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Abstract. The present work proposes a prediction model
of significant wave height (SWH) and average wave period
(APD) based on variational mode decomposition (VMD),
temporal convolutional networks (TCNs), and long short-
term memory (LSTM) networks. The wave sequence fea-
tures were obtained using VMD technology based on the
wave data from the National Data Buoy Center. Then the
SWH and APD prediction models were established us-
ing TCNs, LSTM, and Bayesian hyperparameter optimiza-
tion. The VMD–TCN–LSTM model was compared with
the VMD–LSTM (without TCN cells) and LSTM (with-
out VMD and TCN cells) models. The VMD–TCN–LSTM
model has significant superiority and shows robustness and
generality in different buoy prediction experiments. In the 3 h
wave forecasts, VMD primarily improved the model perfor-
mance, while the TCN had less of an influence. In the 12, 24,
and 48 h wave forecasts, both VMD and TCNs improved the
model performance. The contribution of the TCN to the im-
provement of the prediction result determination coefficient
gradually increased as the forecasting length increased. In the
48 h SWH forecasts, the VMD and TCN improved the deter-
mination coefficient by 132.5 % and 36.8 %, respectively. In
the 48 h APD forecasts, the VMD and TCN improved the de-
termination coefficient by 119.7 % and 40.9 %, respectively.

1 Introduction

Ocean waves are crucial ocean physical parameters, and
wave forecasts can significantly improve the safety of ma-
rine projects such as fisheries, power generation, and ma-
rine transportation (Jain et al., 2011; Jain and Deo, 2006).
The earlier wave forecasting methods that emerged were
semi-analytical and semi-empirical, including the Sverdrup–
Munk–Bretscheider (SMB) (Bretschneider, 1957; Sverdrup
and Munk, 1947) and Pierson–Neumann–James (PNJ) meth-
ods (Neumann and Pierson, 1957). However, empirical meth-
ods cannot describe sea surface wave conditions in de-
tail. The most widely used methods for wave forecasts are
those of the third-generation wave models, including WAM
(Wamdi, 1988), SWAN (Booij et al., 1999; Rogers et al.,
2003), and WAVEWATCH III (Tolman, 2009). Nevertheless,
numerical modeling methods must consume large amounts
of computational resources and time (Wang et al., 2018).

Neural network methods achieve higher-quality forecast-
ing results that are less time-consuming and computation-
ally cost-consuming. Several neural network methods have
been widely used for wave forecasts, e.g., artificial neu-
ral networks (ANNs) (Deo and Naidu, 1998; Mafi and
Amirinia, 2017; Kamranzad et al., 2011; Malekmohamadi
et al., 2008; Makarynskyy, 2004), recurrent neural networks
(RNNs) (Pushpam and Enigo, 2020), and long short-term
memory (LSTM) networks (Gao et al., 2021; Ni and Ma,
2020; Fan et al., 2020). The prediction model designed using
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neural network algorithms individually has poor generaliza-
tion ability due to the strong non-stationarity and non-linear
physical relationship of waves.

Signal decomposition methods are effective in extract-
ing original data features. To further improve the prediction
model performance, some researchers have developed hybrid
models of signal decomposition and neural networks to fore-
cast wave parameters, for example, empirical wavelet trans-
form (EWT) (Karbasi et al., 2022), empirical mode decom-
position (EMD) (Zhou et al., 2021; Hao et al., 2022), and
singular spectrum analysis (SSA) (Rao et al., 2013). How-
ever, EMD and its extended algorithms suffer from mode
confounding and sensitivity to noise (Bisoi et al., 2019), and
wavelet transform methods lack adaptivity (Li et al., 2017).
Variational mode decomposition (VMD) (Dragomiretskiy
and Zosso, 2014) has overcome the disadvantages of EMD
and is currently the most effective decomposition technique
(Duan et al., 2022). Models combining VMD and neural net-
works are applied in forecasting various time series data, for
example, stock price prediction (Bisoi et al., 2019), air qual-
ity index prediction (Wu and Lin, 2019), wind power predic-
tion (Duan et al., 2022), runoff prediction (Zuo et al., 2020),
and wave energy prediction (Neshat et al., 2022; Jamei et al.,
2022).

Recent studies have shown that temporal convolutional
networks (TCNs) outperform ordinary network models in
handling time series data in several domains, such as flood
prediction (Xu et al., 2021), traffic flow prediction (Zhao et
al., 2019), and dissolved oxygen prediction (W. Li et al.,
2022). The TCN cells can significantly capture the short-
term local feature information of the sequence data, while
the LSTM cells are adept at capturing the long-term depen-
dence of the sequence data. The wave data observed by the
buoy contain both short-term features and long-term patterns
of wave variability and are very well suited for forecasting
using a hybrid prediction model that includes the advantages
of TCN and LSTM cells.

Hyperparameter optimization (HPO) for neural networks
is commonly regarded as a black-box problem that avoids
neural network problems such as overfitting, underfitting, or
incorrect learning rate values, which tend to occur in con-
structing deep learning models. The latest HPO techniques
are grid search, stochastic search, Bayesian optimization
(BO), etc. BO provides a better hyperparameter combination
in a shorter time compared to traditional grid search meth-
ods (Rasmussen, 2004). It is more robust and less probable
to be trapped in a local optima problem. Therefore, BO is the
most widely used HPO algorithm and has been applied to
wave prediction models based on neural network algorithms
(Zhou et al., 2022; Cornejo-Bueno et al., 2018).

Significant wave height (SWH) and average wave period
(APD) are essential parameters in calculating wave power
(De Assis Tavares et al., 2020; Bento et al., 2021). For ex-
ample, Hu et al. (2021) used XGBoost and LSTM to fore-
cast wave heights and periods. Based on multi-layer percep-

Table 1. Statistics of the geographical locations and water depth
parameters of the selected NDBC buoys.

Buoy ID Latitude (◦ N) Longitude (◦W) Depth (m)

51000 23.528 153.792 4762
51003 19.196 160.639 1987
51004 17.538 152.230 5278
51101 24.359 162.081 4860

tron and decision tree architecture, Luo et al. (2023) realized
the prediction of effective wave height, average wave period,
and average wave direction. The SWH and APD forecasts
need to consider the original characteristics of waves, short-
term variability, and long-term dependence. Therefore, in the
study, we used wave data from the National Data Buoy Cen-
ter (NDBC) around the Hawaiian Islands to design a hybrid
VMD–TCN–LSTM model to forecast SWH and APD, and
the BO algorithm was used to obtain the most optimal hyper-
parameters for the network model.

