Articles | Volume 17, issue 4
https://doi.org/10.5194/os-17-1157-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-1157-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating high-frequency radar data assimilation impact in coastal ocean operational modelling
Jaime Hernandez-Lasheras
CORRESPONDING AUTHOR
SOCIB – Balearic Islands Coastal Observing and Forecasting System, Palma, Mallorca, Spain
Baptiste Mourre
SOCIB – Balearic Islands Coastal Observing and Forecasting System, Palma, Mallorca, Spain
Alejandro Orfila
IMEDEA (CSIC-UIB) – Instituto Mediterraneo de Estudios Avanzados, Esporles, Mallorca, Spain
Alex Santana
SOCIB – Balearic Islands Coastal Observing and Forecasting System, Palma, Mallorca, Spain
Emma Reyes
SOCIB – Balearic Islands Coastal Observing and Forecasting System, Palma, Mallorca, Spain
Joaquín Tintoré
SOCIB – Balearic Islands Coastal Observing and Forecasting System, Palma, Mallorca, Spain
IMEDEA (CSIC-UIB) – Instituto Mediterraneo de Estudios Avanzados, Esporles, Mallorca, Spain
Related authors
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Jaime Hernandez-Lasheras and Baptiste Mourre
Ocean Sci., 14, 1069–1084, https://doi.org/10.5194/os-14-1069-2018, https://doi.org/10.5194/os-14-1069-2018, 2018
Short summary
Short summary
Different sampling strategies have been assessed in order to evaluate the most efficient configuration for the assimilation of high resolution measurements into a regional ocean model. The results show the capability of the model to ingest both large scale and high resolution observations and the improvement of the forecast fields. In particular, the configurations using eight gliders and the one assimilating CTDs show similar results and the give the best performance among all the simulations
Reiner Onken, Heinz-Volker Fiekas, Laurent Beguery, Ines Borrione, Andreas Funk, Michael Hemming, Jaime Hernandez-Lasheras, Karen J. Heywood, Jan Kaiser, Michaela Knoll, Baptiste Mourre, Paolo Oddo, Pierre-Marie Poulain, Bastien Y. Queste, Aniello Russo, Kiminori Shitashima, Martin Siderius, and Elizabeth Thorp Küsel
Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, https://doi.org/10.5194/os-14-321-2018, 2018
Short summary
Short summary
In June 2014, high-resolution oceanographic data were collected in the
western Mediterranean Sea by two research vessels, 11 gliders, moored
instruments, drifters, and one profiling float. The objective
of this article is to provide an overview of the data set which
is utilised by various ongoing studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads
for gliders.
Pablo Lorente, Anna Rubio, Emma Reyes, Lohitzune Solabarrieta, Silvia Piedracoba, Joaquín Tintoré, and Julien Mader
State Planet, 1-osr7, 8, https://doi.org/10.5194/sp-1-osr7-8-2023, https://doi.org/10.5194/sp-1-osr7-8-2023, 2023
Short summary
Short summary
Upwelling is an important process that impacts water quality and aquaculture production in coastal areas. In this work we present a new methodology to monitor this phenomenon in two different regions by using surface current estimations provided by remote sensing technology called high-frequency radar.
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Yuri Cotroneo, Giuseppe Aulicino, Simon Ruiz, Antonio Sánchez Román, Marc Torner Tomàs, Ananda Pascual, Giannetta Fusco, Emma Heslop, Joaquín Tintoré, and Giorgio Budillon
Earth Syst. Sci. Data, 11, 147–161, https://doi.org/10.5194/essd-11-147-2019, https://doi.org/10.5194/essd-11-147-2019, 2019
Short summary
Short summary
We present data collected from the first three glider surveys in the Algerian Basin conducted during the ABACUS project. After collection, data passed a quality control procedure and were then made available through an unrestricted repository. The main objective of our project is monitoring the basin circulation of the Mediterranean Sea. Temperature and salinity data collected in the first 975 m of the water column allowed us to identify the main water masses and describe their characteristics.
Charles Troupin, Ananda Pascual, Simon Ruiz, Antonio Olita, Benjamin Casas, Félix Margirier, Pierre-Marie Poulain, Giulio Notarstefano, Marc Torner, Juan Gabriel Fernández, Miquel Àngel Rújula, Cristian Muñoz, Eva Alou, Inmaculada Ruiz, Antonio Tovar-Sánchez, John T. Allen, Amala Mahadevan, and Joaquín Tintoré
Earth Syst. Sci. Data, 11, 129–145, https://doi.org/10.5194/essd-11-129-2019, https://doi.org/10.5194/essd-11-129-2019, 2019
Short summary
Short summary
The AlborEX (the Alboran Sea Experiment) consisted of an experiment in the Alboran Sea (western Mediterranean Sea) that took place between 25 and 31 May 2014, and use a wide range of oceanographic sensors. The dataset provides information on mesoscale and sub-mesoscale processes taking place in a frontal area. This paper presents the measurements obtained from these sensors and describes their particularities: scale, spatial and temporal resolutions, measured variables, etc.
