Brochu, E., Cora, V. M., and Freitas, N. D.: A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning, arXiv, abs/1012.2599, https://doi.org/10.48550/arXiv.1012.2599, 2010.
Chen, X., Ding, K., Zhang, J., Han, W., Liu, Y., Yang, Z., and Weng, S.: Online prediction of ultra-short-term photovoltaic power using chaotic characteristic analysis, improved PSO and KELM, Energy, 248, 123574, https://doi.org/10.1016/j.energy.2022.123574, 2022.
Cornejo-Bueno, L., Garrido-Merchán, E. C., Hernández-Lobato, D., and Salcedo-Sanz, S.: Bayesian optimization of a hybrid system for robust ocean wave features prediction, Neurocomputing, 275, 818–828, https://doi.org/10.1016/j.neucom.2017.09.025, 2018.
Cuadra, L., Salcedo-Sanz, S., Nieto-Borge, J. C., Alexandre, E., and Rodríguez, G.: Computational intelligence in wave energy: Comprehensive review and case study, Renew. Sust. Energ. Rev., 58, 1223–1246, https://doi.org/10.1016/j.rser.2015.12.253, 2016.
De Assis Tavares, L. F., Shadman, M., De Freitas Assad, L. P., Silva, C., Landau, L., and Estefen, S. F.: Assessment of the offshore wind technical potential for the Brazilian Southeast and South regions, Energy, 196, 117097, https://doi.org/10.1016/j.energy.2020.117097, 2020.
Deo, M. C. and Naidu, C. S.: Real time wave forecasting using neural networks, Ocean Eng., 26, 191–203, https://doi.org/10.1016/S0029-8018(97)10025-7, 1998.
Duan, J., Wang, P., Ma, W., Fang, S., and Hou, Z.: A novel hybrid model based on nonlinear weighted combination for short-term wind power forecasting, Int. J. Elec. Power, 134, 107452, https://doi.org/10.1016/j.ijepes.2021.107452, 2022.
Fan, S., Xiao, N., and Dong, S.: A novel model to predict significant wave height based on long short-term memory network, Ocean Eng., 205, 107298, https://doi.org/10.1016/j.oceaneng.2020.107298, 2020.
Frazier, P. I.: A tutorial on bayesian optimization, arXiv, https://doi.org/10.48550/arXiv.1807.02811, 2018.
Fu, W., Fang, P., Wang, K., Li, Z., Xiong, D., and Zhang, K.: Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and Volterra series model, Renew. Energ., 179, 1122–1139, https://doi.org/10.1016/j.renene.2021.07.119, 2021.
Gao, S., Huang, J., Li, Y., Liu, G., Bi, F., and Bai, Z.: A forecasting model for wave heights based on a long short-term memory neural network, Acta Oceanol. Sin., 40, 62–69, https://doi.org/10.1007/s13131-020-1680-3, 2021.
Gers, F. A., Schmidhuber, J., and Cummins, F.: Learning to Forget Continual Prediction with LSTM, Neural Comput., 12, 2451–2471, https://doi.org/10.1162/089976600300015015, 2000.
Hao, W., Sun, X., Wang, C., Chen, H., and Huang, L.: A hybrid EMD-LSTM model for non-stationary wave prediction in offshore China, Ocean Eng., 246, 110566, https://doi.org/10.1016/j.oceaneng.2022.110566, 2022.
Hu, H., van der Westhuysen, A. J., Chu, P., and Fujisaki-Manome, A.: Predicting Lake Erie wave heights and periods using XGBoost and LSTM, Ocean Model., 164, 101832, https://doi.org/10.1016/j.ocemod.2021.101832, 2021.
Hua, L., Zhang, C., Peng, T., Ji, C., and Shahzad Nazir, M.: Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction, Energ. Convers. Manage., 252, 115102, https://doi.org/10.1016/j.enconman.2021.115102, 2022.
Huang, J., Chen, Q., and Yu, C.: A New Feature Based Deep Attention Sales Forecasting Model for Enterprise Sustainable Development, Sustainability, 14, 12224, https://doi.org/10.3390/su141912224, 2022.
Huang, Y. and Deng, Y.: A new crude oil price forecasting model based on variational mode decomposition, Knowl-Based Syst., 213, 106669, https://doi.org/10.1016/j.knosys.2020.106669, 2021.
Jain, P. and Deo, M. C.: Neural networks in ocean engineering, Ships Offshore Struc., 1, 25–35, https://doi.org/10.1533/saos.2004.0005, 2006.
Jain, P., Deo, M. C., Latha, G., and Rajendran, V.: Real time wave forecasting using wind time history and numerical model, Ocean Model., 36, 26–39, https://doi.org/10.1016/j.ocemod.2010.07.006, 2011.