The remaining sections of this paper are organized as fol-
lows. In Sect. 2, the data and pre-processing are described,
and in Sect. 3, the methodologies employed in the study are
presented. In Sect. 4, the decomposition process of the wave
series data, the overall structure of the prediction model,
and the hyperparameter optimization results are presented.
Section 5 discusses the performance differences between
the VMD–TCN–LSTM, VMD–LSTM, and LSTM models
at various forecasting periods. Finally, Sect. 6 provides our
conclusions.

2 Materials

2.1 Data source

Buoy measurements are the most common data source for
wave parameter forecasts (Cuadra et al., 2016). The research
used buoy data from the NDBC of the National Oceanic
and Atmospheric Administration (NOAA) (https://www.
ndbc.noaa.gov/, last access: 5 June 2022). Each buoy pro-
vides measurements of SWH, mean wave direction (MWD),
wind speed (WSPD), wind direction (WDIR), APD, dom-
inant wave period (DPD), sea level pressure (PRES), gust
speed (GST), air temperature (ATMP), and water tempera-
ture (WTMP) at a resolution of 10 min to 1 h. The dataset
uses 99.00 to replace the missing values, but the resolution is
still 1 h for wave parameters data. Four NDBC buoys located
in different directions around the Hawaiian Islands (Fig. 1)
were used in the research. The statistics of the geographic lo-
cation and the water depth parameters of the buoys are shown
in Table 1.
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Figure 1. The geographical locations of the 51000, 51003, 51004,
and 51101 NDBC buoys.

2.2 Dataset partitioning and feature selection

Waves depend on previous wave height, sea surface temper-
ature, sea temperature, wind direction, wind speed, and pres-
sure (Kamranzad et al., 2011; Nitsure et al., 2012; Fan et
al., 2020). Because the buoy data have missing values, after
data filtering, the research selected data longer than 2 years at
each buoy as the training datasets to capture the year-round
characteristics of wave parameters. The divisions and statis-
tical characteristics of the training and testing datasets for the
four buoys are shown in Table 2 and Fig. 2.

The research selected SWH and APD, two wave parame-
ters, as forecasting variables. The correlation between vari-
ous environmental parameters with SWH and APD was de-
termined by calculating Pearson correlation coefficients be-
tween the above parameters before selecting the input fea-
tures. For the parameters X and Y , the Pearson correlation
coefficients are calculated as follows.

r =
cov(X,Y )
σXσY

=

1
n

∑n
i=1(Xi −X)(Yi −Y )√

1
n

∑n
i=1(Xi −X)

2
√

1
n

∑n
i=1(Yi −Y )

2
(1)

The Pearson correlation coefficients between SWH, MWD,
WSPD, GST, WDIR, PRES, WTMP, ATMP, APD, and DPD
were calculated after neglecting the parameter values at
unrecorded moments (Fig. 3). As shown in Fig. 3, SWH
has a positive correlation with APD, DPD, MWD, WSPD,
GST, WDIR, and PRES to different degrees, and SWH
has a negative correlation with WTMP and ATMP. Among
them, WSPD and GST have a strong correlation (r = 0.988),
WTMP and ATMP have a strong correlation (r = 0.901), and
APD is considered to contain the main features of DPD. In
order to utilize as many features of different physical pa-
rameters as possible while minimizing the computational re-
dundancy, seven physical parameters – SWH, APD, MWD,
WSPD, WDIR, PRES, and ATMP – were selected as input
and training data for SWH and APD forecasting in the study.

2.3 Data pre-processing

Wind and wave directions are continuous in space but dis-
continuous numerically. For example, the directions 2◦ and
358◦ are very close, but the magnitude of the values differs
significantly. Therefore, the wind and wave directions need
to be pre-processed. The following formula recalculates the
wind and wave directions (Nitsure et al., 2012).

ψ =

{
1− θ

180 , if 0◦ ≤ θ ≤ 180◦
θ−180

180 , if 180◦ < θ < 360◦
, (2)

where θ is the original wind or wave directions, and ψ is the
re-encoded value of wind or wave directions. ψ has a range
of values from 0 to 1.

Since different NDBC physical variables have different
units and magnitudes, this can substantially influence the per-
formance of the neural network model. Therefore, each vari-
able must be normalized or standardized before using it as
input data for the model (X. Li et al., 2022). The research
used a min–max normalization function to scale the input
data between 0 and 1, which is calculated as follows.

xn =
x−min(x)

max(x)−min(x)
, (3)

where xn is the normalized feature value, and x is the mea-
sured feature value.

3 Methods

3.1 Variational mode decomposition (VMD)

The VMD is an adaptive, completely non-recurrent mode
variation and signal processing technique that combines the
Wiener filter, the Hilbert transform, and the alternating direc-
tion method of multipliers (ADMM) technique (Dragomiret-
skiy and Zosso, 2014). VMD can determine the number of
mode decompositions for a given sequence according to the
situation. It has resolved the issues of mode mixing and
boundary effects of EMD. The VMD decomposes the origi-
nal sequence signal into an intrinsic mode function (IMF) of
finite bandwidth, where the frequencies of each mode com-
ponent uk are concentrated around a central frequency ωk .
The VMD algorithm can be found in more detail in Ap-
pendix A.

3.2 Temporal convolutional networks (TCNs)

The TCN is a variant of the convolutional neural networks
(CNNs) (Fig. 4). The TCN model uses causal convolution,
dilated convolution, and residual blocks to extract sequence
data with a large receptive field and temporality (Yan et al.,
2020). The TCN performs convolution in the time domain
(Kok et al., 2020), which has a more lightweight network
structure than CNNs, LSTM, and GRU (gated recurrent unit;

https://doi.org/10.5194/os-19-1561-2023 Ocean Sci., 19, 1561–1578, 2023



1564 Q. Ji et al.: Short-term prediction of the significant wave height

Table 2. NDBC dataset division and statistical information.

