Articles | Volume 19, issue 5
https://doi.org/10.5194/os-19-1413-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1413-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ocean 2D eddy energy fluxes from small mesoscale processes with SWOT
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (CNES-CNRS-IRD-UPS), Toulouse, France
Rosemary Morrow
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (CNES-CNRS-IRD-UPS), Toulouse, France
Oscar Vergara
Collecte Localisation Satellites (CLS), Toulouse, France
Robin Chevrier
Collecte Localisation Satellites (CLS), Toulouse, France
Lionel Renault
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (CNES-CNRS-IRD-UPS), Toulouse, France
Related authors
No articles found.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-140, https://doi.org/10.5194/gmd-2024-140, 2024
Preprint under review for GMD
Short summary
Short summary
This article details a new feature we implemented in the most popular regional atmospheric model (WRF). This feature allows data to be exchanged between WRF and any other model (e.g. an ocean model) using the coupling library Ocean-Atmosphere-Sea-Ice-Soil – Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Gerald Dibarboure, Cécile Anadon, Frédéric Briol, Emeline Cadier, Robin Chevrier, Antoine Delepoulle, Yannice Faugère, Alice Laloue, Rosemary Morrow, Nicolas Picot, Pierre Prandi, Marie-Isabelle Pujol, Matthias Raynal, Anaelle Treboutte, and Clément Ubelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1501, https://doi.org/10.5194/egusphere-2024-1501, 2024
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath altimetry products. In this paper, we describe how we extended the Level-3 algorithms to handle SWOT’s unique swath-altimeter data. We also illustrate and discuss the benefits, relevance, and limitations of Level-3 swath-altimeter products for various research domains.
Oscar Vergara, Rosemary Morrow, Marie-Isabelle Pujol, Gérald Dibarboure, and Clément Ubelmann
Ocean Sci., 19, 363–379, https://doi.org/10.5194/os-19-363-2023, https://doi.org/10.5194/os-19-363-2023, 2023
Short summary
Short summary
Recent advances allow us to observe the ocean from space with increasingly higher detail, challenging our knowledge of the ocean's surface height signature. We use a statistical approach to determine the spatial scale at which the sea surface height signal is no longer dominated by geostrophic turbulence but in turn becomes dominated by wave-type motions. This information helps us to better use the data provided by ocean-observing satellites and to gain knowledge on climate-driving processes.
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
Michel Tchilibou, Ariane Koch-Larrouy, Simon Barbot, Florent Lyard, Yves Morel, Julien Jouanno, and Rosemary Morrow
Ocean Sci., 18, 1591–1618, https://doi.org/10.5194/os-18-1591-2022, https://doi.org/10.5194/os-18-1591-2022, 2022
Short summary
Short summary
This high-resolution model-based study investigates the variability in the generation, propagation, and sea height signature (SSH) of the internal tide off the Amazon shelf during two contrasted seasons. ITs propagate further north during the season characterized by weak currents and mesoscale eddies and a shallow and strong pycnocline. IT imprints on SSH dominate those of the geostrophic motion for horizontal scales below 200 km; moreover, the SSH is mainly incoherent below 70 km.
Hector S. Torres, Patrice Klein, Jinbo Wang, Alexander Wineteer, Bo Qiu, Andrew F. Thompson, Lionel Renault, Ernesto Rodriguez, Dimitris Menemenlis, Andrea Molod, Christopher N. Hill, Ehud Strobach, Hong Zhang, Mar Flexas, and Dragana Perkovic-Martin
Geosci. Model Dev., 15, 8041–8058, https://doi.org/10.5194/gmd-15-8041-2022, https://doi.org/10.5194/gmd-15-8041-2022, 2022
Short summary
Short summary
Wind work at the air-sea interface is the scalar product of winds and currents and is the transfer of kinetic energy between the ocean and the atmosphere. Using a new global coupled ocean-atmosphere simulation performed at kilometer resolution, we show that all scales of winds and currents impact the ocean dynamics at spatial and temporal scales. The consequential interplay of surface winds and currents in the numerical simulation motivates the need for a winds and currents satellite mission.
Marie-Isabelle Pujol, Stéphanie Dupuy, Oscar Vergara, Antonio Sánchez-Román, Yannice Faugère, Pierre Prandi, Mei-Ling Dabat, Quentin Dagneaux, Marine Lievin, Emeline Cadier, Gérald Dibarboure, and Nicolas Picot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-292, https://doi.org/10.5194/essd-2022-292, 2022
Manuscript not accepted for further review
Short summary
Short summary
An altimeter sea level along-track level-3 product with a 5 Hz (~1.2 km) sampling is proposed. It takes advantage of recent advances in radar altimeter processing, and improvements made to different stages of the processing chain. Compared to the conventional 1 Hz (~7 km) product, it significantly improves the observability of the short wavelength signal in open ocean and near coast areas (> 5 km). It also contributes to improving high resolution numerical model outputs via data assimilation.
