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Abstract. The impact of the assimilation of HFR (high-
frequency radar) observations in a high-resolution regional
model is evaluated, focusing on the improvement of the
mesoscale dynamics. The study area is the Ibiza Channel, lo-
cated in the western Mediterranean Sea. The resulting fields
are tested against trajectories from 13 drifters. Six differ-
ent assimilation experiments are compared to a control run
(no assimilation). The experiments consist of assimilating (i)
sea surface temperature, sea level anomaly, and Argo profiles
(generic observation dataset); the generic observation dataset
plus (ii) HFR total velocities and (iii) HFR radial velocities.
Moreover, for each dataset, two different initialization meth-
ods are assessed: (a) restarting directly from the analysis af-
ter the assimilation or (b) using an intermediate initialization
step applying a strong nudging towards the analysis fields.
The experiments assimilating generic observations plus HFR
total velocities with the direct restart provide the best results,
reducing by 53 % the average separation distance between
drifters and virtual particles after the first 48 h of simulation
in comparison to the control run. When using the nudging
initialization step, the best results are found when assimilat-
ing HFR radial velocities with a reduction of the mean sep-
aration distance by around 48 %. Results show that the inte-
gration of HFR observations in the data assimilation system
enhances the prediction of surface currents inside the area
covered by both antennas, while not degrading the correction
achieved thanks to the assimilation of generic data sources
beyond it. The assimilation of radial observations benefits
from the smoothing effect associated with the application of
the intermediate nudging step.

1 Introduction

High-frequency radar (HFR) is a fast-growing technology,
playing an important role in coastal observing systems
around the world (Roarty et al., 2019; Rubio et al., 2017).
It allows real-time measurements providing a new, detailed,
and quantitative description of physical processes at the ma-
rine surface (Paduan and Washburn, 2013). Its capacity to
measure currents at high spatial and temporal resolution over
relatively large coastal areas makes it a convenient system
for operational purposes. It can be used to validate numeri-
cal models (Aguiar et al., 2019; Mourre et al., 2018; Lorente
et al., 2021), analyse Lagrangian dynamics (Hernández-
Carrasco et al., 2018), or constrain numerical models via data
assimilation (DA) (Vandenbulcke et al., 2017; Iermano et al.,
2016; Janeković et al., 2020).

HFR is a cost-effective shore-based remote-sensed tech-
nology exploiting the Bragg resonance phenomenon (Crom-
bie, 1955) to map ocean surface currents, wave fields, and
increasingly winds in coastal areas. It complements satellite
altimeter observations, which are limited to larger scales and
suffer limitations when approaching the coast (Vignudelli
et al., 2019; Pascual et al., 2013). The capability of HFR
to give realistic observations of surface currents has been
widely validated (Chapman et al., 1997; Emery et al., 2004;
Paduan et al., 2006). Furthermore it has been used to vali-
date geostrophic currents computed from along-track altime-
try (Pascual et al., 2015) and to correct sea surface height
(SSH) altimeter fields (Roesler et al., 2013).

Regional ocean models are invaluable tools for opera-
tional oceanography (Wilkin and Hunter, 2013; Onken et al.,
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2008; De Mey-Frémaux et al., 2019). However, they are in-
evitably affected by errors from multiple sources, especially
in highly dynamic coastal areas where conditions tend to
change rapidly. In such places, the assimilation of observa-
tions such as the ones provided by HFR can help to con-
strain the model solution and improve the forecast. Assim-
ilation of HFR data has been successfully applied in dif-
ferent regions around the globe, starting from the pioneer
study conducted by Breivik (2001) using an optimal inter-
polation (OI) scheme. Since then, many different studies
have explored the performance of HFR for data assimila-
tion in ocean circulation models using different assimila-
tion schemes, data types, and techniques. Authors have em-
ployed high-frequency (hourly) or filtered data depending on
the focus of the study and the dynamical processes of inter-
est. The use of radial or total observations has also been the
subject of study and debate. While radial velocities theoret-
ically provide a larger amount of information without any
data processing, they are prone to present higher spatial gra-
dients than reconstructed total observations, which incorpo-
rate some spatial smoothing. In addition, radials have a wider
coverage, providing data in areas only covered by one an-
tenna and can be used even in the case of failure of the other
antennas. Theoretically, under the assumptions of linearity
and normal distribution of errors in the state dynamics and
measurements, as well as in the transformation from radi-
als to totals, the assimilation of radial currents should out-
perform the assimilation of total currents, since all the in-
formation of the totals is included in the radials and the lat-
ter contain additional information that is not included in the
totals. However, in real-world experiments, these major as-
sumptions are not verified. In particular, the model is non-
linear, observation error covariances are not Gaussian and
certainly not perfectly known, and the transformation from
radials to totals also involves non-linearities. In the litera-
ture, both kinds of observations have been assimilated with
satisfactory results. To our knowledge, Shulman and Paduan
(2009) is the only work evaluating the contribution of both
radial and total velocities in the same experiment. Their re-
sults show the capacity of the system to improve surface cur-
rents and circulation down to 120 m depth in areas covered
by two or more antennas for both kinds of data. Depending
on the position of the mooring with respect to the coverage
of the antennas, their validation showed a varying complex
correlation against mooring observations when using radial
or total observations. Using observations from only one an-
tenna, Shulman and Paduan (2009) found that results were
extremely variable and highly dependent on the direction of
the bearing with respect to the dominant flow.

