Lind, S., Lindstrøm, U., Mauritzen, C., Melsom, A., Mernild, S. H., Müller, M., Nilsen, F., Primicerio, R., Søreide, J. E., van der Meeren, G. I., and Wassmann, P.: Still Arctic?–The Changing Barents Sea, Elementa: Science of the Anthropocene, 11, 00088, https://doi.org/10.1525/elementa.2022.00088, 2023. a, b
Gjevik, B., Nøst, E., and Straume, T.: Model Simulations of the Tides in the Barents Sea, J. Geophys. Res., 99, 3337, https://doi.org/10.1029/93JC02743, 1994. a
Good, S., Fiedler, E., Mao, C., Martin, M. J., Maycock, A., Reid, R., Roberts-Jones, J., Searle, T., Waters, J., While, J., and Worsfold, M.: The Current Configuration of the OSTIA System for Operational Production of Foundation Sea Surface Temperature and Ice Concentration Analyses, Remote Sens., 12, 720, https://doi.org/10.3390/rs12040720, 2020. a, b, c
Guo, C., Ilicak, M., Fer, I., Darelius, E., and Bentsen, M.: Baroclinic Instability of the Faroe Bank Channel Overflow, Journal of Physical Oceanography, 44, 2698–2717, https://doi.org/10.1175/JPO-D-14-0080.1, 2014. a
Häkkinen, S. and Cavalieri, D. J.: A Study of Oceanic Surface Heat Fluxes in the Greenland, Norwegian, and Barents Seas, J. Geophys. Res.-Oceans, 94, 6145–6157, https://doi.org/10.1029/JC094iC05p06145, 1989. a
Harms, I. H.: A Numerical Study of the Barotropic Circulation in the Barents and Kara Seas, Cont. Shelf Res., 12, 1043–1058, https://doi.org/10.1016/0278-4343(92)90015-C, 1992. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023. a
Ingvaldsen, R. B., Assmann, K. M., Primicerio, R., Fossheim, M., Polyakov, I. V., and Dolgov, A. V.: Physical Manifestations and Ecological Implications of Arctic Atlantification, Nat. Rev. Earth Environ., 2, 874–889, https://doi.org/10.1038/s43017-021-00228-x, 2021. a, b
Isaksen, K., Nordli, Ø., Ivanov, B., Køltzow, M. A. Ø., Aaboe, S., Gjelten, H. M., Mezghani, A., Eastwood, S., Førland, E., Benestad, R. E., Hanssen-Bauer, I., Brækkan, R., Sviashchennikov, P., Demin, V., Revina, A., and Karandasheva, T.: Exceptional Warming over the Barents Area, Sci. Rep., 12, 9371, https://doi.org/10.1038/s41598-022-13568-5, 2022. a, b
Ivanov, V. V., Frolov, I. E., and Filchuk, K. V.: Transformation of Atlantic Water in the North-Eastern Barents Sea in Winter, Arctic and Antarctic Research, 66, 246–266, https://doi.org/10.30758/0555-2648-2020-66-3-246-266, 2020. a, b
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012GL052219, 2012. a
Jakobsson, M., Mayer, L. A., Bringensparr, C., Castro, C. F., Mohammad, R., Johnson, P., Ketter, T., Accettella, D., Amblas, D., An, L., Arndt, J. E., Canals, M., Casamor, J. L., Chauché, N., Coakley, B., Danielson, S., Demarte, M., Dickson, M. L., Dorschel, B., Dowdeswell, J. A., Dreutter, S., Fremand, A. C., Gallant, D., Hall, J. K., Hehemann, L., Hodnesdal, H., Hong, J., Ivaldi, R., Kane, E., Klaucke, I., Krawczyk, D. W., Kristoffersen, Y., Kuipers, B. R., Millan, R., Masetti, G., Morlighem, M., Noormets, R., Prescott, M. M., Rebesco, M., Rignot, E., Semiletov, I., Tate, A. J., Travaglini, P., Velicogna, I., Weatherall, P., Weinrebe, W., Willis, J. K., Wood, M., Zarayskaya, Y., Zhang, T., Zimmermann, M., and Zinglersen, K. B.: The International Bathymetric Chart of the Arctic Ocean Version 4.0, Sci. Data, 7, 1–14, https://doi.org/10.1038/s41597-020-0520-9, 2020. a
Kalhagen, K., Fer, I., Skogseth, R., Nilsen, F., and Czyz, C.: Physical Oceanography Data from a Mooring on Spitsbergenbanken in the North-Western Barents Sea, September 2018 – November 2019, Norwegian Marine Data Centre [data set], https://doi.org/10.21335/NMDC-1780886855, 2024. a
