Articles | Volume 19, issue 1
https://doi.org/10.5194/os-19-141-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-141-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the ocean's response to enhanced Greenland runoff in model experiments: relevance of mesoscale dynamics and atmospheric coupling
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Arne Biastoch
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Christian-Albrechts-Universität Kiel, Kiel, Germany
Related authors
Linus Shihora, Torge Martin, Anna Christina Hans, Rebecca Hummels, Michael Schindelegger, and Henryk Dobslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3660, https://doi.org/10.5194/egusphere-2024-3660, 2024
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is a major part of the ocean circulation. Satellite gravimetry missions, like GRACE, which measure changes in Earth's mass distribution, could help monitor changes in the AMOC by detecting variations in ocean bottom pressure. To help asses if future satellite missions could detect these changes, we use ocean model simulation data to assess their connection. Additionally, we create a synthetic dataset future satellite mission simulations.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Alan D. Fox, Patricia Handmann, Christina Schmidt, Neil Fraser, Siren Rühs, Alejandra Sanchez-Franks, Torge Martin, Marilena Oltmanns, Clare Johnson, Willi Rath, N. Penny Holliday, Arne Biastoch, Stuart A. Cunningham, and Igor Yashayaev
Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, https://doi.org/10.5194/os-18-1507-2022, 2022
Short summary
Short summary
Observations of the eastern subpolar North Atlantic in the 2010s show exceptional freshening and cooling of the upper ocean, peaking in 2016 with the lowest salinities recorded for 120 years. Using results from a high-resolution ocean model, supported by observations, we propose that the leading cause is reduced surface cooling over the preceding decade in the Labrador Sea, leading to increased outflow of less dense water and so to freshening and cooling of the eastern subpolar North Atlantic.
Arne Biastoch, Franziska U. Schwarzkopf, Klaus Getzlaff, Siren Rühs, Torge Martin, Markus Scheinert, Tobias Schulzki, Patricia Handmann, Rebecca Hummels, and Claus W. Böning
Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, https://doi.org/10.5194/os-17-1177-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) quantifies the impact of the ocean on climate and climate change. Here we show that a high-resolution ocean model is able to realistically simulate ocean currents. While the mean representation of the AMOC depends on choices made for the model and on the atmospheric forcing, the temporal variability is quite robust. Comparing the ocean model with ocean observations, we able to identify that the AMOC has declined over the past two decades.
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Short summary
A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced, consisting of a high-top atmosphere, an ocean model, sea-ice and land surface model components. A unique feature of FOCI is the ability to explicitly resolve small-scale oceanic features, for example, the Agulhas Current and the Gulf Stream. It allows to study the evolution of the climate system on regional and seasonal to (multi)decadal scales and bridges the gap to coarse-resolution climate models.
Linus Shihora, Torge Martin, Anna Christina Hans, Rebecca Hummels, Michael Schindelegger, and Henryk Dobslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3660, https://doi.org/10.5194/egusphere-2024-3660, 2024
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is a major part of the ocean circulation. Satellite gravimetry missions, like GRACE, which measure changes in Earth's mass distribution, could help monitor changes in the AMOC by detecting variations in ocean bottom pressure. To help asses if future satellite missions could detect these changes, we use ocean model simulation data to assess their connection. Additionally, we create a synthetic dataset future satellite mission simulations.
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3320, https://doi.org/10.5194/egusphere-2024-3320, 2024
Short summary
Short summary
The West African coastal region sustains highly productive fisheries and marine ecosystems influenced by sea surface temperature. We use oceanic models to show that the freshwater input from land to ocean strengthens a surface northward (southward) coastal current north (south) of the Congo river mouth, promoting a transfer of cooler (warmer) waters to north (south) of the Congo discharge location. We highlight the significant impact of river discharge on ocean temperatures and circulation.
Hendrik Grosselindemann, Frederic S. Castruccio, Gokhan Danabasoglu, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2288, https://doi.org/10.5194/egusphere-2024-2288, 2024
Short summary
Short summary
This study investigates Agulhas Leakage and examines its role in the global ocean circulation. It utilises a high-resolution earth system model and a pre-industrial climate to look at the response of Agulhas Leakage to the wind field and the Atlantic Meridional Overturning Circulation (AMOC) as well as its evolution under climate change. Agulhas Leakage influences the stability of the AMOC whose possible collapse would impact the global climate on the Northern Hemisphere.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Alan D. Fox, Patricia Handmann, Christina Schmidt, Neil Fraser, Siren Rühs, Alejandra Sanchez-Franks, Torge Martin, Marilena Oltmanns, Clare Johnson, Willi Rath, N. Penny Holliday, Arne Biastoch, Stuart A. Cunningham, and Igor Yashayaev
Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, https://doi.org/10.5194/os-18-1507-2022, 2022
Short summary
Short summary
Observations of the eastern subpolar North Atlantic in the 2010s show exceptional freshening and cooling of the upper ocean, peaking in 2016 with the lowest salinities recorded for 120 years. Using results from a high-resolution ocean model, supported by observations, we propose that the leading cause is reduced surface cooling over the preceding decade in the Labrador Sea, leading to increased outflow of less dense water and so to freshening and cooling of the eastern subpolar North Atlantic.