Oke et al. (2002) used an OI scheme to assimilate low-pass
filtered surface total velocity measurements from an HFR ar-
ray to correct model circulation. They used a so-called TDAP
(time-distributed averaging procedure) initialization method
after analysis, which progressively applies data assimilation
increments to preserve appropriate dynamical balances. This

data assimilation approach resulted in an increase of the cor-
relation between model and observations from 0.42 to 0.78.

More recently, hourly reconstructed total currents have
also been employed using both sequential (Ren et al., 2016;
Paduan and Shulman, 2004) and variational data assimila-
tion schemes such as 4D-Var (Zhang et al., 2010; Wilkin and
Hunter, 2013; Yu et al., 2016). However, depending on the
model setup and the oceanic processes of interest, the use
of hourly data may not be the most appropriate, as for in-
stance in Kerry et al. (2016), where radial speeds and angles
are spatially averaged onto the model grid and a 24 h boxcar-
averaging filter is used to remove tides and inertial oscilla-
tions that are not resolved by the model. Kerry et al. (2018)
show that among all the assimilated observations, HFR were
the ones that had the larger impact on the currents and the
transport in the Eastern Australian Current.

The use of hourly data in sequential data assimilation
schemes is not straightforward, due to the analysis frequency,
which is generally larger than 1 h. An option is to use an ex-
tended state vector as in Barth et al. (2008), who employed
an ensemble based Kalman filter (KF) method using hourly
radial observations in the West Florida Shelf. For the ini-
tialization, Barth et al. (2008) implemented a spatial filter
and averaged the ensemble fields in an attempt to remove
spurious variability before it is introduced into the model.
Barth et al. (2011) and Marmain et al. (2014) employed a
similar approach, using all radial hourly observations avail-
able during the assimilation window and an extended state
vector to correct the wind forcing fields and boundary con-
ditions, respectively, in a similar way to variational meth-
ods. While Barth et al. (2011) showed that the correction
had a positive impact on the reconstructed winds and the
sea surface temperature (SST) in the German Bight, Mar-
main et al. (2014) found an improvement in surface currents
in the north-western Mediterranean Sea, although with some
degradation on the density fields and under surface currents.
Stanev et al. (2015) also used hourly radial observations to
correct tidal currents in the German Bight. In an operational
context and based on a spatio-temporal optimal interpolation
(STIO), Stanev et al. (2016) demonstrated that their system
had a good skill to correct currents even beyond the HFR
covered area.

A comparison of the impact of both time-filtered and un-
filtered HFR currents (with respect to a model with and with-
out tides) was done in Shulman and Paduan (2009), showing
that the sub-tidal period velocity simulations were similarly
improved through the assimilation of either low-pass-filtered
surface currents or instantaneous (hourly) surface currents.
More recently, Vandenbulcke et al. (2017), using different
KF schemes with an extended state vector, assimilated hourly
radial velocities to correct inertial oscillations in a regional
model of the Ligurian Sea. They showed an important effect
on the correction of inertial oscillations during the first 12 h
when considering all hourly observations in a 48 h time win-
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dow instead of using only those corresponding to one single
hour.