Knipowitsch, N.: Hydrologische Untersuchungen Im Europäischen Eismeer, Annalen der Hydrographie und Maritimen Meteorologie, 33, 241–260, 1905. a
Kohlbach, D., Goraguer, L., Bodur, Y., Müller, O., Amargant Arumí, M., Blix, K., Bratbak, G., Chierici, M., Dąbrowska, A., Dietrich, U., Edvardsen, B., García, L., Gradinger, R., Hop, H., Jones, E., Lundesgaard, Ø., Olsen, L., Reigstad, M., Saubrekka, K., and Assmy, P.: Earlier Sea-Ice Melt Extends the Oligotrophic Summer Period in the Barents Sea with Low Algal Biomass and Associated Low Vertical Flux, Prog. Oceanogr., 213, 103018, https://doi.org/10.1016/j.pocean.2023.103018, 2023. a
Kolås, E. H., Baumann, T. M., Skogseth, R., Koenig, Z., and Fer, I.: Western Barents Sea Circulation and Hydrography, Past Present, https://doi.org/10.22541/essoar.169203078.81082540/v1, 2023. a, b
Kowalik, Z. and Marchenko, A.: Tidal Motion Enhancement on Spitsbergen Bank, Barents Sea, J. Geophys. Res.-Oceans, 128, e2022JC018539, https://doi.org/10.1029/2022JC018539, 2023. a
Kowalik, Z. and Proshutinsky, A. Y.: Topographic Enhancement of Tidal Motion in the Western Barents Sea, J. Geophys. Res.-Oceans, 100, 2613–2637, https://doi.org/10.1029/94JC02838, 1995. a
Lewis, K. M., van Dijken, G. L., and Arrigo, K. R.: Changes in Phytoplankton Concentration Now Drive Increased Arctic Ocean Primary Production, Science, 369, 198–202, https://doi.org/10.1126/science.aay8380, 2020. a
Lilly, J. M. and Olhede, S. C.: Wavelet Ridge Estimation of Jointly Modulated Multivariate Oscillations, in: 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 452–456, IEEE, Pacific Grove, CA, USA, 1–4 November 2009, Pacific Grove, California, USA, ISBN 978-1-4244-5825-7, https://doi.org/10.1109/ACSSC.2009.5469858, 2009. a
Loeng, H.: Features of the Physical Oceanographic Conditions of the Barents Sea, Polar Res., 10, 5–18, https://doi.org/10.3402/polar.v10i1.6723, 1991. a, b, c
Lundesgaard, Ø., Sundfjord, A., Lind, S., Nilsen, F., and Renner, A. H. H.: Import of Atlantic Water and sea ice controls the ocean environment in the northern Barents Sea, Ocean Sci., 18, 1389–1418, https://doi.org/10.5194/os-18-1389-2022, 2022. a, b, c, d
Lüpkes, C. and Birnbaum, G.: Surface Drag in the Arctic Marginal Sea-ice Zone: A Comparison of Different Parameterisation Concepts, Boundary-Lay. Meteorol., 117, 179–211, https://doi.org/10.1007/s10546-005-1445-8, 2005. a
Marchenko, A. and Kowalik, Z.: Tidal Wave–Elliptic Island Interaction above the Critical Latitude, J. Phys. Oceanogr., 53, 683–698, https://doi.org/10.1175/JPO-D-22-0018.1, 2023. a
Marshall, J. and Shutts, G.: A Note on Rotational and Divergent Eddy Fluxes, J. Phys. Oceanogr., 11, 1677–1680, https://doi.org/10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2, 1981. a
McClimans, T. A. and Nilsen, J. H.: Laboratory Simulation of the Ocean Currents in the Barents Sea, Dynam. Atmos. Oceans, 19, 3–25, https://doi.org/10.1016/0377-0265(93)90030-B, 1993. a
Mcdougall, T. J. and Krzysik, O. A.: Spiciness, J. Mar. Res., 73, 141–152, 2015. a
Midttun, L.: Formation of Dense Bottom Water in the Barents Sea, Deep-Sea Res. Pt. I, 32, 1233–1241, https://doi.org/10.1016/0198-0149(85)90006-8, 1985. a
Mohamed, B., Nilsen, F., and Skogseth, R.: Marine Heatwaves Characteristics in the Barents Sea Based on High Resolution Satellite Data (1982–2020), Front. Mar. Sci., 9, 821646, https://doi.org/10.3389/fmars.2022.821646, 2022a. a, b