Jörg Fröhle, Patricia V. K. Handmann, and Arne Biastoch
Ocean Sci., 18, 1431–1450, https://doi.org/10.5194/os-18-1431-2022, https://doi.org/10.5194/os-18-1431-2022, 2022
Short summary
Short summary
Three deep-water masses pass the southern exit of the Labrador Sea. Usually they are defined by explicit density intervals linked to the formation region. We evaluate this relation in an ocean model by backtracking the paths the water follows for 40 years: 48 % densify without contact to the atmosphere, 24 % densify in contact with the atmosphere, and 19 % are from the Nordic Seas. All three contribute to a similar density range at 53° N with weak specific formation location characteristics.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Arne Biastoch, Franziska U. Schwarzkopf, Klaus Getzlaff, Siren Rühs, Torge Martin, Markus Scheinert, Tobias Schulzki, Patricia Handmann, Rebecca Hummels, and Claus W. Böning
Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, https://doi.org/10.5194/os-17-1177-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) quantifies the impact of the ocean on climate and climate change. Here we show that a high-resolution ocean model is able to realistically simulate ocean currents. While the mean representation of the AMOC depends on choices made for the model and on the atmospheric forcing, the temporal variability is quite robust. Comparing the ocean model with ocean observations, we able to identify that the AMOC has declined over the past two decades.
Christina Schmidt, Franziska U. Schwarzkopf, Siren Rühs, and Arne Biastoch
Ocean Sci., 17, 1067–1080, https://doi.org/10.5194/os-17-1067-2021, https://doi.org/10.5194/os-17-1067-2021, 2021
Short summary
Short summary
We estimate Agulhas leakage, water flowing from the Indian Ocean to the South Atlantic, in an ocean model with two different tools. The mean transport, variability and trend of Agulhas leakage is simulated comparably with both tools, emphasising the robustness of our method. If the experiments are designed differently, the mean transport of Agulhas leakage is altered, but not the trend. Agulhas leakage waters cool and become less salty south of Africa resulting in a density increase.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Josefine Maas, Susann Tegtmeier, Yue Jia, Birgit Quack, Jonathan V. Durgadoo, and Arne Biastoch
Atmos. Chem. Phys., 21, 4103–4121, https://doi.org/10.5194/acp-21-4103-2021, https://doi.org/10.5194/acp-21-4103-2021, 2021
Short summary
Short summary
Cooling-water disinfection at coastal power plants is a known source of atmospheric bromoform. A large source of anthropogenic bromoform is the industrial regions in East Asia. In current bottom-up flux estimates, these anthropogenic emissions are missing, underestimating the global air–sea flux of bromoform. With transport simulations, we show that by including anthropogenic bromoform from cooling-water treatment, the bottom-up flux estimates significantly improve in East and Southeast Asia.
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Short summary
A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced, consisting of a high-top atmosphere, an ocean model, sea-ice and land surface model components. A unique feature of FOCI is the ability to explicitly resolve small-scale oceanic features, for example, the Agulhas Current and the Gulf Stream. It allows to study the evolution of the climate system on regional and seasonal to (multi)decadal scales and bridges the gap to coarse-resolution climate models.
Nele Tim, Eduardo Zorita, Kay-Christian Emeis, Franziska U. Schwarzkopf, Arne Biastoch, and Birgit Hünicke
Earth Syst. Dynam., 10, 847–858, https://doi.org/10.5194/esd-10-847-2019, https://doi.org/10.5194/esd-10-847-2019, 2019
Short summary
Short summary
Our study reveals that the latitudinal position and intensity of Southern Hemisphere trades and westerlies are correlated. In the last decades the westerlies have shifted poleward and intensified. Furthermore, the latitudinal shifts and intensity of the trades and westerlies impact the sea surface temperatures around southern Africa and in the South Benguela upwelling region. The future development of wind stress depends on the strength of greenhouse gas forcing.
Franziska U. Schwarzkopf, Arne Biastoch, Claus W. Böning, Jérôme Chanut, Jonathan V. Durgadoo, Klaus Getzlaff, Jan Harlaß, Jan K. Rieck, Christina Roth, Markus M. Scheinert, and René Schubert
Geosci. Model Dev., 12, 3329–3355, https://doi.org/10.5194/gmd-12-3329-2019, https://doi.org/10.5194/gmd-12-3329-2019, 2019
Short summary
Short summary
A family of nested global ocean general circulation model configurations, the INALT family, has been established with resolutions of 1/10°, 1/20° and 1/60° in the South Atlantic and western Indian oceans, covering the greater Agulhas Current (AC) system. The INALT family provides a consistent set of configurations that allows to address eddy dynamics in the AC system and their impact on the large-scale ocean circulation.
Josefine Maas, Susann Tegtmeier, Birgit Quack, Arne Biastoch, Jonathan V. Durgadoo, Siren Rühs, Stephan Gollasch, and Matej David
Ocean Sci., 15, 891–904, https://doi.org/10.5194/os-15-891-2019, https://doi.org/10.5194/os-15-891-2019, 2019
Short summary
Short summary
In a large-scale analysis, the spread of disinfection by-products from oxidative ballast water treatment is investigated, with a focus on Southeast Asia where major ports are located. Halogenated compounds such as bromoform (CHBr3) are produced in the ballast water and, once emitted into the environment, can participate in ozone depletion. Anthropogenic bromoform is rapidly emitted into the atmosphere and can locally double around large ports. A large-scale impact cannot be found.
Siren Rühs, Franziska U. Schwarzkopf, Sabrina Speich, and Arne Biastoch
Ocean Sci., 15, 489–512, https://doi.org/10.5194/os-15-489-2019, https://doi.org/10.5194/os-15-489-2019, 2019
Short summary
Short summary
We revisit the sources for the upper limb of the overturning circulation in the South Atlantic by tracking fluid particles in a high-resolution ocean model. Our results suggest that the upper limb’s transport is dominantly supplied by waters with Indian Ocean origin, but the contribution of waters with Pacific origin is substantially larger than previously estimated with coarse-resolution models. Yet, a large part of upper limb waters obtains thermohaline properties within the South Atlantic.