Buoy ID Dataset Date (YYYY/MM/DD HH:MM) Data volume SWH range (m) APD range (s)

51000 Training 2015/08/20 22:00–2020/04/20 15:00 40594 [0.89, 11.03] [4.60, 14.89]
Testing 2020/07/29 01:00–2020/10/19 08:00 1976 [0.89, 3.49] [5.12, 11.43]

51003 Training 2015/08/25 03:00–2018/08/07 13:00 25494 [0.85, 6.83] [4.75, 13.85]
Testing 2018/11/10 00:00–2018/12/31 08:00 1214 [1.41, 4.70] [5.48, 12.79]

51004 Training 2014/07/06 14:00–2017/10/08 16:00 28400 [0.86, 5.80] [4.78, 14.03]
Testing 2017/12/08 11:00–2018/02/14 09:00 1631 [1.29, 5.30] [5.46, 12.99]

51101 Training 2014/11/04 22:00–2018/03/29 07:00 29548 [0.83, 8.54] [4.46, 14.73]
Testing 2019/10/25 07:00–2020/01/04 00:00 1698 [1.16, 6.04] [5.44, 13.03]

Figure 2. Statistical analysis of SWH and APD on the training and testing datasets of the four NDBC buoys.

Bai et al., 2018). The TCN has the following advantages:
(1) causal convolution prevents the disclosure of future in-
formation, (2) dilated convolution extends the receptive field
of the structure, and (3) residual blocks maintain the histori-
cal information for a longer period.

Causal convolution is the most important part of TCN,
where “causal” indicates that the output yt (Fig. 4) at the time
t is only dependent on the input x1, x2, . . . , xt and is not influ-
enced by xt+1, xt+2, . . . , xT . The receptive field depends on
the filter size and the network depth. However, the increase in
filter size and network depth brings the risk of gradient dis-
appearance and explosion. To avoid these problems, the TCN
introduces dilated convolution based on causal convolution
(Zhang et al., 2019). The dilated convolution introduces a di-
lation factor to adjust the receptive field. The processing ca-
pability of long sequences depends on the filter size, dilation
factor, and network depth. The TCN effectively increases the
receptive field without additional computational cost by in-
creasing the dilation factor. To ensure training efficiency, the
TCN introduces multiple residual blocks to accelerate the
prediction model. Each residual block comprises two dilated
causal convolution layers with the same dilation factor, nor-
malization layer, ReLU (rectified linear unit) activation, and
dropout layer. The input of each residual block is also added

to the output when the input and output channels are differ-
ent.

3.3 Long short-term memory (LSTM) networks

The traditional RNN is exposed to gradient explosion and
vanishing risk. The LSTM network learns to reset itself at the
appropriate time by adding a forgetting gate in RNNs, which
releases internal resources. Meanwhile, LSTM learns faster
by adding the self-looping method to generate a long-term
continuous flow path. As a specific RNN, the LSTM network
structure includes an input layer, a hidden layer, and an out-
put layer. The structure of the LSTM cell is shown in Fig. 5.
The LSTM can be found in more detail in Appendix B.

3.4 Bayesian optimization (BO)

The BO aims to find the global maximizer (or minimizer)
of the unknown objective function f (x) (Frazier, 2018), as
shown as follows:

x∗ = (arg max f (x))
xεD

, (4)

where D denotes the search space of x, where each dimen-
sion is a hyperparameter.

The BO has two critical components: first establishing an
agency model of the objective function through a regression
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Figure 3. Pearson correlation coefficients between various physical
parameters in NDBC data.

model (e.g., Gaussian process regression) and subsequently
using the acquisition function to decide where to sample next
(Frazier, 2018).

The Gaussian process (GP) is an extension of multivari-
ate Gaussian distribution into an infinite-dimension stochas-
tic process (Frazier, 2018; Brochu et al., 2010), which is the
prior distribution of stochastic processes and functions. Any
finite subset of random variables has a multivariate Gaussian
distribution, and a GP is entirely defined by its mean function
and covariance function (Rasmussen, 2004). BO optimizes
the unknown function f (x) by combining the prior distribu-
tion of the function based on the GP with the current sample
information to obtain the posterior of the function. The BO
uses the expected improvement (EI) function as the acquisi-
tion function to evaluate the utility of the model posterior to
determine the next input point. Let f ∗n be the optimal value of
the acquisition function at the current iteration. The BO em-
ploys GP and EI in the iterations to evaluate and obtain the
global optimal hyperparameters (Zhang et al., 2020a). The
framework of the Bayesian parameter optimization algorithm
is shown below.

4 Wave-parameter-prediction model framework and
parameter settings

4.1 Data decomposition and parameter setting

The input to the VMD method requires the original signal
f (t) and a predefined parameter K . The K determines the
number of IMF patterns extracted during the decomposition.
If the number of the extracted patterns is too large, it leads to
a decrease in accuracy and unnecessary computational over-

head (Liu et al., 2020). However, if the number of patterns
is too small, the information in the patterns is insufficient to
construct a high-precision prediction model. Therefore, it is
essential to choose an appropriate one for K .

There is still a lack of general guidelines for the selection
of the K parameter (Bisoi et al., 2019). Methods commonly
used in other fields include the central frequency observation
method (Hua et al., 2022; Chen et al., 2022; Fu et al., 2021),
sample entropy (Zhang et al., 2020b; Niu et al., 2021), ge-
netic algorithm (Huang et al., 2022), effective kurtosis index
(Li et al., 2020), signal energy (Liu et al., 2020; Huang and
Deng, 2021), etc. The central frequency observation method
is convenient and effective, and it is used in this research to
determine the number of patterns K for sequence decompo-
sition. For various K parameter values, when the central fre-
quency of the last mode has no significant changing trend,
the number of K is currently the optimal number of mode
decompositions. Table 3 calculates the central frequency of
the last mode after the SWH and APD were decomposed
with different K parameters; the optimal VMD decomposi-
tion mode number for SWH and APD is 13 and 12, respec-
tively, when the variation in the central frequency is less than
1× 10−8 Hz.