Cori Pegliasco, Antoine Delepoulle, Evan Mason, Rosemary Morrow, Yannice Faugère, and Gérald Dibarboure
Earth Syst. Sci. Data, 14, 1087–1107, https://doi.org/10.5194/essd-14-1087-2022, https://doi.org/10.5194/essd-14-1087-2022, 2022
Short summary
Short summary
The new global Mesoscale Eddy Trajectory Atlases (META3.1exp) provide eddy identification and trajectories from altimetry maps. These atlases comprise an improvement to and continuation of the historical META2.0 product. Changes in the detection parameters and tracking were tested by comparing the eddies from the different datasets. In particular, the eddy contours available in META3.1exp are an asset for multi-disciplinary studies.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Guillaume Sérazin, Frédéric Marin, Lionel Gourdeau, Sophie Cravatte, Rosemary Morrow, and Mei-Ling Dabat
Ocean Sci., 16, 907–925, https://doi.org/10.5194/os-16-907-2020, https://doi.org/10.5194/os-16-907-2020, 2020
João H. Bettencourt, Vincent Rossi, Lionel Renault, Peter Haynes, Yves Morel, and Véronique Garçon
Nonlin. Processes Geophys., 27, 277–294, https://doi.org/10.5194/npg-27-277-2020, https://doi.org/10.5194/npg-27-277-2020, 2020
Short summary
Short summary
The oceans are losing oxygen, and future changes may worsen this problem. We performed computer simulations of an idealized Iberian Peninsula upwelling system to identify the main fine-scale processes driving dissolved oxygen variability as well as study the response of oxygen levels to changes in wind patterns and phytoplankton species. Our results suggest that oxygen levels would decrease if the wind blows for long periods of time or if phytoplankton is dominated by species that grow slowly.
Michel Tchilibou, Lionel Gourdeau, Florent Lyard, Rosemary Morrow, Ariane Koch Larrouy, Damien Allain, and Bughsin Djath
Ocean Sci., 16, 615–635, https://doi.org/10.5194/os-16-615-2020, https://doi.org/10.5194/os-16-615-2020, 2020
Short summary
Short summary
This paper focuses on internal tides in the marginal Solomon Sea where LLWBCs transit. The objective is to characterize such internal tides and to give some insights into their impacts on water mass transformation in this area of interest for the global circulation. Results are discussed for two contrasted ENSO conditions with different mesoscale activity and stratification. Such study is motivated by the next altimetric SWOT mission that will be able to observe such phenomena.
Michel Tchilibou, Lionel Gourdeau, Rosemary Morrow, Guillaume Serazin, Bughsin Djath, and Florent Lyard
Ocean Sci., 14, 1283–1301, https://doi.org/10.5194/os-14-1283-2018, https://doi.org/10.5194/os-14-1283-2018, 2018
Short summary
Short summary
This paper is motivated by the next SWOT altimetric mission dedicated to the observation of mesoscale and submesoscale oceanic features. It focuses on tropical areas with a strong discrepancy in the spectral signature between altimetry and models. The paper reviews the spectral signature of tropical turbulence which presents a rich variety of phenomena depending on the latitudinal dependence of the Coriolis force. Internal tides observed by altimetry explain the discrepancy with the model.
Marine Bretagnon, Aurélien Paulmier, Véronique Garçon, Boris Dewitte, Séréna Illig, Nathalie Leblond, Laurent Coppola, Fernando Campos, Federico Velazco, Christos Panagiotopoulos, Andreas Oschlies, J. Martin Hernandez-Ayon, Helmut Maske, Oscar Vergara, Ivonne Montes, Philippe Martinez, Edgardo Carrasco, Jacques Grelet, Olivier Desprez-De-Gesincourt, Christophe Maes, and Lionel Scouarnec
Biogeosciences, 15, 5093–5111, https://doi.org/10.5194/bg-15-5093-2018, https://doi.org/10.5194/bg-15-5093-2018, 2018
Short summary
Short summary
In oxygen minimum zone, the fate of the organic matter is a key question as the low oxygen condition would preserve the OM and thus enhance the biological carbon pump while the high microbial activity would foster the remineralisation and the greenhouse gases emission. To investigate this paradigm, sediment traps were deployed off Peru. We pointed out the influence of the oxygenation as well as the organic matter quantity and quality on the carbon transfer efficiency in the oxygen minimum zone.
Rosemary Morrow, Alice Carret, Florence Birol, Fernando Nino, Guillaume Valladeau, Francois Boy, Celine Bachelier, and Bruno Zakardjian
Ocean Sci., 13, 13–29, https://doi.org/10.5194/os-13-13-2017, https://doi.org/10.5194/os-13-13-2017, 2017
Short summary
Short summary
Spectral analyses of along-track altimetric data are used to estimate noise levels and observable ocean scales in the NW Mediterranean Sea. In winter, all altimetric missions can observe wavelengths down to 40–50 km (individual feature diameters of 20–25 km). In summer, SARAL can detect scales down to 35 km, whereas Jason-2 and CryoSat-2 with higher noise can only observe scales less than 50–55 km. Along-track altimeter data are also compared with collocated glider and coastal HF radar data.
Oscar Vergara, Boris Dewitte, Ivonne Montes, Veronique Garçon, Marcel Ramos, Aurélien Paulmier, and Oscar Pizarro
Biogeosciences, 13, 4389–4410, https://doi.org/10.5194/bg-13-4389-2016, https://doi.org/10.5194/bg-13-4389-2016, 2016
Short summary
Short summary
The Southeast Pacific hosts one of the most extensive oxygen minimum zone (OMZ), yet the dynamics behind it remain unveiled. We use a high-resolution coupled physical–biogeochemical model to document the seasonal cycle of dissolved oxygen within the OMZ in both the coastal zone and the offshore ocean. The OMZ seasonal variability is driven by the seasonal fluctuations of the dissolved oxygen eddy flux, with a peak in Austral winter (fall) at the northern (southern) boundary and near the coast.