Jaime Hernandez-Lasheras and Baptiste Mourre
Ocean Sci., 14, 1069–1084, https://doi.org/10.5194/os-14-1069-2018, https://doi.org/10.5194/os-14-1069-2018, 2018
Short summary
Short summary
Different sampling strategies have been assessed in order to evaluate the most efficient configuration for the assimilation of high resolution measurements into a regional ocean model. The results show the capability of the model to ingest both large scale and high resolution observations and the improvement of the forecast fields. In particular, the configurations using eight gliders and the one assimilating CTDs show similar results and the give the best performance among all the simulations
Ismael Hernández-Carrasco, Lohitzune Solabarrieta, Anna Rubio, Ganix Esnaola, Emma Reyes, and Alejandro Orfila
Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, https://doi.org/10.5194/os-14-827-2018, 2018
Short summary
Short summary
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed. Its performance is compared with other methods focusing on the propagation of errors introduced in the reconstruction of the velocity fields through the trajectories, Lagrangian flow structures and residence times. We find that even when a large number of measurements in the HFR velocity field is missing, the Lagrangian techniques still give an accurate description of oceanic transport properties.
Reiner Onken, Heinz-Volker Fiekas, Laurent Beguery, Ines Borrione, Andreas Funk, Michael Hemming, Jaime Hernandez-Lasheras, Karen J. Heywood, Jan Kaiser, Michaela Knoll, Baptiste Mourre, Paolo Oddo, Pierre-Marie Poulain, Bastien Y. Queste, Aniello Russo, Kiminori Shitashima, Martin Siderius, and Elizabeth Thorp Küsel
Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, https://doi.org/10.5194/os-14-321-2018, 2018
Short summary
Short summary
In June 2014, high-resolution oceanographic data were collected in the
western Mediterranean Sea by two research vessels, 11 gliders, moored
instruments, drifters, and one profiling float. The objective
of this article is to provide an overview of the data set which
is utilised by various ongoing studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads
for gliders.
Antonio Sánchez-Román, Simón Ruiz, Ananda Pascual, Baptiste Mourre, and Stéphanie Guinehut
Ocean Sci., 13, 223–234, https://doi.org/10.5194/os-13-223-2017, https://doi.org/10.5194/os-13-223-2017, 2017
Short summary
Short summary
In this work we investigate the capability of the Argo array in the Mediterranean Sea to capture mesoscale circulation structures (diameter of around 150 km). To do that we conduct several experiments to simulate different spatial sampling configurations of the Argo array in the basin. Results show that the actual Argo array in the Mediterranean (2° × 2°) might be enlarged until a spatial resolution of nearly 75 × 75 km (450 floats) in order to capture the mesoscale signal.
Marcos García Sotillo, Emilio Garcia-Ladona, Alejandro Orfila, Pablo Rodríguez-Rubio, José Cristobal Maraver, Daniel Conti, Elena Padorno, José Antonio Jiménez, Este Capó, Fernando Pérez, Juan Manuel Sayol, Francisco Javier de los Santos, Arancha Amo, Ana Rietz, Charles Troupin, Joaquín Tintore, and Enrique Álvarez-Fanjul
Earth Syst. Sci. Data, 8, 141–149, https://doi.org/10.5194/essd-8-141-2016, https://doi.org/10.5194/essd-8-141-2016, 2016
Short summary
Short summary
An intensive drifter deployment was carried out in the Strait of Gibraltar: 35 satellite tracked drifters were released, coordinating to this aim 4 boats, covering an area of about 680 NM2 in 6 hours. This MEDESS-GIB Experiment is the most important exercise in the Mediterranean in terms of number of drifters released. The MEDESS-GIB dataset provides a complete Lagrangian view of the surface inflow of Atlantic waters through the Strait of Gibraltar and its later evolution along the Alboran Sea.