4.2 Wave-parameter-prediction model framework

The overall structure of the VMD–TCN–LSTM wave-
parameter-prediction model in the research is shown in
Fig. 6, including three parts: data pre-processing, VMD data
decomposition, and model training and forecasting. The in-
put parameters to the model include 13 SWH IMFs and resid-
uals; 12 APD IMFs and residual; original MWD, WSPD,
PRES, and ATMP; and recoded WDIR. The lags of each in-
put variable chosen for prediction are 3 h. The TCN cells and
LSTM cells are used in the model to construct an encoder–
decoder network with an attention mechanism to evaluate the
accuracy of the VMD–TCN–LSTM model. The effect of the
VMD technique and TCN cells on the forecasting results was
also analyzed. The results of the VMD–TCN–LSTM model
were compared with the VMD–LSTM and LSTM models.
The VMD–LSTM model used both LSTM cells for encod-
ing and decoding. The LSTM model uses data that have not
been decomposed by VMD as input data. The LSTM model
was also not encoded using TCN cells.

4.3 Neural network hyperparameter optimization
based on BO

In the research, the BO algorithm is used to search for the
optimal hyperparameters for the training of the VMD–TCN–
LSTM model, including batch size, number of TCN hidden
layer units, number of LSTM hidden layer units, number of
dense hidden layer units, learning rate (α), dropout rate, and
L2 regularization parameter of the LSTM layer. The hyper-
parameter search range and optimal results are shown in Ta-
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Figure 4. Structure of temporal convolutional networks.

Table 3. The central frequency of the last mode after SWH and APD decomposition with different K parameters.

K 5 6 7 8 9 10 11 12 13 14 15

Last mode after 395 975 419 471 447 343 449 966 452 286 452 888 453 510 453 650 476 397 477 347 477 403
the SWHs were
decomposed
(× (1× 10−6) Hz)

Last mode after 394 750 433 368 433 725 434 455 451 044 451 505 451 713 475 568 476 213 476 246 476 317
the APDs were
decomposed
(× (1× 10−6) Hz)

Figure 5. Structure of long short-term memory networks. The xt
denotes the current input vector, ft is the forget gate, it is the input
gate, ct is the storage cell state, ot is the output gate, ht is the stor-
age cell value at time t , σ is the sigmoid function, tanh denotes the
hyperbolic tangent function, and “�” denotes the Hadamard matrix
product.

ble 4. Meanwhile, the learning rate decay and early-stopping
method are used to prevent overfitting of the model and re-
duce the wasted training time.

5 Experiment and analysis

5.1 Evaluation metrics

To quantify the performance of the prediction model, the
mean absolute error (MAE), root mean square error (RMSE),
mean absolute percentage error (MAPE), and determination
coefficient (R2) are used as evaluation metrics. The equations
can be written as follows.

MAE=
1
N

∑N

i=1

∣∣yp(i)− yt (i)∣∣ , (5)

RMSE=

√
1
N

∑N

i=1
(yp(i)− yt (i))

2, (6)

MAPE=
1
N

∑N

i=1

∣∣yp(i)− yt (i)∣∣
yt (i)

× 100 %, (7)
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Figure 6. The overall structure of VMD–TCN–LSTM wave-parameter-prediction model.
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Table 4. Bayesian hyperparameter optimization results.

Parameter Search interval Final value

Batch size {8, 16, 32, 64, 256, 512} 256
TCN hidden unit {16, 32, 64, 256} 64
LSTM hidden unit {16, 32, 64, 256} 128
Dense hidden unit {16, 32, 64, 256} 128
Learning rate α {1× 10−4, 3× 10−4, 5× 10−4, 1× 10−3, 1× 10−2} 3× 10−4

Dropout rate {0.1, 0.2, 0.3, 0.4, 0.5} 0.2
L2 regularization parameter {1× 10−7, 1× 10−6, 1× 10−5, 1× 10−4} 1× 10−5

R2
= 1−

∑N
i=1(yp(i)− yt (i))

2∑N
i=1(yt (i)− yt )

2
, (8)

where N denotes the time length of the series data, yt (i) is
the true observation values of NDBC, yp(i) is the predicted
value, and yt is the average of the true observation values.

Furthermore, to quantify the improvement of the VMD
technique and the TCN unit on the model accuracy, re-
spectively, four parameters – IMAE, IRMSE, IMAPE, and IR2

(Eqs. 9 to 12, Table 4) – are introduced to compare the
percentage improvement of the evaluation metrics of the
VMD–LSTM and VMD–TCN–LSTM models concerning
the LSTM model.

IMAE =
MAELSTM−MAEmodel

MAELSTM
× 100 %, (9)

IRMSE =
RMSELSTM−RMSEmodel

RMSELSTM
× 100 %, (10)

IMAPE =
MAPELSTM−MAPEmodel

MAPELSTM
× 100 %, (11)

IR2 =
R2

model−R
2
LSTM

R2
LSTM

× 100 %, (12)

where the subscript “LSTM” represents the evaluation met-
rics of the LSTM model, and the subscript “model” repre-
sents the evaluation metrics of the VMD–LSTM or VMD–
TCN–LSTM models.

5.2 Three-hour forecasting performance

The evaluation metrics of SWH and APD for different pre-
diction models on the testing sets of the four buoys for the
3 h forecasts are shown in Table 5, where the best results
are shown in bold. As shown in the table, both the VMD–
LSTM and VMD–TCN–LSTM models significantly outper-
form the results of the LSTM model. This indicates that the
data pre-processing method of VMD can extract the features
of the sequence data well for the 3 h SWH and APD fore-
casts, which can significantly improve the forecasting per-
formance. Meanwhile, the improvement of the TCN cells
on the model performance is not particularly significant for
the 3 h SWH and APD forecasts. The performance of the
VMD–TCN–LSTM model was slightly better than that of the
VMD–LSTM model only in some instances.

In the SWH forecasting at four buoys, the buoy with
the best performance was buoy 51003, with MAE, RMSE,
MAPE, and R2 of 0.066 m, 0.082 m, 2.315 %, and 0.978, re-
spectively. Among the APD forecasting at four buoys, the
VMD–TCN–LSTM model had the smallest MAE and RMSE
at buoy 51003, with 0.105 and 0.145 s, respectively, and the
smallest MAPE and the highest R2 at buoy 51004, with
1.323 % and 0.981, respectively.