D. Le Bars, J. V. Durgadoo, H. A. Dijkstra, A. Biastoch, and W. P. M. De Ruijter
Ocean Sci., 10, 601–609, https://doi.org/10.5194/os-10-601-2014, https://doi.org/10.5194/os-10-601-2014, 2014
Related subject area
Approach: Numerical Models | Properties and processes: Overturning circulation | Depth range: All Depths | Geographical range: Deep Seas: North Atlantic | Challenges: Oceans and climate
Seasonal overturning variability in the eastern North Atlantic subpolar gyre: a Lagrangian perspective
Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20X
Oliver John Tooth, Helen Louise Johnson, Chris Wilson, and Dafydd Gwyn Evans
Ocean Sci., 19, 769–791, https://doi.org/10.5194/os-19-769-2023, https://doi.org/10.5194/os-19-769-2023, 2023
Short summary
Short summary
This study uses the trajectories of water parcels traced within an ocean model simulation to identify the pathways responsible for the seasonal cycle of dense water formation (overturning) in the eastern subpolar North Atlantic. We show that overturning seasonality is due to the fastest water parcels circulating within the eastern basins in less than 8.5 months. Slower pathways set the average strength of overturning in this region since water parcels cannot escape intense wintertime cooling.
Arne Biastoch, Franziska U. Schwarzkopf, Klaus Getzlaff, Siren Rühs, Torge Martin, Markus Scheinert, Tobias Schulzki, Patricia Handmann, Rebecca Hummels, and Claus W. Böning
Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, https://doi.org/10.5194/os-17-1177-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) quantifies the impact of the ocean on climate and climate change. Here we show that a high-resolution ocean model is able to realistically simulate ocean currents. While the mean representation of the AMOC depends on choices made for the model and on the atmospheric forcing, the temporal variability is quite robust. Comparing the ocean model with ocean observations, we able to identify that the AMOC has declined over the past two decades.
Cited articles
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R.,
Khroulev, C., Mottram, R., and Khan, S. A.: Contribution of the Greenland Ice
Sheet to sea level over the next millennium, Sci. Adv., 5, eaav9396,
https://doi.org/10.1126/sciadv.aav9396, 2019. a
Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van den
Broeke, M. R., Chan, W.-L., Hu, A., Beadling, R. L., Marsland, S. J.,
Mernild, S. H., Saenko, O. A., Swingedouw, D., Sullivan, A., and Yin, J.:
Fate of the Atlantic Meridional Overturning Circulation: Strong decline under
continued warming and Greenland melting, Geophys. Res. Lett., 43,
12252–12260, https://doi.org/10.1002/2016gl070457, 2016. a
Bamber, J. L., Tedstone, A. J., King, M. D., Howat, I. M., Enderlin, E. M.,
van den Broeke, M. R., and Noel, B.: Land Ice Freshwater Budget of the Arctic
and North Atlantic Oceans: 1. Data, Methods, and Results, J.
Geophys. Res.-Ocean., 123, 1827–1837, https://doi.org/10.1002/2017jc013605,
2018. a, b, c, d
Barletta, V. R., Sørensen, L. S., and Forsberg, R.: Scatter of mass changes
estimates at basin scale for Greenland and Antarctica, The Cryosphere, 7,
1411–1432, https://doi.org/10.5194/tc-7-1411-2013, 2013. a
Behrens, E., Biastoch, A., and Böning, C. W.: Spurious AMOC trends in global
ocean sea-ice models related to subarctic freshwater forcing, Ocean
Model., 69, 39–49, https://doi.org/10.1016/j.ocemod.2013.05.004, 2013. a, b
Biastoch, A., Schwarzkopf, F. U., Getzlaff, K., Rühs, S., Martin, T., Scheinert, M., Schulzki, T., Handmann, P., Hummels, R., and Böning, C. W.: Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20X, Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, 2021. a, b, c, d
Castelao, R. M., Luo, H., Oliver, H., Rennermalm, A. K., Tedesco, M., Bracco,
A., Yager, P. L., Mote, T. L., and Medeiros, P. M.: Controls on the Transport
of Meltwater From the Southern Greenland Ice Sheet in the Labrador Sea,
J. Geophys. Res.-Ocean., 124, 3551–3560,
https://doi.org/10.1029/2019jc015159, 2019. a, b, c, d
Chen, J. L., Wilson, C. R., and Tapley, B. D.: Satellite Gravity Measurements
Confirm Accelerated Melting of Greenland Ice Sheet, Science, 313, 1958–1960,
https://doi.org/10.1126/science.1129007, 2006. a
Danabasoglu, G., Yeager, S. G., Bailey, D., Behrens, E., Bentsen, M., Bi, D.,
Biastoch, A., Böning, C., Bozec, A., Canuto, V. M., Cassou, C., Chassignet,
E., Coward, A. C., Danilov, S., Diansky, N., Drange, H., Farneti, R.,
Fernandez, E., Fogli, P. G., Forget, G., Fujii, Y., Griffies, S. M., Gusev,
A., Heimbach, P., Howard, A., Jung, T., Kelley, M., Large, W. G.,
Leboissetier, A., Lu, J., Madec, G., Marsland, S. J., Masina, S., Navarra,
A., Nurser, A. G., Pirani, A., y Mélia, D. S., Samuels, B. L.,
Scheinert, M., Sidorenko, D., Treguier, A.-M., Tsujino, H., Uotila, P.,
Valcke, S., Voldoire, A., and Wang, Q.: North Atlantic simulations in
Coordinated Ocean-ice Reference Experiments phase II (CORE-II), Part I:
Mean states, Ocean Model., 73, 76–107,
https://doi.org/10.1016/j.ocemod.2013.10.005, 2014. a
de Jong, M. F., Oltmanns, M., Karstensen, J., and de Steur, L.: Deep Convection
in the Irminger Sea Observed with a Dense Mooring Array, Oceanography, 31,