S. T. Gille, M. M. Carranza, R. Cambra, and R. Morrow
Biogeosciences, 11, 6389–6400, https://doi.org/10.5194/bg-11-6389-2014, https://doi.org/10.5194/bg-11-6389-2014, 2014
Short summary
Short summary
The Kerguelen Plateau supports a strong spring chlorophyll bloom, in contrast with most of the Southern Ocean. Throughout the Southern Ocean, including in the Kerguelen area, wind can determine oceanic vertical velocities that may bring nutrients to the surface and contribute to the development of blooms. The Kerguelen Island itself generates a wind shadow that locally enhances upwelling velocities to the north of the main axis of the winds, and chlorophyll is high in this upwelling region.
Related subject area
Approach: Remote Sensing | Properties and processes: Mesoscale to submesoscale dynamics
MAESSTRO: Masked Autoencoders for Sea Surface Temperature Reconstruction under Occlusion
Deep learning for the super resolution of Mediterranean sea surface temperature fields
Multiple time-scale variations of fronts in the Seto Inland Sea, Japan
Blending 2D topography images from SWOT into the altimeter constellation with the Level-3 multi-mission DUACS system
Monitoring the coastal-offshore water interactions in the Levantine Sea using ocean color and deep supervised learning
Impact of surface and subsurface-intensified eddies on sea surface temperature and chlorophyll a in the northern Indian Ocean utilizing deep learning
Regional mapping of energetic short mesoscale ocean dynamics from altimetry: performances from real observations
Edwin Goh, Alice Yepremyan, Jinbo Wang, and Brian Wilson
Ocean Sci., 20, 1309–1323, https://doi.org/10.5194/os-20-1309-2024, https://doi.org/10.5194/os-20-1309-2024, 2024
Short summary
Short summary
An AI model was used to fill in missing parts of sea temperature (SST) maps caused by cloud cover. We found masked autoencoders can recreate missing SSTs with less than 0.2 °C error, even when 80 % are missing. This is 5000 times faster than conventional methods tested on a single central processing unit. This can enhance our ability in monitoring global small-scale ocean fronts that affect heat, carbon, and nutrient exchange in the ocean. The method is promising for future research.
Claudia Fanelli, Daniele Ciani, Andrea Pisano, and Bruno Buongiorno Nardelli
Ocean Sci., 20, 1035–1050, https://doi.org/10.5194/os-20-1035-2024, https://doi.org/10.5194/os-20-1035-2024, 2024
Short summary
Short summary
Sea surface temperature (SST) is an essential variable to understanding the Earth's climate system, and its accurate monitoring from space is essential. Since satellite measurements are hindered by cloudy/rainy conditions, data gaps are present even in merged multi-sensor products. Since optimal interpolation techniques tend to smooth out small-scale features, we developed a deep learning model to enhance the effective resolution of gap-free SST images over the Mediterranean Sea to address this.
Menghong Dong and Xinyu Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1667, https://doi.org/10.5194/egusphere-2024-1667, 2024
Short summary
Short summary
We employed a gradient-based algorithm to identify the position and intensity of the fronts in a coastal sea using sea surface temperature data, thereby quantifying their variations. Our study provides a comprehensive analysis of these fronts, elucidating their seasonal variability, intra-tidal dynamics, and the influence of winds on the fronts. By capturing the temporal and spatial dynamics of these fronts, it enhances our understanding of the complex oceanographic processes within this region.
Gerald Dibarboure, Cécile Anadon, Frédéric Briol, Emeline Cadier, Robin Chevrier, Antoine Delepoulle, Yannice Faugère, Alice Laloue, Rosemary Morrow, Nicolas Picot, Pierre Prandi, Marie-Isabelle Pujol, Matthias Raynal, Anaelle Treboutte, and Clément Ubelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1501, https://doi.org/10.5194/egusphere-2024-1501, 2024
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath altimetry products. In this paper, we describe how we extended the Level-3 algorithms to handle SWOT’s unique swath-altimeter data. We also illustrate and discuss the benefits, relevance, and limitations of Level-3 swath-altimeter products for various research domains.
Georges Baaklini, Julien Brajard, Leila Issa, Gina Fifani, Laurent Mortier, and Roy El Hourany
EGUsphere, https://doi.org/10.5194/egusphere-2024-1168, https://doi.org/10.5194/egusphere-2024-1168, 2024
Short summary
Short summary
Understanding the flow of the Levantine Sea surface current is not straightforward. We propose a study based on learning techniques to follow interactions between water near the shore and further out at sea. Our results show changes in the coastal currents past 33.8° E, with frequent instances of water breaking away along the Lebanese coast. These events happen quickly and sometimes lead to long-lasting eddies. This study underscores the need for direct observations to improve our knowledge.
Yingjie Liu and Xiaofeng Li
Ocean Sci., 19, 1579–1593, https://doi.org/10.5194/os-19-1579-2023, https://doi.org/10.5194/os-19-1579-2023, 2023
Short summary
Short summary
The study developed a deep learning model that effectively distinguishes between surface- and subsurface-intensified eddies in the northern Indian Ocean by integrating sea surface height and temperature data. The accurate distinction between these types of eddies provides valuable insights into their dynamics and their impact on marine ecosystems in the northern Indian Ocean and contributes to understanding the complex interactions between eddy dynamics and biogeochemical processes in the ocean.
Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, and Marie-Helène Rio
Ocean Sci., 19, 1517–1527, https://doi.org/10.5194/os-19-1517-2023, https://doi.org/10.5194/os-19-1517-2023, 2023
Short summary
Short summary
Altimetry provides sea surface height (SSH) data along one-dimensional tracks. For many applications, the tracks are interpolated in space and time to provide gridded SSH maps. The operational SSH gridded products filter out the small-scale signals measured on the tracks. This paper evaluates the performances of a recently implemented dynamical method to retrieve the small-scale signals from real SSH data. We show a net improvement in the quality of SSH maps when compared to independent data.
Cited articles
Aluie, H., Hecht, M., and Vallis, G.: Mapping the Energy Cascade in the North
Atlantic Ocean: The Coarse-Graining Approach, J. Phys. Oceanogr., 48, 225–244,
https://doi.org/10.1175/JPO-D-17-0100.1, 2017. a, b
Arbic, B. K., Polzin, K. L., Scott, R. B., Richman, J. G., and Shriver, J. F.:
On Eddy Viscosity, Energy Cascades, and the Horizontal Resolution
of Gridded Satellite Altimeter Products, J. Phys. Oceanogr., 43,
283–300, https://doi.org/10.1175/JPO-D-11-0240.1, 2013. a
Arbic, B. K., Elipot, S., Brasch, J. M., Menemenlis, D., Ponte, A. L., Shriver,
J. F., Yu, X., Zaron, E. D., Alford, M. H., Buijsman, M. C., Abernathey, R.,
Garcia, D., Guan, L., Martin, P. E., and Nelson, A. D.: Near‐Surface
Oceanic Kinetic Energy Distributions From Drifter Observations
and Numerical Models, J. Geophys. Res., 127, 10, https://doi.org/10.1029/2022JC018551,
2022. a, b, c
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure, G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, 2019. a, b, c
Beal, L. M., De Ruijter, W. P. M., Biastoch, A., Zahn, R., SCOR/WCRP/IAPSO
Working Group 136, Cronin, M., Hermes, J., Lutjeharms, J., Quartly, G.,
Tozuka, T., Baker-Yeboah, S., Bornman, T., Cipollini, P., Dijkstra, H., Hall,
I., Park, W., Peeters, F., Penven, P., Ridderinkhof, H., and Zinke, J.: On
the role of the Agulhas system in ocean circulation and climate, Nature,
472, 429–436, https://doi.org/10.1038/nature09983, 2011. a
Bendinger, A., Cravatte, S., Gourdeau, L., Brodeau, L., Albert, A., Tchilibou, M., Lyard, F., and Vic, C.: Regional modeling of internal-tide dynamics around New Caledonia – Part 1: Coherent internal-tide characteristics and sea surface height signature, Ocean Sci., 19, 1315–1338, https://doi.org/10.5194/os-19-1315-2023, 2023. a
Blanke, B., Penven, P., Roy, C., Chang, N., and Florian, K.: Ocean variability
over the Agulhas Bank and its dynamical connection with the southern
Benguela upwelling system, J. Geophys. Res., 114, C12028,
https://doi.org/10.1029/2009JC005358, 2009. a
Bourgeois, T., Goris, N., Schwinger, J., and Tjiputra, J. F.: Stratification
constrains future heat and carbon uptake in the Southern Ocean between
30∘ S and 55∘ S, Nat. Commun., 13, 340,
https://doi.org/10.1038/s41467-022-27979-5, 2022. a
Boyd, A. F.: Physical forcing and circulation patterns on the Agulhas Bank,
S. Afr. J. Sci., 90, 143–154,
https://doi.org/10.10520/AJA00382353_4624, 1994. a, b
Callies, J., Ferrari, R., Klymak, J. M., and Gula, J.: Seasonality in
submesoscale turbulence, Nat. Commun., 6, 6862,
https://doi.org/10.1038/ncomms7862, 2015. a
Chassignet, E. P. and Xu, X.: Impact of Horizontal Resolution (1/12∘ to
1/50∘) on Gulf Stream Separation, Penetration, and Variability, J. Phys.