To compare the forecasting results of different models
more visually, Fig. 7 shows the comparison results of the 3 h
SWH and APD forecasting curves of different models with
the observed values for the first 24 h of the testing set for each
buoy. As shown in Fig. 7, the forecasting results of VMD–
TCN–LSTM have good agreement with the observed values
of NDBC at most moments on all four buoys. The forecasting
results of VMD–LSTM are also close to the observed val-
ues. Meanwhile, the results of both the VMD–TCN–LSTM
and VMD–LSTM models are significantly better than those
of the LSTM model. This shows that both the VMD–TCN–
LSTM and VMD–LSTM models can better capture the time-
varying characteristics of wave series data and thus perform
well in the SWH and APD forecasts.

Figure 8 shows the linear-fitting results of the SWH and
APD observations with the forecasts of the three models for
each buoy. According to the linear-fitting formula, the fitting
curves of both the VMD–LSTM and VMD–TCN–LSTM
models were closer to “y = x” compared to the LSTM
model. For the 3 h SWH forecasts, the fitted formula of the
VMD–TCN–LSTM forecasting results for buoy 51004 was
closest to y = x, which had a slope of 0.9817 and an intercept
of 0.0404 (Fig. 8e). For the 3 h APD forecasts, the fitted for-
mula of the VMD–TCN–LSTM forecasting results for buoy
51004 was closest to y = x, which had a slope of 0.9929 and
an intercept of 0.0829 (Fig. 8f). The results indicate that the
forecasting performance of these two models is significantly
better than that of the LSTM model, which is consistent with
the findings in Fig. 7 and Table 5.

Meanwhile, the SWH and APD of the four buoys have dif-
ferent ranges of values and other statistical features, which
proves that the two models, VMD–LSTM and VMD–TCN–
LSTM, have good robustness for SWH and APD forecasting
under different scenarios. The VMD technique can extract
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Table 5. Accuracy evaluation of the three models in 3 h SWH and APD forecasts. The best performances of the LSTM, VMD-LSTM, and
VMD-TCN-LSTM models are shown in bold in the table.

Buoy ID Algorithm SWH APD

MAE (m) RMSE (m) MAPE (%) R2 MAE (s) RMSE (s) MAPE (%) R2

51000 VMD+TCN+LSTM 0.083 0.111 4.675 0.924 0.155 0.204 2.353 0.950
VMD+LSTM 0.085 0.118 4.766 0.918 0.168 0.217 2.536 0.942
LSTM 0.143 0.177 8.527 0.874 0.219 0.290 3.295 0.897

51003 VMD+TCN+LSTM 0.066 0.082 2.315 0.978 0.105 0.145 1.438 0.973
VMD+LSTM 0.067 0.088 2.592 0.976 0.108 0.147 1.479 0.976
LSTM 0.153 0.204 5.862 0.869 0.252 0.353 3.397 0.859

51004 VMD+TCN+LSTM 0.080 0.105 2.816 0.973 0.115 0.158 1.323 0.981
VMD+LSTM 0.081 0.107 2.856 0.970 0.124 0.164 1.372 0.976
LSTM 0.159 0.217 6.105 0.885 0.279 0.393 3.601 0.884

51101 VMD+TCN+LSTM 0.093 0.124 4.720 0.952 0.171 0.222 2.526 0.953
VMD+LSTM 0.096 0.127 4.795 0.957 0.166 0.218 2.527 0.951
LSTM 0.224 0.302 7.417 0.892 0.326 0.479 4.269 0.848

the time-varying features of the original data, contributing to
the accuracy of the prediction model. In addition, using TCN
cells instead of LSTM cells for encoding the network model
can also reduce the error in the prediction model by a small
amount.

5.3 Twelve-hour forecasting performance

The evaluation metrics of SWH and APD for different pre-
diction models on the testing sets of the four buoys for the
12 h forecasts are shown in Table 6, and the best results are
shown in bold in the table. As shown in Table 6, both the
VMD–LSTM and VMD–TCN–LSTM models significantly
outperform the performances of the LSTM model. This is
like the results of the 3 h SWH and APD forecasts.

In addition, the performances of the VMD–TCN–LSTM
model outperformed the VMD–LSTM for the SWH and
APD forecasts at all buoys. Compared with the 3 h forecasts,
the TCN cells were more significant for the model perfor-
mance improvement in the 12 h wave forecasts. This is be-
cause the residual block structure used in the TCN cells can
maintain the historical information for a long time. The TCN
cells are more significant in the longer time wave parameter
forecasts.

Among the SWH forecasting of the four buoys, the
VMD–TCN–LSTM model had the smallest MAE and
RMSE at buoy 51000, with 0.125 and 0.165 m, respectively.
Buoy 51003 had the smallest MAPE of 5.912 %. Buoy 51004
had the largest R2 of 0.898. In the APD forecasting at four
buoys, the VMD–TCN–LSTM model had the smallest MAE
and RMSE at buoy 51003, with 0.247 and 0.336 s, respec-
tively, and the smallest MAPE and the highest R2 at buoy
51004, with 3.329 % and 0.904, respectively.

The comparison of the forecasting curves of different
models with the observations of NDBC for the first 24 h of
the testing set of the four NDBC buoys for the 12 h SWH and
APD forecasts is shown in Fig. 9. As shown in the figure, the
forecasts of the VMD–TCN–LSTM model were in excellent
agreement with the NDBC observations for most moments
at all four buoys, and it significantly outperforms the fore-
casting curves of the VMD–LSTM and LSTM models. The
results show that the VMD–TCN–LSTM model can better
capture the time-varying characteristics of wave series data
and thus performs well in forecasting SWH and APD.

Figure 10 shows the linear-fitting results for the 12 h SWH
and APD forecast data and observations at each buoy for the
three models. As shown in Fig. 10, it was evident that the
forecasting results of the VMD–TCN–LSTM model have the
closest-fitting formula to y = x compared with the LSTM
model, and the VMD–TCN–LSTM model is better than the
VMD–LSTM model. In the 12 h SWH forecasts, the fit-
ted formula of the VMD–TCN–LSTM forecasting results
for buoy 51000 was closest to y = x, which had a slope
of 0.9256 and an intercept of 0.1252 (Fig. 10a). Among
the 12 h APD forecasts, the fitted formula of the VMD–
TCN–LSTM forecasting results for buoy 51004 was closest
to y = x, which had a slope of 0.9664 and an intercept of
0.2500 (Fig. 10f). Both the VMD–TCN–LSTM and VMD–
LSTM models have significantly better forecasting perfor-
mance than the LSTM model. This is consistent with the con-
clusions of Fig. 9 and Table 6.