50–59, https://doi.org/10.5670/oceanog.2018.109, 2018. a
Debreu, L., Vouland, C., and Blayo, E.: AGRIF: Adaptive grid refinement in
Fortran, Comput. Geosci., 34, 8–13,
https://doi.org/10.1016/j.cageo.2007.01.009, 2008. a
Drews, A., Greatbatch, R. J., Ding, H., Latif, M., and Park, W.: The use of a
flow field correction technique for alleviating the North Atlantic cold bias
with application to the Kiel Climate Model, Ocean Dynam., 65, 1079–1093,
https://doi.org/10.1007/s10236-015-0853-7, 2015. a
Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M.,
Huntingford, C., Scheffer, M., Sgubin, G., and Swingedouw, D.: Catalogue of
abrupt shifts in Intergovernmental Panel on Climate Change climate models,
P. Natl. Acad. Sci. USA, 112, E5777–E5786,
https://doi.org/10.1073/pnas.1511451112, 2015. a
Dukhovskoy, D. S., Myers, P. G., Platov, G., Timmermans, M.-L., Curry, B.,
Proshutinsky, A., Bamber, J. L., Chassignet, E., Hu, X., Lee, C. M., and
Somavilla, R.: Greenland freshwater pathways in the sub-Arctic Seas from
model experiments with passive tracers, J. Geophys. Res.-Ocean., 121, 877–907, https://doi.org/10.1002/2015jc011290, 2016. a, b, c
Dukhovskoy, D. S., Yashayaev, I., Proshutinsky, A., Bamber, J. L.,
Bashmachnikov, I. L., Chassignet, E. P., Lee, C. M., and Tedstone, A. J.:
Role of Greenland Freshwater Anomaly in the Recent Freshening of the Subpolar
North Atlantic, J. Geophys. Res.-Ocean., 124, 3333–3360,
https://doi.org/10.1029/2018jc014686, 2019. a
Duyck, E., Gelderloos, R., and de Jong, M. F.: Wind-Driven Freshwater Export at
Cape Farewell, J. Geophys. Res.-Ocean., 127, e2021JC018309,
https://doi.org/10.1029/2021jc018309, 2022. a
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and
van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013gl059010, 2014. a
Enderlin, E. M., Hamilton, G. S., Straneo, F., and Sutherland, D. A.: Iceberg
meltwater fluxes dominate the freshwater budget in
Greenland's iceberg-congested glacial fjords, Geophys.
Res. Lett., 43, 11287–11294, https://doi.org/10.1002/2016gl070718, 2016. a
Fichefet, T. and Maqueda, M. A. M.: Sensitivity of a global sea ice model to
the treatment of ice thermodynamics and dynamics, J. Geophys.
Res.-Ocean., 102, 12609–12646, https://doi.org/10.1029/97jc00480, 1997. a
Gelderloos, R., Katsman, C. A., and Drijfhout, S. S.: Assessing the Roles of
Three Eddy Types in Restratifying the Labrador Sea after Deep Convection,
J. Phys. Oceanogr., 41, 2102–2119,
https://doi.org/10.1175/jpo-d-11-054.1, 2011. a
Gent, P. R.: A commentary on the Atlantic meridional overturning circulation
stability in climate models, Ocean Model., 122, 57–66,
https://doi.org/10.1016/j.ocemod.2017.12.006, 2018. a
Gent, P. R. and McWilliams, J. C.: Isopycnal Mixing in Ocean Circulation
Models, J. Phys. Oceanogr., 20, 150–155,
https://doi.org/10.1175/1520-0485(1990)020<0150:imiocm>2.0.co;2, 1990. a, b, c, d
Georgiou, S., van der Boog, C. G., Brüggemann, N., Ypma, S. L., Pietrzak,
J. D., and Katsman, C. A.: On the interplay between downwelling, deep
convection and mesoscale eddies in the Labrador Sea, Ocean Model., 135,
56–70, https://doi.org/10.1016/j.ocemod.2019.02.004, 2019. a, b, c, d
Gerdes, R., Hurlin, W., and Griffies, S. M.: Sensitivity of a global ocean
model to increased run-off from Greenland, Ocean Model., 12, 416–435,
https://doi.org/10.1016/j.ocemod.2005.08.003, 2006. a, b
Gillard, L. C., Pennelly, C., Johnson, H. L., and Myers, P. G.: The Effects of
Atmospheric and Lateral Buoyancy Fluxes on Labrador Sea Mixed Layer Depth,
Ocean Model., 171, 101974, https://doi.org/10.1016/j.ocemod.2022.101974, 2022. a
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H.,
Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander,
P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone,
J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R.,
Greve, R., Humbert, A., Huybrechts, P., clec'h, S. L., Lee,
V., Leguy, G., Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet,
A., Rückamp, M., Schlegel, N.-J., Slater, D. A., Smith, R. S., Straneo, F.,
Tarasov, L., van de Wal, R., and van den Broeke, M.: The future sea-level
contribution of the Greenland ice sheet: a multi-model ensemble study of
ISMIP6, The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020,
2020. a, b
Golledge, N. R., Keller, E. D., Gomez, N., Naughten, K. A., Bernales, J.,
Trusel, L. D., and Edwards, T. L.: Global environmental consequences of
twenty-first-century ice-sheet melt, Nature, 566, 65–72,
https://doi.org/10.1038/s41586-019-0889-9, 2019. a, b, c
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G.,
Chassignet, E. P., England, M. H., Gerdes, R., Haak, H., Hallberg, R. W.,
Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels,
B. L., Scheinert, M., Gupta, A. S., Severijns, C. A., Simmons, H. L.,
Treguier, A. M., Winton, M., Yeager, S., and Yin, J.: Coordinated Ocean-ice
Reference Experiments (COREs), Ocean Model., 26, 1–46,
https://doi.org/10.1016/j.ocemod.2008.08.007, 2009. a, b, c, d, e
Haine, T. W., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels,
B., Spreen, G., de Steur, L., Stewart, K. D., and Woodgate, R.: Arctic
freshwater export: Status, mechanisms, and prospects, Glob. Planet.