M.-H. Rio, A. Pascual, P.-M. Poulain, M. Menna, B. Barceló, and J. Tintoré
Ocean Sci., 10, 731–744, https://doi.org/10.5194/os-10-731-2014, https://doi.org/10.5194/os-10-731-2014, 2014
A. Olita, S. Sparnocchia, S. Cusí, L. Fazioli, R. Sorgente, J. Tintoré, and A. Ribotti
Ocean Sci., 10, 657–666, https://doi.org/10.5194/os-10-657-2014, https://doi.org/10.5194/os-10-657-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
Cited articles
Aguiar, E., Mourre, B., Juza, M., Reyes, E., Hernández-Lasheras, J.,
Cutolo, E., Mason, E., and Tintoré, J.: Multi-platform model
assessment in the Western Mediterranean Sea: impact of downscaling on the
surface circulation and mesoscale activity, Ocean Dynam., 70, 273–288,
https://doi.org/10.1007/s10236-019-01317-8, 2019. a, b
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), SEANOE [data set], https://doi.org/10.17882/42182 (last access: 15 March 2021), 2021. a
Balbín, R., López-Jurado, J. L., Flexas, M. M., Reglero, P.,
Vélez-Velchí, P., González-Pola, C., Rodríguez,
J. M., García, A., and Alemany, F.: Interannual variability of the
early summer circulation around the Balearic Islands: Driving factors and
potential effects on the marine ecosystem, J. Mar. Syst., 138,
70–81, https://doi.org/10.1016/j.jmarsys.2013.07.004, 2014. a
Barrick, D. E.: 30 Years of CMTC and COPAR, Proceedings of the IEEE Working
Conference on Current Measurement Technology, 131–136,
https://doi.org/10.1109/CCM.2008.4480856, 2008. a
Barth, A., Alvera-Azcárate, A., and Weisberg, R. H.: Assimilation of
high-frequency radar currents in a nested model of the West Florida Shelf,
J. Geophys. Res.-Ocean., 113, 1–15,
https://doi.org/10.1029/2007JC004585, 2008. a, b
Barth, A., Alvera-Azcarate, A., Beckers, J.-M., Staneva, J., Stanev, E. V., and
Schulz-stellenfleth, J.: Correcting surface winds by assimilating
high-frequency radar surface currents in the German Bight, J. Geophys.l Res., 113,
599–610, https://doi.org/10.1007/s10236-010-0369-0, 2011. a, b
Barth, A., Troupin, C., Reyes, E., Alvera-Azcarate, A., Beckers, J.-M., and Tintoré, J.: Surface currents of the Ibiza Channel (October 2014), Product Information Document (PIDoc) [data set], https://doi.org/10.13155/78713, last access: 15 March 2021b. a
Breivik, O.: Real time assimilation of HF radar currents into a coastal ocean
model, J. Mar. Syst., 28, 161–182, https://doi.org/10.1016/S0924-7963(01)00002-1,
2001. a
Cabanellas-Reboredo, M., Vázquez-Luis, M., Mourre, B., Álvarez, E.,
Deudero, S., Amores, A., Addis, P., Ballesteros, E., Barrajón, A.,
Coppa, S., García-March, J. R., Giacobbe, S., Casalduero, F. G.,
Hadjioannou, L., Jiménez-Gutiérrez, S. V., Katsanevakis, S.,
Kersting, D., Mačić, V., Mavrič, B., Patti, F. P., Planes,
S., Prado, P., Sánchez, J., Tena-Medialdea, J., de Vaugelas, J.,
Vicente, N., Belkhamssa, F. Z., Zupan, I., and Hendriks, I. E.: Tracking a
mass mortality outbreak of pen shell Pinna nobilis populations: A
collaborative effort of scientists and citizens, Sci. Rep., 9,
1–11, https://doi.org/10.1038/s41598-019-49808-4, 2019. a, b
Calò, A., Lett, C., Mourre, B., Perez-Ruzafa, A., and
García-Charton, J. A.: Use of Lagrangian simulations to hindcast the
geographical position of propagule release zones in a Mediterranean coastal
fish, Mar. Environ. Res., 134, 16–27,
https://doi.org/10.1016/j.marenvres.2017.12.011, 2018. a
Chapman, R. D., Shay, L. K., Graber, H. C., Edson, J. B., Karachintsev, A.,
Trump, C. L., and Ross, D. B.: On the accuracy of HF radar surface current
measurements: Intercomparisons with ship-based sensors, J.