Moreover, the variability in the numerical ranges of SWH
and APD for the four buoys also demonstrates the excel-
lent robustness of the VMD–TCN–LSTM model for SWH
and APD forecasts in different scenarios. The pre-processing
of wave sequence data using VMD can extract the time-
varying features of the original data well, and the expansion
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Figure 7. Comparison results of the 3 h SWH and APD forecasting curves of different models with the observed values for the first 24 h of
the testing datasets for each buoy.

convolution module of TCNs increases the perceptual field
of the model. At the same time, the residual block enables
the preservation of the long-term information of the origi-
nal data. Therefore, the hybrid model of VMD, TCNs, and
LSTM can significantly improve the accuracy of the fore-
casting results.

5.4 Twenty-four- and forty-eight-hour forecasting
performance

To further compare the performance of the VMD–TCN–
LSTM model for the longer time wave forecasts, the error
indices of the prediction models at 24 and 48 h are presented
in Table 7 and Table 8, respectively, where the best results
are shown in bold in the table.

As shown in Table 7, for the 24 h forecasts, the MAE
and RMSE for the forecasting of SWH and APD at buoy
51000 are the lowest, with MAE of 0.119 m and 0.302 s and
RMSE of 0.173 m and 0.412 s, respectively. This is because
the range of data for SWH and APD in the testing datasets
at buoy 51000 is the smallest (Fig. 2). At buoy 51004, the
forecasting of SWH and APD had the lowest MAPE and the
highest R2, with MAPE of 7.408 % and 4.266 % and R2 of
0.845 and 0.833, respectively.

As shown in Table 8, for the 48 h forecasts, the MAE and
RMSE for the forecasting of SWH and APD at buoy 51000
are the lowest, with MAE of 0.187 m and 0.443 s and RMSE
of 0.249 m and 0.604 s, respectively. It showed a similar per-
formance to the 24 h SWH and APD forecasts. Buoy 51004
had the lowest R2, with 0.723 and 0.611 for SWH and APD
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Figure 8. The linear fitting of the 3 h SWH and APD predictions and observations for the three models.

Table 6. Accuracy evaluation of the three models in 12 h SWH and APD forecasts. The best performances of the LSTM, VMD-LSTM, and
VMD-TCN-LSTM models are shown in bold in the table.

Buoy ID Algorithm SWH APD

MAE (m) RMSE (m) MAPE (%) R2 MAE (s) RMSE (s) MAPE (%) R2

51000 VMD+TCN+LSTM 0.125 0.165 7.128 0.817 0.282 0.382 4.212 0.834
VMD+LSTM 0.136 0.182 7.706 0.772 0.302 0.406 4.520 0.801
LSTM 0.195 0.248 11.62 0.639 0.353 0.485 5.210 0.710

51003 VMD+TCN+LSTM 0.152 0.203 5.912 0.872 0.247 0.336 3.355 0.871
VMD+LSTM 0.177 0.233 6.910 0.830 0.293 0.398 3.948 0.819
LSTM 0.271 0.371 10.39 0.581 0.439 0.629 5.862 0.550

51004 VMD+TCN+LSTM 0.157 0.206 6.167 0.898 0.259 0.361 3.329 0.904
VMD+LSTM 0.169 0.222 6.575 0.882 0.291 0.395 3.799 0.884
LSTM 0.277 0.398 10.65 0.619 0.506 0.743 6.457 0.581

51101 VMD+TCN+LSTM 0.283 0.369 9.575 0.839 0.419 0.555 5.262 0.811
VMD+LSTM 0.274 0.361 9.270 0.840 0.441 0.585 5.526 0.787
LSTM 0.384 0.522 12.98 0.673 0.638 0.918 7.876 0.450

forecasts, respectively. Buoy 51004 also had a low MAPE
of 9.879 % for the SWH forecasts. Buoy 51003 had a low
MAPE of 6.174 % for the APD forecasts.

5.5 Analysis of improvement of VMD–TCN–LSTM
compared with previous models

To precisely quantify the prediction performance improve-
ment rate of the VMD technique and TCN cells for the

LSTM model, we need to analyze them separately. The
model performance improvement rates for VMD–TCN–
LSTM and VMD–LSTM were calculated by using Eq. (9) to
Eq. (12) (Table 9), and bold in the table represents the high-
est result of the model performance improvement rate. As
shown in Table 9, the VMD–LSTM and VMD–TCN–LSTM
models had very similar improvement rates in MAE, RMSE,
MAPE, and R2 in the 3 h SWH forecasts, which indicates
that the improvement of the VMD–TCN–LSTM model for
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Figure 9. Comparison results of the 12 h SWH and APD forecasting curves of different models with the observed values for the first 24 h of
the testing datasets for each buoy.

prediction accuracy in the 3 h SWH forecasts is mainly con-
tributed by the VMD technique. The same conclusion can be
obtained in the 3 h APD forecasts. Subsequently, when the
length of forecasting increases to 12, 24, and 48 h, the TCN
cells are more significant for the decrease in MAE, RMSE,
and MAPE and the increase in R2 for the forecasting results.

There was no significant rule for the decreased rate of TCN
cells for the MAE, RMSE, and MAPE of the model at various
forecasting time lengths. However, the contribution of TCN
cells to the improvement of R2 for forecasting results gradu-
ally increases with the increase in forecasting time length. It
reaches the maximum value in the 48 h SWH and APD fore-
casts. As shown in Table 9, in the 48 h SWH forecasts, the
VMD technique increases the R2 of the forecasting perfor-
mance by 132.5 %, and the TCN cells for model encoding

resulted in a further 36.8 % improvement in the R2 of the
model. In the 48 h APD forecasts, the VMD technique in-
creases the R2 of the forecasting performance by 119.7 %.
The TCN cells resulted in a further 40.9 % improvement in
the R2 of the model.