Mohamed, B., Nilsen, F., and Skogseth, R.: Interannual and Decadal Variability of Sea Surface Temperature and Sea Ice Concentration in the Barents Sea, Remote Sens., 14, 4413, https://doi.org/10.3390/rs14174413, 2022b. a, b, c
Nilsen, F., Skogseth, R., Vaardal-Lunde, J., and Inall, M.: A Simple Shelf Circulation Model: Intrusion of Atlantic Water on the West Spitsbergen Shelf, J. Phys. Oceanogr., 46, 1209–1230, https://doi.org/10.1175/JPO-D-15-0058.1, 2016. a, b
Olhede, S. and Walden, A.: Generalized Morse Wavelets, IEEE T. Signal Proces., 50, 2661–2670, https://doi.org/10.1109/TSP.2002.804066, 2002. a
Onarheim, I. H. and Årthun, M.: Toward an Ice-Free Barents Sea, Geophys. Res. Lett., 44, 8387–8395, https://doi.org/10.1002/2017GL074304, 2017. a
Onarheim, I. H., Årthun, M., Teigen, S. H., Eik, K. J., and Steele, M.: Recent Thickening of the Barents Sea Ice Cover, Geophys. Res. Lett., 51, e2024GL108225, https://doi.org/10.1029/2024GL108225, 2024. a
OSTIA: Global Ocean OSTIA Sea Surface Temperature and Sea Ice Reprocessed, E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00168, 2023. a, b, c
Oziel, L., Sirven, J., and Gascard, J.-C.: The Barents Sea frontal zones and water masses variability (1980–2011), Ocean Sci., 12, 169–184, https://doi.org/10.5194/os-12-169-2016, 2016. a
Oziel, L., Baudena, A., Ardyna, M., Massicotte, P., Randelhoff, A., Sallée, J.-B., Ingvaldsen, R. B., Devred, E., and Babin, M.: Faster Atlantic Currents Drive Poleward Expansion of Temperate Phytoplankton in the Arctic Ocean, Nat. Commun., 11, 1705, https://doi.org/10.1038/s41467-020-15485-5, 2020. a
Pavlov, A. K., Tverberg, V., Ivanov, B. V., Nilsen, F., Falk-Petersen, S., and Granskog, M. A.: Warming of Atlantic Water in Two West Spitsbergen Fjords over the Last Century (1912–2009), Polar Res., 32, 1–14, https://doi.org/10.3402/polar.v32i0.11206, 2013. a
Percival, D. B. and Walden, A. T.: Spectral Analysis for Physical Applications, Cambridge University Press, ISBN 978-0-521-35532-2, https://doi.org/10.1017/CBO9780511622762, 1993. a
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin, A.: Greater Role for Atlantic Inflows on Sea-Ice Loss in the Eurasian Basin of the Arctic Ocean, Science, 356, 285–291, https://doi.org/10.1126/science.aai8204, 2017. a, b
Polyakov, I. V., Ingvaldsen, R. B., Pnyushkov, A. V., Bhatt, U. S., Francis, J. A., Janout, M., Kwok, R., and Skagseth, Ø.: Fluctuating Atlantic Inflows Modulate Arctic Atlantification, Science, 381, 972–979, https://doi.org/10.1126/science.adh5158, 2023. a
Quadfasel, D., Rudelst, B., and Kurz, K.: Outflow of Dense Water from a Svalbard Fjord into the Fram Strait, Deep-Sea Res., 35, 1143–1150, 1988. a
Renner, A. and Sundfjord, A.: Mooring Service Cruise 2021: Cruise Report, The Nansen Legacy Report Series, https://doi.org/10.7557/nlrs.6461, 2022. a
Rieke, O., Årthun, M., and Dörr, J. S.: Rapid sea ice changes in the future Barents Sea, The Cryosphere, 17, 1445–1456, https://doi.org/10.5194/tc-17-1445-2023, 2023. a
Rudels, B., Jones, E. P., Anderson, L. G., and Kattner, G.: On the Intermediate Depth Waters of the Arctic Ocean, in: The Polar Oceans and Their Role in Shaping the Global Environment, American Geophysical Union (AGU), 33–46, ISBN 978-1-118-66388-2, https://doi.org/10.1029/GM085p0033, 1994. a