Geophys. Res.-Ocean., 102, 18737–18748, https://doi.org/10.1029/97JC00049,
1997. a
Chin, T. M., Vazquez-Cuervo, J., and Armstrong, E. M.: A multi-scale
high-resolution analysis of global sea surface temperature, Remote Sens. Environ., 200, 154–169, https://doi.org/10.1016/j.rse.2017.07.029, 2017. a
Compa, M., Alomar, C., Mourre, B., March, D., Tintoré, J., and Deudero,
S.: Nearshore spatio-temporal sea surface trawls of plastic debris in the
Balearic Islands, Mar. Environ. Res., 158, 104945,
https://doi.org/10.1016/j.marenvres.2020.104945, 2020. a, b
Counillon, F. and Bertino, L.: Ensemble Optimal Interpolation: Multivariate
properties in the Gulf of Mexico, Tellus A, 61, 296–308, https://doi.org/10.1111/j.1600-0870.2008.00383.x, 2009. a
Crombie, D. D.: Doppler Spectrum of Sea Echo at 13.56 Mc./s., Nature, 175,
681–682, https://doi.org/10.1038/175681a0, 1955. a
De Mey-Frémaux, P., Ayoub, N., Barth, A., Brewin, R., Charria, G.,
Campuzano, F., Ciavatta, S., Cirano, M., Edwards, C. A., Federico, I., Gao,
S., Garcia Hermosa, I., Garcia Sotillo, M., Hewitt, H., Hole, L. R., Holt,
J., King, R., Kourafalou, V., Lu, Y., Mourre, B., Pascual, A., Staneva, J.,
Stanev, E. V., Wang, H., and Zhu, X.: Model-Observations Synergy in the
Coastal Ocean, Front. Mar. Sci., 6, 436,
https://doi.org/10.3389/fmars.2019.00436, 2019. a, b
Emery, B. M., Washburn, L., and Harlan, J. A.: Evaluating radial current
measurements from CODAR high-frequency radars with moored current meters,
J. Atmos. Ocean. Technol., 21, 1259–1271,
https://doi.org/10.1175/1520-0426(2004)021<1259:ERCMFC>2.0.CO;2, 2004. a
Evensen, G.: The Ensemble Kalman Filter: Theoretical formulation and practical
implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003. a
Farcy, P., Durand, D., Charria, G., Painting, S. J., Tamminem, T.,
Collingridge, K., Grémare, A. J., Delauney, L., and Puillat, I.:
Toward a European coastal observing network to provide better answers to
science and to societal challenges; the JERICO research infrastructure,
Front. Mar. Sci., 6, 1–13, https://doi.org/10.3389/fmars.2019.00529, 2019. a
Hernández-Carrasco, I., Orfila, A., Rossi, V., and Garçon, V.:
Effect of small scale transport processes on phytoplankton distribution in
coastal seas, Sci. Rep., 8, 1–13,
https://doi.org/10.1038/s41598-018-26857-9, 2018. a, b
Hernandez-Lasheras, J. and Mourre, B.: Dense CTD survey versus glider fleet sampling: comparing data assimilation performance in a regional ocean model west of Sardinia, Ocean Sci., 14, 1069–1084, https://doi.org/10.5194/os-14-1069-2018, 2018. a
Heslop, E. E., Ruiz, S., Allen, J., López-jurado, J. L., Renault, L., and
Tintoré, J.: Autonomous underwater gliders monitoring variability at
“choke points” in our ocean system: A case study in the Western
Mediterranean Sea, Geophys. Res. Lett., 39, 1–6,
https://doi.org/10.1029/2012GL053717, 2012. a, b
Iermano, I., Moore, A. M., and Zambianchi, E.: Impacts of a 4-dimensional
variational data assimilation in a coastal ocean model of southern Tyrrhenian
Sea, J. Mar. Syst., 154, 157–171, 2016. a
Janeković, I., Mihanović, H., Vilibić, I., Grčić,
B., Ivatek-Šahdan, S., Tudor, M., and Djakovac, T.: Using
multi-platform 4D-Var data assimilation to improve modeling of Adriatic Sea
dynamics, Ocean Model., 146, 101538,
https://doi.org/10.1016/j.ocemod.2019.101538, 2020. a
JPL MUR MEaSUREs Project: GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis, Version 4.1, PO.DAAC [data set], CA, USA, at https://doi.org/10.5067/GHGMR-4FJ04 (last access: 10 February 2020), 2015. a
Juza, M., Mourre, B., Renault, L., Gómara, S., Sebastian, K.,
López, S. L., Borrueco, B. F., Beltran, J. P., Troupin, C.,
Tomás, M. T., Heslop, E., Casas, B., and Tintoré, J.:
Operational SOCIB forecasting system and multi-platform validation in the
Western Mediterranean, J. Operat. Oceanogr., 118, 9231,
https://doi.org/10.1002/2013JC009231, 2016. a
Kaplan, D. M. and Lekien, F.: Spatial interpolation and filtering of surface
current data based on open-boundary modal analysis, J. Geophys.
Res.-Ocean., 112, 1–20, https://doi.org/10.1029/2006JC003984, 2007. a
Kerry, C., Powell, B., Roughan, M., and Oke, P.: Development and evaluation of
a high-resolution reanalysis of the East Australian Current region using the
Regional Ocean Modelling System (ROMS 3.4) and Incremental Strong-Constraint
4-Dimensional Variational (IS4D-Var) data assimilation, Geosci. Model
Dev., 9, 3779–3801, https://doi.org/10.5194/gmd-9-3779-2016, 2016. a
Kerry, C., Roughan, M., and Powell, B.: Observation Impact in a Regional
Reanalysis of the East Australian Current System, J. Geophys.