LSTM has advantages in solving the prediction prob-
lem by using time series data and has been widely used in
many fields. However, due to the strong non-linear effects
in the generation and evolution of waves, the wave predic-
tion model that only uses LSTM will weaken the ability of
generalization. As a result, both the model’s ability to adapt
to new samples and its prediction accuracy will be reduced.
The VMD signal decomposition method can effectively ex-
tract the features of the original wave data, which can en-
hance LSTM’s ability to capture the long-term dependence
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Figure 10. The linear fitting of the 12 h SWH and APD predictions and observations for the three models.

Table 7. Accuracy evaluation of the three models in 24 h SWH and APD forecasts. The best performances of the LSTM, VMD-LSTM, and
VMD-TCN-LSTM models are shown in bold in the table.

Buoy ID Algorithm SWH APD

MAE (m) RMSE (m) MAPE (%) R2 MAE (s) RMSE (s) MAPE (%) R2

51000 VMD+TCN+LSTM 0.119 0.173 8.203 0.733 0.302 0.412 4.287 0.775
VMD+LSTM 0.149 0.206 8.406 0.693 0.336 0.459 4.976 0.739
LSTM 0.249 0.313 14.87 0.294 0.464 0.648 6.841 0.478

51003 VMD+TCN+LSTM 0.194 0.247 7.604 0.808 0.312 0.420 4.268 0.810
VMD+LSTM 0.233 0.290 9.152 0.734 0.342 0.457 4.705 0.764
LSTM 0.381 0.503 14.44 0.302 0.585 0.842 7.777 0.298

51004 VMD+TCN+LSTM 0.191 0.253 7.408 0.845 0.337 0.467 4.266 0.833
VMD+LSTM 0.213 0.282 8.302 0.808 0.405 0.555 5.297 0.764
LSTM 0.362 0.519 14.29 0.349 0.693 0.959 8.941 0.295

51101 VMD+TCN+LSTM 0.309 0.400 10.75 0.803 0.496 0.671 6.258 0.688
VMD+LSTM 0.325 0.416 11.49 0.787 0.517 0.701 6.497 0.659
LSTM 0.578 0.780 18.81 0.247 0.847 1.169 10.43 0.257

of the time series data and further improve the performance
of the wave prediction model. This study shows that the
VMD can significantly reduce the model’s MAE, RMSE,
and MAPE and improve the model’s R2. The TCN intro-
duces multiple residual blocks to speed up the forecast model
and can retain historical wave change information over long
periods. This study also shows that the TCN’s impact in-
creases as the forecast period lengthens. The proposed hybrid
VMD–TCN–LSTM shows its advantage in predicting both

the wave height and the wave period. This method could also
be used in other fields which have similar non-linear features
to waves.

6 Conclusions

This paper proposes a hybrid VMD–TCN–LSTM model for
forecasting SWH and APD using buoy data near the Hawai-
ian Islands provided by the NDBC. Seven physical parame-
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Table 8. Accuracy evaluation of the three models in 48 h SWH and APD forecasts. The best performances of the LSTM, VMD-LSTM, and
VMD-TCN-LSTM models are shown in bold in the table.

Buoy ID Algorithm SWH APD

MAE (m) RMSE (m) MAPE (%) R2 MAE (s) RMSE (s) MAPE (%) R2

51000 VMD+TCN+LSTM 0.187 0.249 10.64 0.551 0.443 0.604 6.676 0.487
VMD+LSTM 0.197 0.261 10.87 0.505 0.476 0.656 6.899 0.432
LSTM 0.312 0.390 19.06 0.204 0.602 0.798 8.851 0.160

51003 VMD+TCN+LSTM 0.315 0.387 12.56 0.536 0.448 0.606 6.174 0.592
VMD+LSTM 0.335 0.428 13.51 0.434 0.531 0.792 7.110 0.429
LSTM 0.552 0.720 19.85 0.214 0.772 1.097 10.41 0.214

51004 VMD+TCN+LSTM 0.255 0.339 9.879 0.723 0.524 0.715 6.714 0.611
VMD+LSTM 0.299 0.389 11.78 0.635 0.564 0.787 7.247 0.529
LSTM 0.469 0.644 18.71 0.231 0.859 1.243 11.08 0.276

51101 VMD+TCN+LSTM 0.456 0.586 16.23 0.580 0.744 0.907 9.474 0.432
VMD+LSTM 0.497 0.648 16.74 0.487 0.822 1.109 10.31 0.390
LSTM 0.651 0.805 23.86 0.238 1.127 1.503 13.65 0.180

Table 9. The performance improvement rate of the VMD–TCN–LSTM and VMD–LSTM models relative to the LSTM model. The best
performances of the LSTM, VMD-LSTM, and VMD-TCN-LSTM models are shown in bold in the table.

Evaluation indicators Algorithm SWH APD

3 h 12 h 24 h 48 h 3 h 12 h 24 h 48 h

IMAE (%) VMD+TCN+LSTM 51.75 37.36 48.77 39.65 48.47 36.75 43.60 35.34
VMD+LSTM 50.74 33.14 40.98 34.02 46.27 30.27 37.41 28.39

IRMSE (%) VMD+TCN+LSTM 51.91 39.08 48.90 39.24 50.51 39.69 45.11 37.80

VMD+LSTM 49.71 34.72 42.22 33.18 49.07 34.03 39.26 27.12

IMAPE (%) VMD+TCN+LSTM 48.98 37.52 45.80 40.02 47.59 35.89 43.69 33.82
VMD+LSTM 47.12 33.51 40.23 35.45 45.55 29.22 36.31 28.20

IR2 (%) VMD+TCN+LSTM 8.733 36.92 171.0 169.3 10.63 52.91 146.0 160.6
VMD+LSTM 8.560 32.74 157.2 132.5 10.30 47.19 131.6 119.7

ters – SWH, APD, MWD, WSPD, WDIR, PRES, and ATMP
– were chosen for training the prediction model in the re-
search. Specifically, the original features of the non-smooth
wave series data were extracted by decomposing the original
SWH and APD series data using the VMD technique. Sub-
sequently, a prediction model is constructed using a network
structure encoded by TCN cells and decoded by LSTM cells,
where the TCN cells can capture the local feature informa-
tion of the original series and can maintain the historical in-
formation for a long time. Simultaneously, the BO algorithm
is used to obtain the optimal hyperparameters of the model to
prevent overfitting or underfitting problems of the model. Ul-
timately, the 3, 12, 24, and 48 h forecasts of SWH and APD
were implemented based on the VMD–TCN–LSTM model.
In addition, eight evaluation metrics – MAE, RMSE, MAPE,
R2, IMAE, IRMSE, IMAPE, and IR2 – were used to evaluate
and test the model performance.