Change, 125, 13–35, https://doi.org/10.1016/j.gloplacha.2014.11.013, 2015. a
Hallberg, R.: Using a resolution function to regulate parameterizations of
oceanic mesoscale eddy effects, Ocean Model., 72, 92–103,
https://doi.org/10.1016/j.ocemod.2013.08.007, 2013. a
Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J.,
Pohlmann, H., and de Cuevas, B.: Bistability of the Atlantic overturning
circulation in a global climate model and links to ocean freshwater
transport, Geophys. Res. Lett., 38, L10605,
https://doi.org/10.1029/2011gl047208, 2011. a
Hendry, K. R., Briggs, N., Henson, S., Opher, J., Brearley, J. A., Meredith,
M. P., Leng, M. J., and Meire, L.: Tracing Glacial Meltwater From the
Greenland Ice Sheet to the Ocean Using Gliders, J. Geophys.
Res.-Ocean., 126, e2021JC017274, https://doi.org/10.1029/2021jc017274, 2021. a
Hewitt, H. T., Roberts, M., Mathiot, P., Biastoch, A., Blockley, E.,
Chassignet, E. P., Fox-Kemper, B., Hyder, P., Marshall, D. P., Popova, E.,
Treguier, A.-M., Zanna, L., Yool, A., Yu, Y., Beadling, R., Bell, M.,
Kuhlbrodt, T., Arsouze, T., Bellucci, A., Castruccio, F., Gan, B.,
Putrasahan, D., Roberts, C. D., Roekel, L. V., and Zhang, Q.: Resolving and
Parameterising the Ocean Mesoscale in Earth System Models, Curr. Clim.
Change Rep., 6, 137–152, https://doi.org/10.1007/s40641-020-00164-w, 2020. a, b, c
Hirschi, J. J.-M., Barnier, B., Böning, C., Biastoch, A., Blaker, A. T.,
Coward, A., Danilov, S., Drijfhout, S., Getzlaff, K., Griffies, S. M.,
Hasumi, H., Hewitt, H., Iovino, D., Kawasaki, T., Kiss, A. E., Koldunov, N.,
Marzocchi, A., Mecking, J. V., Moat, B., Molines, J.-M., Myers, P. G.,
Penduff, T., Roberts, M., Treguier, A.-M., Sein, D. V., Sidorenko, D., Small,
J., Spence, P., Thompson, L., Weijer, W., and Xu, X.: The Atlantic Meridional
Overturning Circulation in High-Resolution Models, J. Geophys.
Res.-Ocean., 125, e2019JC015522, https://doi.org/10.1029/2019jc015522, 2020. a, b, c
Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S.,
Florindo-López, C., Hátún, H., Johns, W., Josey, S. A.,
Larsen, K. M. H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry,
V., Valdimarsson, H., and Yashayaev, I.: Ocean circulation causes the largest
freshening event for 120 years in eastern subpolar North Atlantic, Nat.
Commun., 11, 585, https://doi.org/10.1038/s41467-020-14474-y, 2020. a, b
Hu, A., Meehl, G. A., Han, W., and Yin, J.: Effect of the potential melting of
the Greenland Ice Sheet on the Meridional Overturning Circulation and global
climate in the future, Deep-Sea Res. Pt. II, 58, 1914–1926, https://doi.org/10.1016/j.dsr2.2010.10.069, 2011. a
Huhn, O., Rhein, M., Kanzow, T., Schaffer, J., and Sültenfuß, J.:
Submarine Meltwater From Nioghalvfjerdsbræ (79 North Glacier), Northeast
Greenland, J. Geophys. Res.-Ocean., 126, e2021JC017224,
https://doi.org/10.1029/2021jc017224, 2021. a
Jackson, L. C. and Wood, R. A.: Timescales of AMOC decline in response to
fresh water forcing, Clim. Dynam., 51, 1333–1350,
https://doi.org/10.1007/s00382-017-3957-6, 2018. a, b, c, d
Jansen, M. F., Adcroft, A., Khani, S., and Kong, H.: Toward an Energetically
Consistent, Resolution Aware Parameterization of Ocean Mesoscale Eddies,
J. Adv. Model. Earth Sy., 11, 2844–2860,
https://doi.org/10.1029/2019ms001750, 2019. a
Jüling, A., Zhang, X., Castellana, D., von der Heydt, A. S., and Dijkstra, H. A.: The Atlantic's freshwater budget under climate change in the Community Earth System Model with strongly eddying oceans, Ocean Sci., 17, 729–754, https://doi.org/10.5194/os-17-729-2021, 2021. a, b
Koenigk, T., Fuentes-Franco, R., Meccia, V. L., Gutjahr, O., Jackson, L. C.,
New, A. L., Ortega, P., Roberts, C. D., Roberts, M. J., Arsouze, T., Iovino,
D., Moine, M.-P., and Sein, D. V.: Deep mixed ocean volume in the Labrador
Sea in HighResMIP models, Clim. Dynam., 57, 1895–1918,
https://doi.org/10.1007/s00382-021-05785-x, 2021. a
Koul, V., Tesdal, J.-E., Bersch, M., Hátún, H., Brune, S.,
Borchert, L., Haak, H., Schrum, C., and Baehr, J.: Unraveling the choice of
the north Atlantic subpolar gyre index, Sci. Rep., 10, 1005,
https://doi.org/10.1038/s41598-020-57790-5, 2020. a
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air–sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009. a
Lazier, J. R. N.: Observations in the Northwest Corner of the North Atlantic
Current, J. Phys. Oceanogr., 24, 1449–1463,
https://doi.org/10.1175/1520-0485(1994)024<1449:oitnco>2.0.co;2, 1994. a
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S.,
and Schellnhuber, H. J.: Tipping elements in the Earth′s
climate system, P. Natl. Acad. Sci. USA, 105,
1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008. a, b
Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K.,
Steffen, W., and Schellnhuber, H. J.: Climate tipping points –
too risky to bet against, Nature, 575, 592–595,
https://doi.org/10.1038/d41586-019-03595-0, 2019. a
Levitus, S., Boyer, T. P., Conkright, M. E., Brien, T. O., Antonov, J.,
Stephens, C., Stathoplos, L., Johnson, D., and Gelfeld, R.: World Ocean
Database 1998, Vol. 1, Introduction, NOAA Atlas NESDIS 18, Tech. rep., U.S.