Oceanogr., 47, 1999–2021, https://doi.org/10.1175/JPO-D-17-0031.1,
2017. a
Chaudhuri, A. H., Ponte, R. M., Forget, G., and Heimbach, P.: A comparison of
atmospheric reanalysis surface products over the ocean and implications for
uncertainties in air–sea boundary forcing, J. Climate, 26, 153–170, 2013. a
Chelton, D.: The Wavenumber Spectra and Standard Deviations of
Uncorrelated Errors in SWOT Measurements of Sea-Surface Height
for Various Footprint Sizes, Tech. rep., Oregon State University,
Corvallis, Oregon, https://swot.jpl.nasa.gov/system/documents/files/2253_2253_Chelton_2019_SWOT_Measurement_Noise_190523.pdf (last access: 18 April 2023), 2019. a
Chelton, D., Schlax, M. G., and Samelson, R.: Global observations of nonlinear
mesoscale eddies, Prog. Oceanogr., 91, 167–216,
https://doi.org/10.1016/j.pocean.2011.01.002, 2011. a, b
Chelton, D., Samelson, R., and Farrar, J.: The Effects of Uncorrelated
Measurement Noise on SWOT Estimates of Sea-Surface Height, Velocity and
Vorticity, J. Atmos. Ocean. Technol., 39, 1053–1083, https://doi.org/10.1175/JTECH-D-21-0167.1,
2022. a, b
Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global
observations of large oceanic eddies, Geophys. Res. Lett., 34, 15,
https://doi.org/10.1029/2007GL030812, 2007. a
Chelton, D. B., Schlax, M. G., Samelson, R. M., Farrar, J. T., Molemaker,
M. J., McWilliams, J. C., and Gula, J.: Prospects for future satellite
estimation of small-scale variability of ocean surface velocity and
vorticity, Prog. Oceanogr., 173, 256–350,
https://doi.org/10.1016/j.pocean.2018.10.012, 2019. a
Dibarboure, G., Ubelmann, C., Flamant, B., Briol, F., Peral, E., Bracher, G.,
Vergara, O., Faugère, Y., Soulat, F., and Picot, N.: Data-Driven Calibration
Algorithm and Pre-Launch Performance Simulations for the SWOT Mission, Remote
Sens., 14, 6070, https://doi.org/10.3390/rs14236070, 2022. a, b, c, d, e, f
d’Ovidio, F., Pascual, A., Wang, J., Doglioli, A. M., Jing, Z., Moreau, S.,
Grégori, G., Swart, S., Speich, S., Cyr, F., Legresy, B., Chao, Y., Fu, L.,
and Morrow, R. A.: Frontiers in Fine-Scale in situ Studies:
Opportunities During the SWOT Fast Sampling Phase, Front.
Mar. Sci., 6, 168, https://doi.org/10.3389/fmars.2019.00168, 2019. a
Drushka, K., Rainville, L., and Menemenlis, D.: Internal waves and eddies from gliders and the MITgcm,
https://www.aviso.altimetry.fr/fileadmin/documents/user_corner/SWOTST/SWOTST2018/Day2O_1015_Drushka_montreal_v0.pptx.pdf (last access: 29 March 2023), 2018. a
Dufau, C., Orsztynowicz, M., Dibarboure, G., Morrow, R., and Le Traon, P.-Y.:
Mesoscale resolution capability of altimetry: Present and future, J.
Geophys. Res., 121, 4910–4927, https://doi.org/10.1002/2015JC010904, 2016. a
Fan, L., Zhang, F., Fan, H., and Zhang, C.: Brief review of image denoising
techniques, Visual Computing for Industry, Biomedicine, and Art, 2, 7,
https://doi.org/10.1186/s42492-019-0016-7, 2019. a
Ferrari, R. and Wunsch, C.: Ocean Circulation Kinetic Energy:
Reservoirs, Sources, and Sinks, Annu. Rev. Fluid Mech., 41,
253–282, https://doi.org/10.1146/annurev.fluid.40.111406.102139, 2008. a, b
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015. a
Fu, L.-L. and Ubelmann, C.: On the Transition from Profile Altimeter to Swath
Altimeter for Observing Global Ocean Surface Topography, J. Atmos. Ocean.
Technol., 31, 560–568, https://doi.org/10.1175/JTECH-D-13-00109.1, 2014. a
Fu, L.-L., Alsdorf, D., Morrow, R., Rodriguez, E., and Mognard, N.: SWOT:
The Surface Water and Ocean Topography Mission, Tech. rep., Jet
Propulsion Laboratory, California Institute of Technology Pasadena,
California, https://swot.jpl.nasa.gov/system/documents/files/2179_SWOT_MSD_final-3-26-12.pdf (last access: 25 April 2023), 2012. a
Gaultier, L., Ubelmann, C., and Fu, L.-L.: The Challenge of Using Future
SWOT Data for Oceanic Field Reconstruction, J. Atmos. Ocean.
Technol., 33, 119–126, https://doi.org/10.1175/JTECH-D-15-0160.1, 2016. a, b, c, d
Germano, M.: Turbulence - The filtering approach, J. Fluid Mech.,
238, 325–336, https://doi.org/10.1017/S0022112092001733, 1992. a
Gordon, A., Weiss, R., Smethie, J., and Warner, M.: Thermocline and
Intermediate Water Communication Between the South Atlantic and
Indian Oceans, J. Geophys. Res., 97, 7223–7240, https://doi.org/10.1029/92JC00485,
1992. a, b
Goschen, W. S., Bornman, T. G., Deyzel, S. H. P., and Schumann, E. H.: Coastal
upwelling on the far eastern Agulhas Bank associated with large meanders
in the Agulhas Current, Cont. Shelf Res., 101, 34–46,
https://doi.org/10.1016/j.csr.2015.04.004, 2015. a
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Submesoscale Cold
Filaments in the Gulf Stream, J. Phys. Oceanogr., 44, 2617–2643,
https://doi.org/10.1175/JPO-D-14-0029.1, 2014. a
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Submesoscale Dynamics of a
Gulf Stream Frontal Eddy in the South Atlantic Bight, J. Phys.