Res.-Ocean., 123, 1–18, https://doi.org/10.1029/2017JC013685, 2018. a
Kersting, D. K., Vázquez-Luis, M., Mourre, B., Belkhamssa, F. Z.,
Álvarez, E., Bakran-Petricioli, T., Barberá, C., Barrajón,
A., Cortés, E., Deudero, S., García-March, J. R., Giacobbe, S.,
Giménez-Casalduero, F., González, L.,
Jiménez-Gutiérrez, S., Kipson, S., Llorente, J., Moreno, D.,
Prado, P., Pujol, J. A., Sánchez, J., Spinelli, A., Valencia, J. M.,
Vicente, N., and Hendriks, I. E.: Recruitment Disruption and the Role of
Unaffected Populations for Potential Recovery After the Pinna nobilis Mass
Mortality Event, Front. Mar. Sci., 7, 1–11,
https://doi.org/10.3389/fmars.2020.594378, 2020. a, b
Kourafalou, V., De Mey, P., Le Hénaff, M., Charria, G., Edwards, C., He,
R., Herzfeld, M., Pascual, A., Stanev, E., Tintoré, J., Usui, N.,
van der Westhuysen, A., Wilkin, J., and Zhu, X.: Coastal Ocean Forecasting:
system integration and evaluation, J. Operat. Oceanogr., 8,
127–146, https://doi.org/10.1080/1755876X.2015.1022336, 2015a. a
Kourafalou, V., De Mey, P., Staneva, J., Ayoub, N., Barth, A., Chao, Y.,
Cirano, M., Fiechter, J., Herzfeld, M., Kurapov, A., Moore, A. M., Oddo, P., Pullen, J., van der Westhuysen, A., and Weisberg, R. H.: Coastal Ocean
Forecasting: science foundation and user benefits, J. Operat.
Oceanogr., 8, s147–s167, 2015b. a
Lana, A., Fernández, V., and Tintoré, J.: SOCIB Continuous Observations
Of Ibiza Channel Using HF Radar, Sea Technol., 56, 31–34, 2015. a
Lana, A., Marmain, J., Fernandez, V., Tintore, J., and Orfila, A.: Wind
influence on surface current variability in the Ibiza Channel from HF Radar,
Ocean Dynam., 66, 483–497, https://doi.org/10.1007/s10236-016-0929-z, 2016. a, b, c, d
Lange, M. and van Sebille, E.: Parcels v0.9: prototyping a Lagrangian ocean analysis framework for the petascale age, Geosci. Model Dev., 10, 4175–4186, https://doi.org/10.5194/gmd-10-4175-2017, 2017. a
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018. a
Lipa, B. J. and Barrick, D. E.: Least-squares methods for the extraction of
surface currents from CODAR cross-loop data: Application at ARSLOE, IEEE
Trans. Geosci. Remote Sens., 8, 226–253, 1983. a
Liu, Y. and Weisberg, R. H.: Evaluation of trajectory modeling in different
dynamic regions using normalized cumulative Lagrangian separation, J.
Geophys. Res.-Ocean., 116, 1–13, https://doi.org/10.1029/2010JC006837,
2011. a, b, c
Lorente, P., Piedracoba, S., Soto-Navarro, J., and Alvarez-Fanjul, E.: Evaluating the surface circulation in the Ebro delta (northeastern Spain) with quality-controlled high-frequency radar measurements, Ocean Sci., 11, 921–935, https://doi.org/10.5194/os-11-921-2015, 2015. a
Lorente, P., Lin-Ye, J., García-León, M., Reyes, E., Fernandes, M.,
Sotillo, M. G., Espino, M., Ruiz, M. I., Gracia, V., Perez, S., Aznar, R.,
Alonso-Martirena, A., and Álvarez-Fanjul, E.: On the Performance of
High Frequency Radar in the Western Mediterranean During the Record-Breaking
Storm Gloria, Vol. 8, available at:
https://www.frontiersin.org/article/10.3389/fmars.2021.645762 (last access: 12 August 2021),
2021. a
Marmain, J., Molcard, A., Forget, P., Barth, A., and Toulon, D.: Assimilation
of HF radar surface currents to optimize forcing in the northwestern
Mediterranean Sea, Nonl. Proc. Geophys., 21, 659–675,
https://doi.org/10.5194/npg-21-659-2014, 2014. a, b
Mourre, B., Aguiar, E., Juza, M., Hernandez-Lasheras, J., Reyes, E., Heslop,
E., Escudier, R., Cutolo, E., Ruiz, S., Mason, E., Pascual, A., and
Tintoré, J.: Assessment of High-Resolution Regional Ocean Prediction
Systems Using Multi-Platform Observations: Illustrations in the Western
Mediterranean Sea, New Front. Operat. Oceanogr., 24, 663–694,
https://doi.org/10.17125/gov2018.ch24, 2018. a, b, c