Rudels, B., Schauer, U., Björk, G., Korhonen, M., Pisarev, S., Rabe, B., and Wisotzki, A.: Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s, Ocean Sci., 9, 147–169, https://doi.org/10.5194/os-9-147-2013, 2013. a
Schauer, U.: The Release of Brine-Enriched Shelf Water from Storfjord into the Norwegian Sea, J. Geophys. Res.-Oceans, 100, 16015–16028, https://doi.org/10.1029/95JC01184, 1995. a, b
Schauer, U., Muench, R. D., Rudels, B., and Timokhov, L.: Impact of Eastern Arctic Shelf Waters on the Nansen Basin Intermediate Layers, J. Geophys. Res.-Oceans, 102, 3371–3382, https://doi.org/10.1029/96JC03366, 1997. a
Shi, J., Luo, B., Luo, D., Yao, Y., Gong, T., and Liu, Y.: Differing Roles of North Atlantic Oceanic and Atmospheric Transports in the Winter Eurasian Arctic Sea-Ice Interannual-to-Decadal Variability, npj Climate and Atmospheric Science, 7, 1–13, https://doi.org/10.1038/s41612-024-00605-5, 2024. a
Shu, Q., Wang, Q., Song, Z., and Qiao, F.: The Poleward Enhanced Arctic Ocean Cooling Machine in a Warming Climate, Nat. Commun., 12, 2966, https://doi.org/10.1038/s41467-021-23321-7, 2021. a, b
Skagseth, Ø., Eldevik, T., Årthun, M., Asbjørnsen, H., Lien, V. S., and Smedsrud, L. H.: Reduced Efficiency of the Barents Sea Cooling Machine, Nat. Clim. Change, 10, 661–666, https://doi.org/10.1038/s41558-020-0772-6, 2020. a, b
Skogseth, R., Haugan, P. M., and Haarpaintner, J.: Ice and Brine Production in Storfjorden from Four Winters of Satellite and in Situ Observations and Modeling, J. Geophys. Res.-Oceans, 109, 1–15, https://doi.org/10.1029/2004JC002384, 2004. a
Skogseth, R., Ellingsen, P., Berge, J., Cottier, F. R., Falk-Petersen, S., Ivanov, B. V., Nilsen, F., Søreide, J. E., and Vader, A.: UNIS hydrographic database, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/unis-hydrography, 2019. a, b, c
Skogseth, R., Olivier, L. L., Nilsen, F., Falck, E., Fraser, N. J., Tverberg, V., Ledang, A. B., Vader, A., Jonassen, M. O., Søreide, J., Cottier, F., Berge, J., Ivanov, B. V., and Falk-Petersen, S.: Variability and Decadal Trends in the Isfjorden (Svalbard) Ocean Climate and Circulation – An Indicator for Climate Change in the European Arctic, Prog. Oceanogr., 187, 102394, https://doi.org/10.1016/j.pocean.2020.102394, 2020. a, b, c
Slepian, D.: Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty — V: The Discrete Case, Bell Syst. Tech. J., 57, 1371–1430, https://doi.org/10.1002/j.1538-7305.1978.tb02104.x, 1978. a
Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li, C., Lien, V. S., Olsen, A., Omar, A. M., Risebrobakken, B., Sandø, A. B., Semenov, V. A., and Sorokina, S. A.: The Role of the Barents Sea in the Arctic Climate System, Rev. Geophys., 51, 415–449, https://doi.org/10.1002/rog.20017, 2013. a, b
Smedsrud, L. H., Muilwijk, M., Brakstad, A., Madonna, E., Lauvset, S. K., Spensberger, C., Born, A., Eldevik, T., Drange, H., Jeansson, E., Li, C., Olsen, A., Skagseth, Ø., Slater, D. A., Straneo, F., Våge, K., and Årthun, M.: Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice Cover Over the Last Century, Rev. Geophys., 60, e2020RG000725, https://doi.org/10.1029/2020RG000725, 2022. a
Strzelewicz, A., Przyborska, A., and Walczowski, W.: Increased Presence of Atlantic Water on the Shelf South-West of Spitsbergen with Implications for the Arctic Fjord Hornsund, Prog. Oceanogr., 200, 102714, https://doi.org/10.1016/j.pocean.2021.102714, 2022. a
Sundfjord, A.: CTD Data from Nansen Legacy Cruise – Mooring Service Cruise 2019, Norwegian Marine Data Centre [data set], https://doi.org/10.21335/NMDC-2135074338, 2022. a