Oceanogr., 46, 305–325, https://doi.org/10.1175/JPO-D-14-0258.1, 2016. a
Gómez-Navarro, L., Fablet, R., Mason, E., Pascual, A., Mourre, B., Cosme, E.,
and Le Sommer, J.: SWOT Spatial Scales in the Western Mediterranean Sea
Derived from Pseudo-Observations and an Ad Hoc Filtering, Remote Sens., 10, 4, https://doi.org/10.3390/rs10040599, 2018. a, b, c
Gómez-Navarro, L., Cosme, E., Sommer, J. L., Papadakis, N., and Pascual, A.:
Development of an Image De-Noising Method in Preparation for the Surface
Water and Ocean Topography Satellite Mission, Remote Sens., 12, 4,
https://doi.org/10.3390/rs12040734, 2020. a, b, c, d
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate, edited by: Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama,
B., and Weyer, N.M.: Tech. rep., Intergovernmental Panel on Climate Change, https://www.ipcc.ch/site/assets/uploads/sites/3/2019/12/SROCC_FullReport_FINAL.pdf (last access 22 May 2023), 2019. a
Jacobs, Z., Roberts, M., Jebri, F., Srokosz, M., Kelly, S., Sauer, W.,
Bruggeman, J., and Popova, E.: Drivers of productivity on the Agulhas
Bank and the importance for marine ecosystems, Deep-Sea Res., 199,
105080, https://doi.org/10.1016/j.dsr2.2022.105080, 2022. a
Johnson, G. C. and Lyman, J. M.: GOSML: A Global Ocean Surface
Mixed Layer Statistical Monthly Climatology: Means,
Percentiles, Skewness, and Kurtosis, J. Geophys. Res., 127, 1,
https://doi.org/10.1029/2021JC018219, 2022. a
Krug, M. and Penven, P.: New perspectives on Natal Pulses from satellite
observations, J. Geophys. Res., 116, C7, https://doi.org/10.1029/2010JC006866, 2011. a, b, c, d
Krug, M. and Tournadre, J.: Satellite observations of an annual cycle in the
Agulhas Current, Geophys. Res. Lett., 39, 15, https://doi.org/10.1029/2012GL052335,
2012. a
Krug, M., Tournadre, J., and Dufois, F.: Interactions between the Agulhas
Current and the eastern margin of the Agulhas Bank, Cont. Shelf
Res., 81, 67–79, https://doi.org/10.1016/j.csr.2014.02.020, 2014. a
Krug, M., Swart, S., and Gula, J.: Submesoscale cyclones in the Agulhas
current, Geophys. Res. Lett., 44, 346–354, https://doi.org/10.1002/2016GL071006, 2017. a, b, c, d
Largier, J. L., Chapman, P., Peterson, W. T., and Swart, V. P.: The western
Agulhas Bank: circulation, stratification and ecology,
S. Afr. J. Marine Sci., 12, 319–339, https://doi.org/10.2989/02577619209504709,
publisher: Taylor & Francis, 1992. a
Le Guillou, F., Lahaye, N., Ubelmann, C., Metref, S., Cosme, E., Ponte, A.,
Le Sommer, J., Blayo, E., and Vidard, A.: Joint Estimation of Balanced
Motions and Internal Tides From Future Wide-Swath Altimetry,
Journal of Advances in Modeling Earth Systems, 13, e2021MS002613,
https://doi.org/10.1029/2021MS002613, publisher: John Wiley & Sons, Ltd, 2021. a
Leonard, A.: Energy Cascade in Large-Eddy Simulations of Turbulent
Fluid Flows, in: Turbulent Diffusion in Environmental Pollution,
edited by: Frenkiel, F. N. and Munn, R. E., vol. 18 of Advances in
Geophysics, 237–248, Elsevier,
https://doi.org/10.1016/S0065-2687(08)60464-1, 1975. a
Lin, H., Liu, Z., Hu, J., Menemenlis, D., and Huang, Y.: Characterizing meso-
to submesoscale features in the South China Sea, Prog.
Oceanogr., 188, 102420,
https://doi.org/10.1016/j.pocean.2020.102420, 2020. a
Lutjeharms, J. R. E.: The Agulhas Current, Springer Berlin Heidelberg,
https://doi.org/10.1007/3-540-37212-1, 2006. a, b, c
Lutjeharms, J. R. E. and Gordon, A. L.: Shedding of an Agulhas ring observed
at sea, Nature, 325, 138–140, https://doi.org/10.1038/325138a0, 1987. a, b
Lévy, M., Iovino, D., Resplandy, L., Klein, P., Madec, G., Tréguier, A. M.,
Masson, S., and Takahashi, K.: Large-scale impacts of submesoscale dynamics
on phytoplankton: Local and remote effects, Ocean Modell., 43-44, 77–93,
https://doi.org/10.1016/j.ocemod.2011.12.003, 2012. a
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A
finite-volume, incompressible Navier Stokes model for studies of the ocean on
parallel computers, J. Geophys. Res., 102, 5753–5766,
https://doi.org/10.1029/96JC02775, 1997. a
Martínez-Moreno, J., Hogg, A. M., Kiss, A. E., Constantinou, N. C., and
Morrison, A. K.: Kinetic Energy of Eddy-Like Features From Sea
Surface Altimetry, J. Adv. Model. Earth Syst., 11,
3090–3105, https://doi.org/10.1029/2019MS001769, 2019. a
McWilliams, J. C.: The nature and consequences of oceanic eddies, in:
Geophysical Monograph Series, edited by: Hecht, M. W. and Hasumi, H., vol.
177, 5–15, American Geophysical Union, Washington, D. C.,
https://doi.org/10.1029/177GM03, 2008. a
Meredith, M. P. and Hogg, A. M.: Circumpolar response of Southern Ocean
eddy activity to a change in the Southern Annular Mode, Geophys. Res.