NASA/JPL: GHRSST Level 4 MUR Global Foundation Sea Surface Temperature
Analysis (v4.1), https://doi.org/10.5067/GHGMR-4FJ04, 2015. a
Oke, P. R., Allen, J. S., Miller, R. N., Egbert, G. D., and Kosro, P. M.:
Assimilation of surface velocity data into a primitive equation coastal
ocean model, J. Geophys. Res.-Ocean., 107, 5–1,
https://doi.org/10.1029/2000jc000511, 2002. a, b, c
Oke, P. R., Sakov, P., and Corney, S. P.: Impacts of localisation in the EnKF
and EnOI: Experiments with a small model, Ocean Dynam., 57, 32–45,
https://doi.org/10.1007/s10236-006-0088-8, 2007. a
Onken, R., Álvarez, A., Fernández, V., Vizoso, G., Basterretxea,
G., Tintoré, J., Haley, P., and Nacini, E.: A forecast experiment in
the Balearic Sea, J. Mar. Syst., 71, 79–98,
https://doi.org/10.1016/j.jmarsys.2007.05.008, 2008. a
Paduan, J. D. and Shulman, I.: HF radar data assimilation in the Monterey Bay
area, J. Geophys. Res., 109, 1–17,
https://doi.org/10.1029/2003JC001949, 2004. a
Paduan, J. D. and Washburn, L.: High-Frequency Radar Observations of Ocean
Surface Currents, Ann. Rev. Mar. Sci., 5, 115–136,
https://doi.org/10.1146/annurev-marine-121211-172315, 2013. a
Paduan, J. D., Kim, K. C., Cook, M. S., and Chavez, F. P.: Calibration and
validation of direction-finding high-frequency radar ocean surface current
observations, IEEE J. Ocean. Eng., 31, 862–875,
https://doi.org/10.1109/JOE.2006.886195, 2006. a
Pascual, A., Bouffard, J., Ruiz, S., Buongiorno Nardelli, B., Vidal-Vijande,
E., Escudier, R., Sayol, J. M., and Orfila, A.: Recent improvements in
mesoscale characterization of the western Mediterranean Sea: synergy between
satellite altimetry and other observational approaches, Sci. Mar., 77,
19–36, https://doi.org/10.3989/scimar.03740.15A, 2013. a
Pascual, A., Lana, A., Troupin, C., Ruiz, S., Faugère, Y., Escudier, R.,
and Tintoré, J.: Assessing SARAL/AltiKa Data in the Coastal Zone:
Comparisons with HF Radar Observations, Mar. Geodesy, 38, 260–276,
https://doi.org/10.1080/01490419.2015.1019656, 2015. a
Pinot, J. M., Tintoré, J., and Gomis, D.: Quasi-synoptic mesoscale
variability in the Balearic Sea, Deep-Sea Res. Pt. I, 41, 897–914,
https://doi.org/10.1016/0967-0637(94)90082-5, 1994. a
Pinot, J. M., Tintoré, J., and Gomis, D.: Multivariate analysis of the
surface circulation in the Balearic Sea, Prog. Oceanogr., 36,
343–376, https://doi.org/10.1016/0079-6611(96)00003-1, 1995. a
Pinot, J. M., López-Jurado, J. L., and Riera, M.: The CANALES experiment
(1996–1998), Interannual, seasonal, and mesoscale variability of the
circulation in the Balearic Channels, Prog. Oceanogr., 55,
335–370, https://doi.org/10.1016/S0079-6611(02)00139-8, 2002. a
Ren, L., Nash, S., and Hartnett, M.: Forecasting of Surface Currents via
Correcting Wind Stress with Assimilation of High-Frequency Radar Data in a
Three-Dimensional Model, Adv. Meteorol., 2016, 8950378,
https://doi.org/10.1155/2016/8950378, 2016. a
Révelard, A., Reyes, E., Mourre, B., Hernández-Carrasco, I., Rubio,
A., Lorente, P., Fernández, C. D. L., Mader, J., Álvarez-Fanjul,
E., and Tintoré, J.: Sensitivity of Skill Score Metric to Validate
Lagrangian Simulations in Coastal Areas: Recommendations for Search and
Rescue Applications, Vol. 8, p. 191, available at:
https://www.frontiersin.org/article/10.3389/fmars.2021.630388 (last access: 12 August 2021),
2021. a, b, c
Roarty, H., Cook, T., Hazard, L., George, D., Harlan, J., Cosoli, S., Wyatt,
L., Alvarez Fanjul, E., Terrill, E., Otero, M., Largier, J., Glenn, S.,
Ebuchi, N., Whitehouse, B., Bartlett, K., Mader, J., Rubio, A., Corgnati, L.,
Mantovani, C., Griffa, A., Reyes, E., Lorente, P., Flores-Vidal, X.,
Saavedra-Matta, K. J., Rogowski, P., Prukpitikul, S., Lee, S.-H., Lai, J.-W.,
Guerin, C.-A., Sanchez, J., Hansen, B., and Grilli, S.: The Global High