Government Printing Office, Washington, DC, 1998. a
Love, R., Andres, H. J., Condron, A., and Tarasov, L.: Freshwater routing in
eddy-permitting simulations of the last deglacial: the impact of realistic
freshwater discharge, Clim. Past, 17, 2327–2341,
https://doi.org/10.5194/cp-17-2327-2021, 2021. a
Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A.,
de Jong, M. F., de Steur, L., deYoung, B., Fischer, J., Gary, S. F., Greenan,
B. J. W., Holliday, N. P., Houk, A., Houpert, L., Inall, M. E., Johns, W. E.,
Johnson, H. L., Johnson, C., Karstensen, J., Koman, G., Bras, I. A. L., Lin,
X., Mackay, N., Marshall, D. P., Mercier, H., Oltmanns, M., Pickart, R. S.,
Ramsey, A. L., Rayner, D., Straneo, F., Thierry, V., Torres, D. J., Williams,
R. G., Wilson, C., Yang, J., Yashayaev, I., and Zhao, J.: A sea change in our
view of overturning in the subpolar North Atlantic, Science, 363, 516–521,
https://doi.org/10.1126/science.aau6592, 2019. a, b, c
Luo, H., Castelao, R. M., Rennermalm, A. K., Tedesco, M., Bracco, A., Yager,
P. L., and Mote, T. L.: Oceanic transport of surface meltwater from the
southern Greenland ice sheet, Nat. Geosci., 9, 528–532,
https://doi.org/10.1038/ngeo2708, 2016. a, b
Madec, G.: NEMO ocean engine, Note du Pôle modélisation de l'Institut
Pierre-Simon Laplace No 27, p. 406, ISSN 1288-1619, 2016. a
Madec, G. and the NEMO System Team: NEMO Release 3.6, Trac [code], https://forge.ipsl.jussieu.fr/nemo/wiki/Users/release-3.6, last access: 18 May 2020. a
Marson, J. M., Gillard, L. C., and Myers, P. G.: Distinct Ocean Responses to
Greenland's Liquid Runoff and Iceberg Melt, J.
Geophys. Res.-Ocean., 126, e2021JC017542, https://doi.org/10.1029/2021jc017542, 2021. a
Martin, T. and Biastoch, A.: Supplementary data to Martin and Biastoch (2023) “On the ocean's response to enhanced Greenland runoff in model experiments: relevance of mesoscale dynamics and atmospheric coupling”, GEOMAR Helmholtz Centre for Ocean Research Kiel [distributor] [data set], https://hdl.handle.net/20.500.12085/263da22c-247f-4cd1-8080-b221e3f0e2c0, last access: 15 February 2023. a
Martin, T., Biastoch, A., Lohmann, G., Mikolajewicz, U., and Wang, X.: On
Timescales and Reversibility of the Ocean's Response to
Enhanced Greenland Ice Sheet Melting in Comprehensive Climate Models,
Geophys. Res. Lett., 49, e2021GL097114, https://doi.org/10.1029/2021gl097114, 2022. a, b, c, d, e, f, g, h, i, j
Marzocchi, A., Hirschi, J. J.-M., Holliday, N. P., Cunningham, S. A., Blaker,
A. T., and Coward, A. C.: The North Atlantic subpolar circulation in an
eddy-resolving global ocean model, J. Mar. Syst., 142, 126–143,
https://doi.org/10.1016/j.jmarsys.2014.10.007, 2015. a
Matthes, K., Biastoch, A., Wahl, S., Harlaß, J., Martin, T., Brücher, T.,
Drews, A., Ehlert, D., Getzlaff, K., Krüger, F., Rath, W., Scheinert, M.,
Schwarzkopf, F. U., Bayr, T., Schmidt, H., and Park, W.: The Flexible Ocean
and Climate Infrastructure version 1 (FOCI1): mean state and variability,
Geosci. Model Dev., 13, 2533–2568,
https://doi.org/10.5194/gmd-13-2533-2020, 2020. a, b, c, d, e, f
McCarthy, G., Smeed, D., Johns, W., Frajka-Williams, E., Moat, B., Rayner, D.,
Baringer, M., Meinen, C., Collins, J., and Bryden, H.: Measuring the Atlantic
Meridional Overturning Circulation at 26∘ N, Prog.
Oceanogr., 130, 91–111, https://doi.org/10.1016/j.pocean.2014.10.006, 2015. a
Mikolajewicz, U., Vizcaíno, M., Jungclaus, J., and Schurgers, G.: Effect
of ice sheet interactions in anthropogenic climate change simulations,
Geophys. Res. Lett., 34, L18706, https://doi.org/10.1029/2007gl031173, 2007. a, b
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P.
Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116,
2019. a
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M.,
Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine,
T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E.,
Stemmler, I., Tian, F., and Marotzke, J.: A Higher-resolution Version of the
Max Planck Institute Earth System Model (MPI-ESM1.2-HR), J.