The VMD–TCN–LSTM model proposed in this research
outperforms the LSTM and the VMD–LSTM models for
all forecasting time lengths at all four NDBC buoys. This
demonstrates that the VMD–TCN–LSTM model has good
robustness and generalization ability. For the 3 h SWH and
APD forecasts, the improvement of the hybrid model for
forecasting accuracy is mainly contributed by the VMD tech-
nique, and the contribution of the TCN cells to the advance-
ment of the model accuracy is relatively tiny. Subsequently,
the contribution of TCN cells to improve model forecasting
accuracy was gradually significant when the forecasting time
length increased to 12, 24, and 48 h.

There was no significant rule for the decreased rate of TCN
cells for the MAE, RMSE, and MAPE of the model at vari-
ous forecasting time lengths. The contribution of TCN cells
to improving R2 for forecasting results gradually increases
with the increase in forecasting time length. The VMD tech-
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nique and the TCN cells improved the R2 of the model by
132.5 % and 36.8 %, respectively, in the 48 h SWH forecasts.
In the 48 h APD forecasts, the VMD technique and the TCN
cells improved the R2 of the model by 119.7 % and 40.9 %,
respectively.

Now that the short-term SWH and APD can be accu-
rately predicted using the hybrid VMD–TCN–LSTM, this
method would be useful for some marine-related activities
which are highly dependent on wave height and period pre-
dictions, such as ocean-wave-energy projects, shipping, fish-
ing, coastal structures, and naval operations. Future work will
investigate the effect of different driving data on the predic-
tion skill or the use of VMD–TCN–LSTM to predict other
marine environmental parameters (e.g., sea level or winds).
The combination of numerical wave models and the VMD–
TCN–LSTM for large-scale SWH and APD simulations will
also be developed.

Appendix A: Detailed description of the VMD algorithm

The nucleus of VMD is the construction and solution of the
variational problem, which is essentially a constrained op-
timization problem. The variational problem is to minimize
the sum of the estimated bandwidths of the IMFs, with the
constraint that the sum of the IMFs is the original signal. The
calculation formula is as follows:

min
{uk},{ωk}

{∑
k

∥∥∥∥∂t [(δ(t) + j

πt

)∗
uk(t)

]
e−jωk t

∥∥∥∥2

2

}
s.t.
∑

k
uk = f, (A1)

where “s.t.” is the abbreviation of “subject to”; {uk} := {u1,
u2, . . . , uk} and {ωk} := {ω1, ω2, . . . , ωk} denote the set of all
modes and their corresponding central frequencies, respec-
tively. The f is the original signal, k is the total number of
modes, and δ(t) represents the Dirac distribution. The j is an
imaginary unit, and “∗” denotes the convolution.

To simplify the above equations, VMD introduces a
quadratic penalty term (α) and Lagrange multipliers (λ) to
convert the constrained problem into a non-constrained prob-
lem; α guarantees the reconstruction accuracy of the signal,
and λ maintains the constraint stringency.

L({uk ωk}, λ) := α
∑

k

∥∥∥∥∂t [(δ(t) + j

πt

)∗
uk(t)

]
e−jωk t

∥∥∥∥2

2

+

∥∥∥f (t)−∑
k
uk(t)

∥∥∥2

2
+

〈
λ(t), f (t)−

∑
k
uk(t)

〉
(A2)

Finally, the ADMM solves the saddle point of the aug-
mented Lagrange multiplier. Update the iterative formulas
for uk , ωk , and λ as follows.

ûn+1
k (ω) =

f̂ (ω)−
∑
i 6=kûi(ω)+

λ̂(ω)
2

1 + 2α(ω−ωk)2
, (A3)

ωn+1
k =

∫
∞

0 ω
∣∣ûk(ω)∣∣2dω∫

∞

0

∣∣ûk(ω)∣∣2dω , (A4)

λ̂n+1(ω)= λ̂n(ω) + τ
(
f̂ (ω)−

∑K

k=1
ûn+1
k (ω)

)
, (A5)

where f̂ (ω), ûk(ω), λ̂(ω), and ûn+1
k (ω) are the Fourier trans-

forms of f (ω), uk(ω), λ(ω), and un+1
k (ω), respectively. The

n and τ are the number of iterations and update coefficients
of dual ascent. The iterations are stopped when the conver-
gence condition satisfies the following equation.

∑
k

∥∥∥ûn+1
k − ûnk

∥∥∥2

2∥∥ûnk∥∥2
2

< ε (A6)

Appendix B: Detailed description of the LSTM

A LSTM cell consists of four components: the forget gate ft ,
the input gate it , the storage cell state ct , and the output gate
ot .

The ft determines the number of memories that need to be
reserved from ct−1 to ct .

ft = σ
(
Wf ·

[
xt , ht−1

]
+ bf

)
(B1)

The it determines the information that is input to this cell
state.

it = σ
(
Wi ·

[
xt , ht−1

]
+ bi

)
(B2)

The ot represents the information output from this cell
state.

ot = σ
(
Wo ·

[
xt , ht−1

]
+ bo

)
(B3)

The cell state is

Ct = ft �Ct−1 + it � C̃t , (B4)

C̃t = tanh
(
Wc ·

[
xt ,ht−1

]
+ bc

)
. (B5)

The next cell with ht is

ht = ot � tanh(Ct ). (B6)

In the above equation, xt denotes the current input vector,
and W and b denote the hyperparameters of the weights and
biases. The ht is the storage cell value at time t . The σ is the
sigmoid function, tanh denotes the hyperbolic tangent func-
tion, “·” denotes the dot product of matrices, and “�” denotes
the Hadamard matrix product of equidimensional matrices
(Yu et al., 2019; Gers et al., 2000; Hochreiter and Schmid-
huber, 1997). The sigmoid function takes values in the range
of [0, 1], and in the forgetting gate, if the value is 0, the in-
formation of the previous state is completely forgotten, and
if the value is 1, the information is completely retained. The
tanh function takes the values in the range of [−1, 1].
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