In the present study, we aim to evaluate the impact on
coastal ocean operational modelling of the assimilation of
both HFR total and radial velocities, and also to exploit dif-
ferent initialization methods after analysis. Our focus is on
the correction of mesoscale structures and larger scale circu-
lation, rather than inertial oscillations or tidal currents.

The study area is the Ibiza Channel (IC; Fig. 1), which is
the passage between the oriental coast of Spain’s mainland
and the island of Ibiza. It is a crucial area for understanding
mixing and transport processes in the north-western Mediter-
ranean Sea. Two different water masses interact in the IC:
(i) relatively salty water that has already recirculated in the
western Mediterranean flowing southward along the shelf as
the Northern Current and (ii) a branch of the Modified At-
lantic Water transporting fresher waters originally entering
through the Strait of Gibraltar and flowing northward (Pinot
et al., 1994, 1995) on its easternmost part. The dynamics and
the ecological and economical importance of the area have
raised a specific interest in understanding the relevant ocean
processes (Heslop et al., 2012; Balbín et al., 2014; Pinot
et al., 2002; Hernández-Carrasco et al., 2018; Vargas-Yáñez
et al., 2021). The analysis of repeated observations along a
glider endurance line in the Ibiza Channel has revealed a high
variability of meridional transports over timescales of days to
weeks (Heslop et al., 2012). This high variability due to the
interaction of multiple processes with different water masses
over a complex topography make the operational forecast-
ing particularly challenging. The anthropogenic pressure in
the region makes it necessary to develop accurate tools for
search and rescue, oil spill forecasting, or larval dispersion to
efficiently respond to emergencies and protect ecosystems.

Since 2012, the Balearic Island Coastal Observing and
forecasting System (SOCIB; Tintoré et al., 2013) has op-
erated a CODAR HFR system that monitors the IC with
two antennas measuring hourly surface currents (Tintoré
et al., 2020). This infrastructure is part of the Joint European
Research Infrastructure of coastal observatories (JERICO;
https://www.jerico-ri.eu, last access: 12 August 2021). Lana
et al. (2016) validated the IC HFR observations against a
current meter, acoustic doppler current profiler (ADCP), and
surface Lagrangian drifters, showing a good agreement and
the absence of significant mean error (hereafter referred to
as bias). A joint analysis of HFR observations and surface
winds in terms of empirical orthogonal functions (EOFs)
demonstrated that the surface current variability was mainly
driven by local winds and mesoscale circulation.

The present research on Ibiza Channel HFR data assimi-
lation was carried out within the Joint Research Action on
coastal forecasting of the European Horizon 2020 JERICO-
NEXT project. Seven 1 month simulations have been gener-
ated to investigate the data assimilation performance of HFR
raw radial observations compared to reconstructed total cur-
rents. We have employed three different datasets and for each

of them two different initialization methods after analysis.
Additionally, a free-run simulation without assimilation was
used as a control run. An exhaustive assessment was per-
formed following both Eulerian and Lagrangian approaches,
including an independent set of 13 drifters deployed in the
area.

The paper is structured as follows: Sect. 2 describes the
data and methods employed, including the DA system and
the description of the experiments. The results are presented
in Sect. 3. Finally, the discussion of the results and the con-
clusions are presented in Sects. 4 and 5.

2 Data and methods

2.1 High-frequency radar

The SOCIB HFR system consists of two CODAR SeaSonde
stations on the islands of Ibiza and Formentera (named
GALF and FORM, respectively), covering the eastern side
of the IC. It has operated since June 2012, providing real-
time high-resolution observations of surface currents (Tin-
toré et al., 2020; Lana et al., 2015, 2016). Each HFR station
emits at a central frequency of 13.5 MHz and a bandwidth
of 90 kHz, reaching ranges up to 85 km. Emitted electromag-
netic waves are backscattered by surface waves of exactly
half the HFR wavelength. Radial velocities (velocities to-
ward or away from the antenna) are derived from the Doppler
shift due to the difference between ideal and measured Bragg
frequency (Barrick, 2008). At the specified operating fre-
quency, measurement depth is approximately 0.9 m (Stew-
art and Joy, 1974). Radial observations provide the veloc-
ity along a bearing calculated from radio signals backscat-
tered from the ocean surface. Hourly radial velocity maps
from both stations are systematically quality controlled and
the total velocity vectors are reconstructed by combining
the radial velocities with overlapping coverage on a regular
3× 3 km grid. Each grid point observation is computed us-
ing a unweighted least square fitting (UWLS) (Lipa and Bar-
rick, 1983) considering all radial observations within a 6 km
radius. Total reconstructed observations have a range up to
65 km off the antenna, compared to the 85 km that radials
can reach.