Lett., 33, 16, https://doi.org/10.1029/2006GL026499, 2006. a
Morrow, R. and Le Traon, P.-Y.: Recent advances in observing mesoscale ocean
dynamics with satellite altimetry, Adv. Space Res., 50, 1062–1076,
https://doi.org/10.1016/j.asr.2011.09.033, 2012. a
Morrow, R., Ward, M. L., Hogg, A. M., and Pasquet, S.: Eddy response to
Southern Ocean climate modes, J. Geophys. Res., 115, C10,
https://doi.org/10.1029/2009JC005894, 2010. a
Morrow, R., Fu, L.-L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E.,
d’Ovidio, F., Farrar, J. T., Gille, S. T., Lapeyre, G., Le Traon, P.-Y.,
Pascual, A., Ponte, A., Qiu, B., Rascle, N., Ubelmann, C., Wang, J., and
Zaron, E. D.: Global Observations of Fine-Scale Ocean Surface
Topography With the Surface Water and Ocean Topography (SWOT)
Mission, Front. Mar. Sci., 6, 232,
https://doi.org/10.3389/fmars.2019.00232,
2019. a, b
Olson, D. B. and Evans, R. H.: Rings of the Agulhas current, Deep-Sea Res.,
33, 27–42, https://doi.org/10.1016/0198-0149(86)90106-8, 1986. a
Ponte, A.: LLC4320 surface fields [data set], https://sextant.ifremer.fr/geonetwork/srv/api/records/b2bcb9af-f335-45b6-a2a9-e460e4132879 (last access: 25 September 2023), 2020. a
Renault, L., Molemaker, M. J., Gula, J., Masson, S., and McWilliams, J. C.:
Control and Stabilization of the Gulf Stream by Oceanic Current Interaction
with the Atmosphere, J. Phys. Oceanogr., 46, 3439–3453,
https://doi.org/10.1175/JPO-D-16-0115.1, 2016. a
Renault, L., McWilliams, J. C., and Penven, P.: Modulation of the Agulhas
Current Retroflection and Leakage by Oceanic Current Interaction
with the Atmosphere in Coupled Simulations, J. Phys. Oceanogr., 47,
2077–2100, https://doi.org/10.1175/JPO-D-16-0168.1, 2017. a, b
Renault, L., McWilliams, J. C., and Gula, J.: Dampening of Submesoscale
Currents by Air-Sea Stress Coupling in the Californian
Upwelling System, Sci. Rep., 8, 13388,
https://doi.org/10.1038/s41598-018-31602-3, 2018. a
Renault, L., Marchesiello, P., Masson, S., and McWilliams, J. C.: Remarkable
Control of Western Boundary Currents by Eddy Killing, a
Mechanical Air-Sea Coupling Process, Geophys. Res. Lett., 46,
2743–2751, https://doi.org/10.1029/2018GL081211, 2019. a, b, c
Rocha, C., Chereskin, T., Gille, S., and Menemenlis, D.: Mesoscale to
Submesoscale Wavenumber Spectra in Drake Passage, J. Phys. Oceanogr., 46,
151222135934003, https://doi.org/10.1175/JPO-D-15-0087.1, 2015. a
Rocha, C., Gille, S., Chereskin, T., and Menemenlis, D.: Seasonality of
submesoscale dynamics in the Kuroshio Extension, Geophys. Res. Lett., 43, 601–620,
https://doi.org/10.1002/2016GL071349, 2016. a, b
Rodriguez, E., Fernadez, D., Peral, E., Chen, C., Bleser, J.-W., and Williams,
B.: Wide-Swath Altimetry: A Review, 71–112, CRC Press,
https://doi.org/10.1201/9781315151779-2, 2017. a
Ruijter, W. P. M. d., Leeuwen, P. J. v., and Lutjeharms, J. R. E.: Generation
and Evolution of Natal Pulses: Solitary Meanders in the Agulhas
Current, J. Phys. Oceanogr., 29, 3043–3055,
https://doi.org/10.1175/1520-0485(1999)029<3043:GAEONP>2.0.CO;2, 1999. a
Sasaki, H., Klein, P., Qiu, B., and Sasai, Y.: Impact of oceanic-scale
interactions on the seasonal modulation of ocean dynamics by the atmosphere,
Nature Commun., 5, 5636, https://doi.org/10.1038/ncomms6636, 2014. a, b, c
Savage, A. C., Arbic, B. K., Alford, M. H., Ansong, J. K., Farrar, J. T.,
Menemenlis, D., O'Rourke, A. K., Richman, J. G., Shriver, J. F., Voet, G.,
Wallcraft, A. J., and Zamudio, L.: Spectral decomposition of internal gravity
wave sea surface height in global models, J. Geophys. Res., 122, 7803–7821,
https://doi.org/10.1002/2017JC013009, 2017. a
Schouten, M. W., de Ruijter, W. P. M., and van Leeuwen, P. J.: Upstream control
of Agulhas Ring shedding, J. Geophys. Res., 107, 23-1–23-11,
https://doi.org/10.1029/2001JC000804, 2002. a
Sebille, E. v. and Leeuwen, P. J. v.: Fast Northward Energy Transfer in
the Atlantic due to Agulhas Rings, J. Phys. Oceanogr., 37, 2305–2315,
https://doi.org/10.1175/JPO3108.1, 2007. a
Siegelman, L., Klein, P., Rivière, P., Thompson, A. F., Torres, H. S., Flexas,
M., and Menemenlis, D.: Enhanced upward heat transport at deep submesoscale
ocean fronts, Nat. Geosci., 13, 50–55, https://doi.org/10.1038/s41561-019-0489-1,
2020. a
Sinha, A. and Abernathey, R. P.: Time Scales of Southern Ocean Eddy
Equilibration, J. Phys. Oceanogr., 46, 2785–2805,
https://doi.org/10.1175/JPO-D-16-0041.1, 2016. a
Speich, S., Arhan, M., Ansorge, I., Boebel, O., Sokov, A., Gladyshev, S.,
Farbach, E., Byrne, D., Klepikov, A., Garzoli, S., and Rodriguez, M. A.:
Good-Hope/Southern Ocean: A study and monitoring of the
Indo-Atlantic connections, Tech. Rep. 27, Mercator Newsletter, https://www.coriolis.eu.org/content/download/729/4975/file/2005_Speich_OceanAustral_NewsMerc07.pdf (last access 11 June 2023), 2007. a, b
Su, Z., Wang, J., Klein, P., Thompson, A. F., and Menemenlis, D.: Ocean
submesoscales as a key component of the global heat budget, Nat.
Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w, 2018. a
Swart, S., Speich, S., Ansorge, I. J., Goni, G. J., Gladyshev, S., and
Lutjeharms, J. R. E.: Transport and variability of the Antarctic
Circumpolar Current south of Africa, J. Geophys. Res., 113, C9,
https://doi.org/10.1029/2007JC004223, 2008. a
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F.,
Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years of
reprocessed sea level altimetry products, Ocean Sci., 15, 1207–1224,
https://doi.org/10.5194/os-15-1207-2019, 2019. a, b, c
Thomas, L. N., Tandon, A., and Mahadevan, A.: Submesoscale processes and
dynamics, in: Geophysical Monograph Series, edited by: Hecht, M. W. and
Hasumi, H., Vol. 177, 17–38, American Geophysical Union, Washington, D.
C., https://doi.org/10.1029/177GM04, 2008. a
Torres, H. S., Klein, P., Menemenlis, D., Qiu, B., Su, Z., Wang, J., Chen, S.,
and Fu, L.-L.: Partitioning Ocean Motions Into Balanced Motions and Internal
Gravity Waves: A Modeling Study in Anticipation of Future Space Missions, J.
Geophys. Res., 123, 8084–8105, https://doi.org/10.1029/2018JC014438,
2018. a
Ubelmann, C., Gaultier, L., Fu, L.-L., and Briol, F.: SWOT Simulator for Ocean Science, Jet Propulsion Laboratory, California Institute of
Technology, CNES [data set], https://github.com/CNES/swot_simulator (last access: 27 February 2023), 2021. a
Vergara, O., Morrow, R., Pujol, M.-I., Dibarboure, G., and Ubelmann, C.: Global submesoscale diagnosis using along-track satellite altimetry, Ocean Sci., 19, 363–379, https://doi.org/10.5194/os-19-363-2023, 2023. a
Verron, J., Bonnefond, P., Andersen, O., Ardhuin, F., Bergé-Nguyen, M.,
Bhowmick, S., Blumstein, D., Boy, F., Brodeau, L., Cretaux, J., Dabat, M.,
Gerald, D., Fleury, S., Garnier, F., Gourdeau, L., Marks, K., Queruel, N.,
Sandwell, D., Smith, W., and Zaron, E.: The SARAL/AltiKa mission: A step
forward to the future of altimetry, Adv. Space Res., 68, 808–828,
https://doi.org/10.1016/j.asr.2020.01.030, 2020.
a
Volkov, D. L., Fu, L.-L., and Lee, T.: Mechanisms of the meridional heat
transport in the Southern Ocean, Ocean Dynam., 60, 791–801,
https://doi.org/10.1007/s10236-010-0288-0, 2010. a
Wang, J., Fu, L.-L., Qiu, B., Menemenlis, D., Farrar, J. T., Chao, Y.,
Thompson, A. F., and Flexas, M. M.: An Observing System Simulation
Experiment for the Calibration and Validation of the Surface Water
Ocean Topography Sea Surface Height Measurement Using In
Situ Platforms, J. Atmos. Ocean. Technol., 35, 281–297,
https://doi.org/10.1175/JTECH-D-17-0076.1, 2018. a
Wirth, A.: A Guided Tour Through Physical Oceanography. Master. Physical
Oceanography, France, France, cel-01134110v4, HAL Id: cel-01134110,
https://hal.archives-ouvertes.fr/cel-01134110v4 (last access: April 2023), 2015. a
Wunsch, C.: What Is the Thermohaline Circulation?, Science, 298,
1179–1181, https://doi.org/10.1126/science.1079329, 2002. a
Zaron, E. D. and Ray, R. D.: Using an altimeter-derived internal tide model to
remove tides from in situ data, Geophys. Res. Lett., 44, 4241–4245,
https://doi.org/10.1002/2017GL072950, 2017. a
Short summary
Oceanic eddies are the structures carrying most of the energy in our oceans. They are key to climate regulation and nutrient transport. We prepare for the Surface Water and Ocean Topography mission, studying eddy dynamics in the region south of Africa, where the Indian and Atlantic oceans meet, using models and simulated satellite data. SWOT will provide insights into the structures smaller than what is currently observable, which appear to greatly contribute to eddy kinetic energy and strain.
Oceanic eddies are the structures carrying most of the energy in our oceans. They are key to...