Adv. Model. Ea. Sy., 10, 1383–1413,
https://doi.org/10.1029/2017ms001217, 2018. a
New, A. L., Smeed, D. A., Czaja, A., Blaker, A. T., Mecking, J. V., Mathews,
J. P., and Sanchez-Franks, A.: Labrador Slope Water connects the subarctic
with the Gulf Stream, Environ. Res. Lett., 16, 084019,
https://doi.org/10.1088/1748-9326/ac1293, 2021. a
Park, T., Park, W., and Latif, M.: Correcting North Atlantic sea surface
salinity biases in the Kiel Climate Model: influences on ocean circulation
and Atlantic Multidecadal Variability, Clim. Dynam., 47, 2543–2560,
https://doi.org/10.1007/s00382-016-2982-1, 2016. a
Pennelly, C. and Myers, P. G.: Tracking Irminger Rings' properties using a
sub-mesoscale ocean model, Prog. Oceanogr., 201, 102735,
https://doi.org/10.1016/j.pocean.2021.102735, 2022. a, b
Rahmstorf, S. and Willebrand, J.: The Role of Temperature Feedback in
Stabilizing the Thermohaline Circulation, J. Phys. Oceanogr.,
25, 787–805, https://doi.org/10.1175/1520-0485(1995)025<0787:trotfi>2.0.co;2, 1995. a
Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I.,
Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z., and Weaver,
A. J.: Thermohaline circulation hysteresis: A model intercomparison,
Geophys. Res. Lett., 32, L23605, https://doi.org/10.1029/2005gl023655, 2005. a, b
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford,
S., and Schaffernicht, E. J.: Exceptional twentieth-century slowdown in
Atlantic Ocean overturning circulation, Nat. Clim. Change, 5, 475–480,
https://doi.org/10.1038/nclimate2554, 2015. a
Rayner, N. A.: Global analyses of sea surface temperature, sea ice, and night
marine air temperature since the late nineteenth century, J.
Geophys. Res., 108, 4407, https://doi.org/10.1029/2002jd002670, 2003. a
Rast, S.: ECHAM Versions 3 to 6, MPI [code], https://www.mpimet.mpg.de/en/science/models/mpi-esm/echam.html (last access: 18 May 2020), 1992. a
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM, J.
Adv. Model. Ea. Sy., 5, 459–482, https://doi.org/10.1002/jame.20022,
2013. a
Rhein, M., Steinfeldt, R., Huhn, O., Sültenfuß, J., and Breckenfelder, T.:
Greenland Submarine Melt Water Observed in the Labrador and Irminger Sea,
Geophys. Res. Lett., 45, 10570–10578, https://doi.org/10.1029/2018gl079110, 2018. a
Schulze Chretien, L. M. and Frajka-Williams, E.: Wind-driven transport of fresh shelf water into the upper 30 m of the Labrador Sea, Ocean Sci., 14, 1247–1264, https://doi.org/10.5194/os-14-1247-2018, 2018. a, b
Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I.,
Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., Bryden,
H. L., and McCarthy, G. D.: The North Atlantic Ocean Is in a State of Reduced
Overturning, Geophys. Res. Lett., 45, 1527–1533,
https://doi.org/10.1002/2017gl076350, 2018. a
Smith, R. D., Maltrud, M. E., Bryan, F. O., and Hecht, M. W.: Numerical
Simulation of the North Atlantic Ocean at ∘, J.
Phys. Oceanogr., 30, 1532–1561,
https://doi.org/10.1175/1520-0485(2000)030<1532:nsotna>2.0.co;2, 2000. a
Stammer, D., Agarwal, N., Herrmann, P., Köhl, A., and Mechoso, C. R.: Response
of a Coupled Ocean-Atmosphere Model to Greenland Ice Melting,
Surv. Geophys., 32, 621–642, https://doi.org/10.1007/s10712-011-9142-2, 2011. a, b, c, d
Steele, M., Morley, R., and Ermold, W.: PHC: A Global Ocean Hydrography with
a High-Quality Arctic Ocean, J. Clim., 14, 2079–2087,
https://doi.org/10.1175/1520-0442(2001)014<2079:pagohw>2.0.co;2, 2001. a, b, c
Steur, L., Peralta-Ferriz, C., and Pavlova, O.: Freshwater Export in the East
Greenland Current Freshens the North Atlantic, Geophys. Res. Lett.,
45, 13359–13366, https://doi.org/10.1029/2018gl080207, 2018. a
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI-M Earth System Model:
ECHAM6, J. Adv. Model. Ea. Sy., 5, 146–172,
https://doi.org/10.1002/jame.20015, 2013. a
Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin,
W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., Hu, A., Jungclaus,
J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath,
S., Oka, A., Peltier, W. R., Robitaille, D. Y., Sokolov, A., Vettoretti, G.,
and Weber, S. L.: Investigating the Causes of the Response of the
Thermohaline Circulation to Past and Future Climate Changes, J.
Clim., 19, 1365–1387, https://doi.org/10.1175/jcli3689.1, 2006. a, b, c
Straneo, F. and Cenedese, C.: The Dynamics of Greenland's
Glacial Fjords and Their Role in Climate, Ann. Rev. Mar. Sci., 7,
89–112, https://doi.org/10.1146/annurev-marine-010213-135133, 2015. a
Straneo, F., Hamilton, G., Stearns, L., and Sutherland, D.: Connecting the
Greenland Ice Sheet and the Ocean: A Case Study of Helheim Glacier and
Sermilik Fjord, Oceanography, 29, 34–45, https://doi.org/10.5670/oceanog.2016.97,
2016. a
Swingedouw, D., Braconnot, P., and Marti, O.: Sensitivity of the Atlantic
Meridional Overturning Circulation to the melting from northern glaciers in
climate change experiments, Geophys. Res. Lett., 33, L07711,
https://doi.org/10.1029/2006gl025765, 2006. a
Swingedouw, D., Rodehacke, C. B., Behrens, E., Menary, M., Olsen, S. M., Gao,
Y., Mikolajewicz, U., Mignot, J., and Biastoch, A.: Decadal fingerprints of
freshwater discharge around Greenland in a multi-model ensemble, Clim.