Jamei, M., Ali, M., Karbasi, M., Xiang, Y., Ahmadianfar, I., and Yaseen, Z. M.: Designing a Multi-Stage Expert System for daily ocean wave energy forecasting: A multivariate data decomposition-based approach, Appl. Energ., 326, 119925, https://doi.org/10.1016/j.apenergy.2022.119925, 2022.
Kamranzad, B., Etemad-Shahidi, A., and Kazeminezhad, M. H.: Wave height forecasting in Dayyer, the Persian Gulf, Ocean Eng., 38, 248–255, https://doi.org/10.1016/j.oceaneng.2010.10.004, 2011.
Karbasi, M., Jamei, M., Ali, M., Abdulla, S., Chu, X., and Yaseen, Z. M.: Developing a novel hybrid Auto Encoder Decoder Bidirectional Gated Recurrent Unit model enhanced with empirical wavelet transform and Boruta-Catboost to forecast significant wave height, J. Clean. Prod., 379, 134820, https://doi.org/10.1016/j.jclepro.2022.134820, 2022.
Kok, C., Jahmunah, V., Oh, S. L., Zhou, X., Gururajan, R., Tao, X., Cheong, K. H., Gururajan, R., Molinari, F., and Acharya, U. R.: Automated prediction of sepsis using temporal convolutional network, Comput. Biol. Med., 127, 103957, https://doi.org/10.1016/j.compbiomed.2020.103957, 2020.
Li, B., Zhang, J., He, Y., and Wang, Y.: Short-Term Load-Forecasting Method Based on Wavelet Decomposition With Second-Order Gray Neural Network Model Combined With ADF Test, IEEE Access, 5, 16324–16331, https://doi.org/10.1109/ACCESS.2017.2738029, 2017.
Li, H., Liu, T., Wu, X., and Chen, Q.: An optimized VMD method and its applications in bearing fault diagnosis, Measurement, 166, 108185, https://doi.org/10.1016/j.measurement.2020.108185, 2020.
Li, W., Wei, Y., An, D., Jiao, Y., and Wei, Q.: LSTM-TCN: dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional network, Environ. Sci. Pollut. Res. Int., 29, 39545–39556, https://doi.org/10.1007/s11356-022-18914-8, 2022.
Li, X., Cao, J., Guo, J., Liu, C., Wang, W., Jia, Z., and Su, T.: Multi-step forecasting of ocean wave height using gate recurrent unit networks with multivariate time series, Ocean Eng., 248, 110689, https://doi.org/10.1016/j.oceaneng.2022.110689, 2022.
Liu, Y., Yang, C., Huang, K., and Gui, W.: Non-ferrous metals price forecasting based on variational mode decomposition and LSTM network, Knowl-Based Syst., 188, 105006, https://doi.org/10.1016/j.knosys.2019.105006, 2020.
Luo, Y., Shi, H., Zhang, Z., Zhang, C., Zhou, W., Pan, G., and Wang, W.: Wave field predictions using a multi-layer perceptron and decision tree model based on physical principles: A case study at the Pearl River Estuary, Ocean Eng., 277, 114246, https://doi.org/10.1016/j.oceaneng.2023.114246, 2023.
Mafi, S. and Amirinia, G.: Forecasting hurricane wave height in Gulf of Mexico using soft computing methods, Ocean Eng., 146, 352–362, https://doi.org/10.1016/j.oceaneng.2017.10.003, 2017.
Makarynskyy, O.: Improving wave predictions with artificial neural networks, Ocean Eng., 31, 709–724, https://doi.org/10.1016/j.oceaneng.2003.05.003, 2004.
Malekmohamadi, I., Ghiassi, R., and Yazdanpanah, M. J.: Wave hindcasting by coupling numerical model and artificial neural networks, Ocean Eng., 35, 417–425, https://doi.org/10.1016/j.oceaneng.2007.09.003, 2008.
Neshat, M., Nezhad, M. M., Sergiienko, N. Y., Mirjalili, S., Piras, G., and Garcia, D. A.: Wave power forecasting using an effective decomposition-based convolutional Bi-directional model with equilibrium Nelder-Mead optimiser, Energy, 256, 124623, https://doi.org/10.1016/j.energy.2022.124623, 2022.
Neumann, G. and Pierson, W. J.: A detailed comparison of theoretical wave spectra and wave forecasting methods, Deutsche Hydrographische Zeitschrift, 10, 134–146, https://doi.org/10.1007/BF02020059, 1957.
Ni, C. and Ma, X.: An integrated long-short term memory algorithm for predicting polar westerlies wave height, Ocean Eng., 215, 107715, https://doi.org/10.1016/j.oceaneng.2020.107715, 2020.
Nitsure, S. P., Londhe, S. N., and Khare, K. C.: Wave forecasts using wind information and genetic programming, Ocean Eng., 54, 61–69, https://doi.org/10.1016/j.oceaneng.2012.07.017, 2012.
Niu, D., Ji, Z., Li, W., Xu, X., and Liu, D.: Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization, Energy, 234, 121145, https://doi.org/10.1016/j.energy.2021.121145, 2021.