Frequency Radar Network, Front. Mar. Sci., 6, 164,
https://doi.org/10.3389/fmars.2019.00164, 2019. a
Roesler, C. J., Emery, W. J., and Kim, S. Y.: Evaluating the use of
high-frequency radar coastal currents to correct satellite altimetry,
J. Geophys. Res.-Ocean., 118, 3240–3259,
https://doi.org/10.1002/jgrc.20220, 2013. a
Rubio, A., Mader, J., Corgnati, L., Mantovani, C., Griffa, A., Novellino, A.,
Quentin, C., Wyatt, L., Schulz-Stellenfleth, J., Horstmann, J., Lorente, P.,
Zambianchi, E., Hartnett, M., Fernandes, C., Zervakis, V., Gorringe, P.,
Melet, A., and Puillat, I.: HF Radar activity in European coastal seas: Next
steps toward a Pan-European HF Radar network, Front. Mar. Sci., 4, p. 8,
https://doi.org/10.3389/fmars.2017.00008, 2017. a
Ruiz-Orejón, L. F., Mourre, B., Sardá, R., Tintoré, J., and
Ramis-Pujol, J.: Quarterly variability of floating plastic debris in the
marine protected area of the Menorca Channel (Spain), Environ.
Pollut., 252, 1742–1754, https://doi.org/10.1016/j.envpol.2019.06.063, 2019. a
Sandery, P. A., Brassington, G. B., and Freeman, J.: Adaptive nonlinear
dynamical initialization, J. Geophys. Res., 116, C01021,
https://doi.org/10.1029/2010JC006260, 2011. a
Schiller, A., Bell, M., Brassington, G., Brasseur, P., Barciela, R., De Mey,
P., Dombrowsky, E., Gehlen, M., Hernandez, F., Kourafalou, V., Larnicol, G.,
Le Traon, P.-Y., Martin, M., Oke, P., Smith, G. C., Smith, N., Tolman, H.,
and Wilmer-Becker, K.: Synthesis of new scientific challenges for GODAE
OceanView, J. Operat. Oceanogr., 8, s259–s271,
https://doi.org/10.1080/1755876X.2015.1049901, 2015. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system
(ROMS): A split-explicit, free-surface, topography-following-coordinate
oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Shulman, I. and Paduan, J. D.: Assimilation of HF radar-derived radials and
total currents in the Monterey Bay area, Deep-Sea Res. Pt. II, 56,
149–160, https://doi.org/10.1016/j.dsr2.2008.08.004, 2009. a, b, c, d
Simoncelli, S., Fratianni, C., Pinardi, N., Grandi, A., Drudi, M., Oddo, P.,
and Dobricic, S.: Mediterranean Sea physical reanalysis (MEDREA 1987-2015)
(Version 1) [Data set], Copernicus Monitoring Environment Marine Service
(CMEMS),
https://doi.org/10.25423/medsea_reanalysis_phys_006_004,
2017. a, b
Smith, W. H. and Sandwell, D. T.: Global Sea Floor Topography from Satellite
Altimetry and Ship Depth Soundings, Science, 2, 209–215, 1997. a
Sperrevik, A. K., Christensen, K. H., and Röhrs, J.: Constraining energetic slope currents through assimilation of high-frequency radar observations, Ocean Sci., 11, 237–249, https://doi.org/10.5194/os-11-237-2015, 2015. a
Stanev, E. V., Ziemer, F., Schulz-Stellenfleth, J., Seemann, J., Staneva, J.,
and Gurgel, K. W.: Blending surface currents from HF radar observations and
numerical modeling: Tidal hindcasts and forecasts, J. Atmos. Ocean. Technol., 32, 256–281, https://doi.org/10.1175/JTECH-D-13-00164.1, 2015. a, b, c
Stanev, E. V., Schulz-Stellenfleth, J., Staneva, J., Grayek, S., Grashorn, S.,
Behrens, A., Koch, W., and Pein, J.: Ocean forecasting for the German Bight:
From regional to coastal scales, Ocean Sci., 12, 1105–1136,
https://doi.org/10.5194/os-12-1105-2016, 2016. a, b
Stewart, R. H. and Joy, J. W.: Instruments and Methods HF radio measurements
of surface currents, Current, 21, 1039–1049, 1974. a
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001. a
Tintoré, J., Casas, B., Heslop, E., et al.: The Impact of New
Multi-platform Observing Systems in Science, Technology Development and
Response to Society Needs; from Small to Large Scales, in: International
Conference on Computer Aided Systems Theory, Springer, 341–348, 2013. a
Tintoré, J., Lana, A., Marmain, J., Fernández, V., Orfila, A., Observing, B.