Dynam., 41, 695–720, https://doi.org/10.1007/s00382-012-1479-9, 2013. a, b, c, d, e, f
Swingedouw, D., Rodehacke, C. B., Olsen, S. M., Menary, M., Gao, Y.,
Mikolajewicz, U., and Mignot, J.: On the reduced sensitivity of the Atlantic
overturning to Greenland ice sheet melting in projections: a multi-model
assessment, Clim. Dynam., 44, 3261–3279,
https://doi.org/10.1007/s00382-014-2270-x, 2015. a
Swingedouw, D., Houssais, M.-N., Herbaut, C., Blaizot, A.-C., Devilliers, M.,
and Deshayes, J.: AMOC Recent and Future Trends: A Crucial Role for Oceanic
Resolution and Greenland Melting?, Front. Clim., 4,
https://doi.org/10.3389/fclim.2022.838310, 2022. a, b, c
Tagklis, F., Bracco, A., Ito, T., and Castelao, R. M.: Submesoscale modulation
of deep water formation in the Labrador Sea, Sci. Rep., 10, 17489,
https://doi.org/10.1038/s41598-020-74345-w, 2020. a, b, c
Talandier, C., Deshayes, J., Treguier, A.-M., Capet, X., Benshila, R., Debreu,
L., Dussin, R., Molines, J.-M., and Madec, G.: Improvements of simulated
Western North Atlantic current system and impacts on the AMOC, Ocean
Model., 76, 1–19, https://doi.org/10.1016/j.ocemod.2013.12.007, 2014. a
The IMBIE Team: Mass balance of the Greenland Ice Sheet from 1992 to 2018,
Nature, 579, 233–239, https://doi.org/10.1038/s41586-019-1855-2, 2020. a, b, c, d
Treguier, A. M., Theetten, S., Chassignet, E. P., Penduff, T., Smith, R.,
Talley, L., Beismann, J. O., and Böning, C.: The North Atlantic Subpolar
Gyre in Four High-Resolution Models, J. Phys. Oceanogr., 35,
757–774, https://doi.org/10.1175/jpo2720.1, 2005.
a
Valcke, S.: The OASIS3 coupler: a European climate modelling community
software, Geosci. Model Dev., 6, 373–388,
https://doi.org/10.5194/gmd-6-373-2013, 2013. a
Wahl, S.: Supplementary material to Matthes et al. (2020) “The Flexible Ocean and Climate Infrastructure version 1 (FOCI1): mean state and variability”, Zenodo [data set], https://doi.org/10.5281/zenodo.3568061, 2020. a
Weijer, W., Cheng, W., Garuba, O. A., Hu, A., and Nadiga, B. T.: CMIP6 Models
Predict Significant 21st Century Decline of the Atlantic Meridional
Overturning Circulation, Geophys. Res. Lett., 47, e2019GL086075,
https://doi.org/10.1029/2019gl086075, 2020. a, b
Winton, M., Anderson, W. G., Delworth, T. L., Griffies, S. M., Hurlin, W. J.,
and Rosati, A.: Has coarse ocean resolution biased simulations of transient
climate sensitivity?, Geophys. Res. Lett., 41, 8522–8529,
https://doi.org/10.1002/2014gl061523, 2014. a
Yeager, S., Castruccio, F., Chang, P., Danabasoglu, G., Maroon, E., Small, J.,
Wang, H., Wu, L., and Zhang, S.: An outsized role for the Labrador Sea in the
multidecadal variability of the Atlantic overturning circulation, Sci.
Adv., 7, eabh3592, https://doi.org/10.1126/sciadv.abh3592, 2021. a
Zanna, L., Mana, P. P., Anstey, J., David, T., and Bolton, T.: Scale-aware
deterministic and stochastic parametrizations of eddy-mean flow interaction,
Ocean Model., 111, 66–80, https://doi.org/10.1016/j.ocemod.2017.01.004, 2017. a
Zantopp, R., Fischer, J., Visbeck, M., and Karstensen, J.: From interannual to
decadal: 17 years of boundary current transports at the exit of the Labrador
Sea, J. Geophys. Res.-Ocean., 122, 1724–1748,
https://doi.org/10.1002/2016jc012271, 2017. a
Zunino, P., Mercier, H., and Thierry, V.: Why did deep convection persist over four consecutive winters (2015–2018) southeast of Cape Farewell?, Ocean Sci., 16, 99–113, https://doi.org/10.5194/os-16-99-2020, 2020. a
Co-editor-in-chief
Increasing Greenland Ice Sheet--melting is anticipated to impact water mass transformation in the subpolar North Atlantic and ultimately the meridional overturning circulation. Greenland meltwater redistribution pathways in and impact on the subpolar North Atlantic and overturning circulation is currently among the most debated topics. The manuscript provides new insights to both physical oceanographic processes and climate modelling. Based on a systematic setup of model configurations the importance of atmospheric feedbacks and mesoscale dynamics for specific regions of the subpolar North Atlantic are emphasized. This reaches beyond aspects of model techniques and also addresses the need for continued and improved observations in critical locations of the subpolar North Atlantic gyre circulation.
Increasing Greenland Ice Sheet--melting is anticipated to impact water mass transformation in...
Short summary
How is the ocean affected by continued Greenland Ice Sheet mass loss? We show in a systematic set of model experiments that atmospheric feedback needs to be accounted for as the large-scale ocean circulation is more than twice as sensitive to the meltwater otherwise. Coastal winds, boundary currents, and ocean eddies play a key role in redistributing the meltwater. Eddy paramterization helps the coarse simulation to perform better in the Labrador Sea but not in the North Atlantic Current region.
How is the ocean affected by continued Greenland Ice Sheet mass loss? We show in a systematic...