Pushpam P., M. M. and Enigo V.S., F.: Forecasting Significant Wave Height using RNN-LSTM Models, In Proceedings of the 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020, 1141–1146, https://doi.org/10.1109/ICICCS48265.2020.9121040, IEEE, 2020.
Rao, A. D., Sinha, M., and Basu, S.: Bay of Bengal wave forecast based on genetic algorithm: A comparison of univariate and multivariate approaches, Appl. Math. Model., 37, 4232–4244, https://doi.org/10.1016/j.apm.2012.09.001, 2013.
Rasmussen, C. E.: Gaussian Processes in Machine Learning, in: Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, 2–14 February 2003, Tübingen, Germany, 4–16 August 2003, Revised Lectures, edited by: Bousquet, O., von Luxburg, U., and Rätsch, G., Springer Berlin Heidelberg, Berlin, Heidelberg, 63–71, https://doi.org/10.1007/978-3-540-28650-9_4, 2004.
Rogers, W. E., Hwang, P. A., and Wang, D. W.: Investigation of wave growth and decay in the SWAN model: Three Regional-Scale applications, J. Phys. Oceanogr., 33, 366–389, https://doi.org/10.1175/1520-0485(2003)033<0366:Iowgad>2.0.Co;2, 2003.
Sverdrup, H. and Munk, W.: Wind, sea and swell. Theory of relations for forecasting, Navy Hydrographic office, Washington, DC, 601, 1947.
Tolman, H. L.: User manual and system documentation of WAVEWATCH III version 3.14, Analysis, 166, 2009.
Wamdi, G.: The WAM model – a third generation ocean wave prediction model, J. Phys. Oceanogr., 18, 1775–1810, https://doi.org/10.1175/1520-0485(1988)0182.0.CO;2, 1988.
Wang, W., Tang, R., Li, C., Liu, P., and Luo, L.: A BP neural network model optimized by Mind Evolutionary Algorithm for predicting the ocean wave heights, Ocean Eng., 162, 98–107, https://doi.org/10.1016/j.oceaneng.2018.04.039, 2018.
Wu, Q. and Lin, H.: Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network, Sustain. Cities Soc., 50, 101657, https://doi.org/10.1016/j.scs.2019.101657, 2019.
Xu, Y. H., Hu, C. H., Wu, Q., Li, Z. C., Jian, S. Q., and Chen, Y. Q.: Application of temporal convolutional network for flood forecasting, Hydrol. Res., 52, 1455–1468, https://doi.org/10.2166/nh.2021.021, 2021.
Yan, J., Mu, L., Wang, L., Ranjan, R., and Zomaya, A. Y.: Temporal Convolutional Networks for the Advance Prediction of ENSO, Sci. Rep., 10, 8055, https://doi.org/10.1038/s41598-020-65070-5, 2020.
Yu, Y., Si, X., Hu, C., and Zhang, J.: A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures, Neural Comput., 31, 1235–1270, https://doi.org/10.1162/neco_a_01199, 2019.
Zhang, Q., Hu, W., Liu, Z., and Tan, J.: TBM performance prediction with Bayesian optimization and automated machine learning, Tunn. Undergr. Space Technol., 103, 103493, https://doi.org/10.1016/j.tust.2020.103493, 2020a.
Zhang, Y., Pan, G., Chen, B., Han, J., Zhao, Y., and Zhang, C.: Short-term wind speed prediction model based on GA-ANN improved by VMD, Renew. Energ., 156, 1373–1388, https://doi.org/10.1016/j.renene.2019.12.047, 2020b.
Zhang, Z., Wang, X., and Jung, C.: DCSR: Dilated Convolutions for Single Image Super-Resolution, IEEE Trans. Image Process., 28, 1625–1635, https://doi.org/10.1109/TIP.2018.2877483, 2019.
Zhao, W., Gao, Y., Ji, T., Wan, X., Ye, F., and Bai, G.: Deep Temporal Convolutional Networks for Short-Term Traffic Flow Forecasting, IEEE Access, 7, 114496–114507, https://doi.org/10.1109/access.2019.2935504, 2019.
Zhou, S., Bethel, B. J., Sun, W., Zhao, Y., Xie, W., and Dong, C.: Improving Significant Wave Height Forecasts Using a Joint Empirical Mode Decomposition–Long Short-Term Memory Network, J. Mar. Sci. Eng., 9, 744, https://doi.org/10.3390/jmse9070744, 2021.
Zhou, T., Wu, W., Peng, L., Zhang, M., Li, Z., Xiong, Y., and Bai, Y.: Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method, Reliab. Eng. Syst. Safe., 217, 108090, https://doi.org/10.1016/j.ress.2021.108090, 2022.
Zuo, G., Luo, J., Wang, N., Lian, Y., and He, X.: Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting, J. Hydrol., 585, 124776, https://doi.org/10.1016/j.jhydrol.2020.124776, 2020.