I. C., and Forecasting System, S.: SOCIB EXP RADAR Sep2014 (Version 1.0)
[Data set], https://doi.org/10.25704/MHBG-Q265, 2014. a, b
Tintoré, J., Lana, A., Marmain, J., Fernández, V.and Casas, B., and Reyes,
E.: HF Radar Ibiza data from date 2012-06-01 (Version 1.0) [Data set],
Balearic Islands Coastal Observing and Forecasting System, SOCIB,
https://doi.org/10.25704/17GS-2B59, 2020. a, b, c
Torrado, H., Mourre, B., Raventos, N., Carreras, C., Tintoré, J.,
Pascual, M., and Macpherson, E.: Impact of individual early life traits in
larval dispersal: A multispecies approach using backtracking models,
Prog. Oceanogr., 192, 102518, https://doi.org/10.1016/j.pocean.2021.102518, 2021. a, b
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Mar. Res., 61, 235–265,
https://doi.org/10.1357/002224003322005087, 2003. a
Undén, P., Rontu, L., Järvinen, H., Lynch, P., Calvo, J., Cats, G.,
Cuxart, J., Eerola, K., Fortelius, C., Garcia-Moya, J. A., Jones, C.,
Lenderlink, G., McDonald, A., McGrath, R., Navascues, B., Nielsen, N. W.,
Ødegaard, V., Rodriguez, E., Rummukainen, M., Rõõm, R., Sattler, K.,
Sass, B. H., Savijärvi, H., Schreur, B. W., Sigg, R., The, H., and
Tijm, A.: High Resolution Limited Area Model, HIRLAM-5 Scientific
Documentation, Tech. Rep. December, SMHI, Norrkoping, SWEDEN, 2002. a
Vandenbulcke, L., Beckers, J.-M., and Barth, A.: Correction of inertial
oscillations by assimilation of HF radar data in a model of the Ligurian
Sea, Ocean Dynam., 67, 117–135, https://doi.org/10.1007/s10236-016-1012-5, 2017. a, b, c
Vargas-Yáñez, M., Juza, M., García-martínez, M. C.,
Moya, F., Balbín, R., Ballesteros, E., Muñoz, M., Tel, E.,
Pascual, J., Vélez-belchí, P., Salat, J., and Devlin, A. T.:
Long-Term Changes in the Water Mass Properties in the Balearic Channels Over
the Period 1996–2019, Front. Mar. Sci., 8, 1–17,
https://doi.org/10.3389/fmars.2021.640535, 2021. a
Vignudelli, S., Birol, F., Benveniste, J., Fu, L. L., Picot, N., Raynal, M.,
and Roinard, H.: Satellite Altimetry Measurements of Sea Level in the
Coastal Zone, Vol. 40, Springer, the Netherlands,
https://doi.org/10.1007/s10712-019-09569-1, 2019. a
Wilkin, J. L. and Hunter, E. J.: An assessment of the skill of real-time
models of Mid-Atlantic Bight continental shelf circulation, J.
Geophys. Res.-Ocean., 118, 2919–2933, https://doi.org/10.1002/jgrc.20223,
2013. a, b
Yan, Y., Barth, A., and Beckers, J. M.: Comparison of different assimilation
schemes in a sequential Kalman filter assimilation system, Ocean Model.,
73, 123–137, https://doi.org/10.1016/j.ocemod.2013.11.002, 2014. a
Yu, P., Kurapov, A. L., Egbert, G. D., Allen, J. S., and Kosro, P. M.:
Variational assimilation of HF radar surface currents in a coastal ocean
model off Oregon, Deep-Sea Res. Pt. II, 129, 394–400, https://doi.org/10.1016/j.dsr2.2013.05.035, 2016.
a
Zhang, W. G., Wilkin, J. L., and Arango, H. G.: Towards an integrated
observation and modeling system in the New York Bight using variational
methods, Part I: 4DVAR data assimilation, Ocean Model., 35, 119–133,
https://doi.org/10.1016/j.ocemod.2010.08.003, 2010. a, b
Short summary
Correct surface ocean circulation forecasts are highly relevant to search and rescue, oil spills, and ecological processes, among other things. High-frequency radar (HFR) is a remote sensing technology that measures surface currents in coastal areas with high temporal and spatial resolution. We performed a series of experiments in which we use HFR observations from the Ibiza Channel to improve the forecasts provided by a regional ocean model in the western Mediterranean.
Correct surface ocean circulation forecasts are highly relevant to search and rescue, oil...