Sundfjord, A.: Nansen Legacy Cruises – Mooring Cruise 2021, Norwegian Marine Data Centre [data set], https://doi.org/10.21335/NMDC-499497542, 2023. a
Sundfjord, A. and Renner, A.: Mooring Service Cruise 2019: Cruise Report, The Nansen Legacy Report Series, https://doi.org/10.7557/nlrs.5797, 2021. a
Sundfjord, A., Assmann, K. M., Lundesgaard, Ø., Renner, A. H. H., Lind, S., and Ingvaldsen, R. B.: Suggested Water Mass Definitions for the Central and Northern Barents Sea, and the Adjacent Nansen Basin: The Nansen Legacy Report Series, Oslo, Norway, 29-31 November 2019, 8, 1–15, https://doi.org/10.7557/nlrs.5707, 2020. a, b
Thomson, D.: Spectrum Estimation and Harmonic Analysis, P. IEEE, 70, 1055–1096, https://doi.org/10.1109/PROC.1982.12433, 1982. a
Tverberg, V., Skogseth, R., Cottier, F., Sundfjord, A., Walczowski, W., Inall, M. E., Falck, E., Pavlova, O., and Nilsen, F.: The Kongsfjorden Transect: Seasonal and Inter-annual Variability in Hydrography, in: The Ecosystem of Kongsfjorden, Svalbard, edited by: Hop, H. and Wiencke, C., Advances in Polar Ecology, 49–104, Springer International Publishing, Cham, ISBN 978-3-319-46425-1, https://doi.org/10.1007/978-3-319-46425-1_3, 2019. a, b
Vihtakari, M.: PlotSvalbard: PlotSvalbard – Plot Research Data from Svalbard on Maps, Github, https://github.com/MikkoVihtakari/PlotSvalbard (last access: 30 July 2024), 2020. a
Vihtakari, M., Sundfjord, A., and de Steur, L.: Barents Sea Ocean-Current Arrows Modified from Eriksen et al. (2018), Norwegian Polar Institute and Institute of Marine Research, Github, https://github.com/MikkoVihtakari/Barents-Sea-currents (last access: 6 August 2024), 2019. a
Vinje, T., Jensen, H., Johnsen, A. S., Løset, S., Hamran, S. E., Løvaas, S. M., and Erlingson, B.: IDAP-89 R/V Lance Deployment. Vol. 2. Field Observations and Analysis, Tech. rep., Norwegian Polar Institute/SINTEF NHL, Oslo/Trondheim, 1989. a
Vivier, F., Lourenço, A., Michel, E., Skogseth, R., Rousset, C., Lansard, B., Bouruet-Aubertot, P., Boutin, J., Bombled, B., Cuypers, Y., Crispi, O., Dausse, D., Le Goff, H., Madec, G., Vancoppenolle, M., Van der Linden, F., and Waelbroeck, C.: Summer Hydrography and Circulation in Storfjorden, Svalbard, Following a Record Low Winter Sea-Ice Extent in the Barents Sea, J. Geophys. Res.-Oceans, 128, e2022JC018648, https://doi.org/10.1029/2022JC018648, 2023. a, b, c, d
Wickström, S., Jonassen, M. O., Vihma, T., and Uotila, P.: Trends in Cyclones in the High-Latitude North Atlantic during 1979–2016, Q. J. Roy. Meteor. Soc., 146, 762–779, https://doi.org/10.1002/qj.3707, 2020. a
Wold, A., Hop, H., Svensen, C., Søreide, J. E., Assmann, K. M., Ormanczyk, M., and Kwasniewski, S.: Atlantification Influences Zooplankton Communities Seasonally in the Northern Barents Sea and Arctic Ocean, Prog. Oceanogr., 219, 103133, https://doi.org/10.1016/j.pocean.2023.103133, 2023. a
Short summary
Atlantic water (AW) is a key driver of change in the Barents Sea. We studied an emerging pathway through the Svalbard Archipelago that allows AW to enter the Barents Sea. We found that the Atlantic sector near the study site has warmed over the past 2 decades; that Atlantic-origin waters intermittently enter the Barents Sea through the aforementioned pathway; and that heat transport is driven by tides, wind events, and variations in the upstream current system.
Atlantic water (AW) is a key driver of change in the Barents Sea. We studied an emerging pathway...