In our experiments, we used daily mean HFR observations
(Fig. 1) to filter the high-frequency signals (i.e. tidal and iner-
tial motions) and focus on correcting the sub-tidal processes.
Notice that tides in this area have very low amplitudes on the
order of only a few centimetres. Daily means of radial and
total currents are computed independently for each data type
from the hourly observations. For the total currents, the daily
mean is only considered at grid points where, during each
day, at least 50 % of hourly measurements are both avail-
able and flagged as good, as was also used by Lorente et al.
(2015). In the case of the radials, we considered a threshold
of 25 % for computing the daily mean.
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As stated above, at each grid point, the hourly total cur-
rents are calculated using all available radial observations
within a radius of 6 km. Consequently, some total observa-
tions could be computed using different radial grid points
within this radius for each hour that individually do not sat-
isfy the threshold of 50 % imposed for the total velocities.
Therefore, using the same threshold to calculate the daily
means of both observations could lead to patches with avail-
able reconstructed daily mean total currents but no daily
mean radials available. This is why we decided to use a less
restrictive threshold for radials to have better spatial cover-
age, consistent with that of the total observations in the area
covered by both antennas.

2.2 Regional model configuration

The Western Mediterranean OPerational system (WMOP;
Juza et al., 2016; Mourre et al., 2018) is a high-resolution
regional configuration of the ROMS (Regional Ocean Mod-
elling System) model (Shchepetkin and McWilliams, 2005)
for the western Mediterranean Sea. The spatial coverage
spans from the Strait of Gibraltar on the west to the Sardinia
Channel on the east (6◦W–9◦ E, 35–44.5◦ N; see Fig. 1) with
a horizontal resolution around 2 km and 32 vertical sigma
levels (resulting in a vertical resolution between 1 and 2 m
at the surface). The WMOP system is used to produce daily
forecasts of the regional ocean circulation, which is used for
a wide range of applications including search and rescue and
analysis of plastic, parasite, or larval dispersion (Calò et al.,
2018; Ruiz-Orejón et al., 2019; Cabanellas-Reboredo et al.,
2019; Compa et al., 2020; Torrado et al., 2021; Kersting
et al., 2020; Révelard et al., 2021).

The vertical mixing coefficients are set using the generic
length scale (GLS) turbulence closure scheme (Umlauf and
Burchard (2003); with parameters p = 2.0,m= 1.0, and n=
−0.67 as in line 1 of their Table 7). The bathymetry is derived
from a 1′ database (Smith and Sandwell, 1997). The simula-
tion used in this study is initialized from and nested within
the larger scale Copernicus Forecasting System (CMEMS
MED-MFC) with a 1/16◦ horizontal resolution (Simoncelli
et al., 2017). The atmospheric forcing is provided every 3 h
at 1/20◦ resolution by the Spanish Meteorological Agency
(AEMET) through the HIRLAM model (Undén et al., 2002).
These fields are used to compute surface turbulent and mo-
mentum fluxes through bulk formulae. Atmospheric pressure
forcing is neglected to avoid SSH high-frequency variability
issues. Inflows from the six major rivers in the region are
considered point sources using daily climatological values.
Tides are not considered in the model.

A multi-year free-run hindcast spanning the period from
2009 to 2018 (Mourre et al., 2018; Aguiar et al., 2019) was
used as a control simulation. This simulation also provides
the initial state for the data assimilative simulations starting
on 20 September 2014. Figure 2 shows the mean surface field
of the control run during the simulation period (20 September

to 20 October 2014) together with the mean surface currents
measured by the HFR for the same period. The HFR obser-
vations depict an average southward current west of 0.8◦ E.
This current is deviated towards the south-east of 38.7◦ N,
and the flow is directed northward in the eastern side of the
coverage area, close to the Ibiza and Formentera coast. The
control run represents this overall pattern but with a signifi-
cant overestimation of the mean velocities and a spatial mis-
match of the eastward deviation of the flow (this deviation
occurs too much to the east in the model).

2.3 Data assimilation system

The assimilation scheme employed here is the local multi-
model Ensemble Optimal Interpolation (EnOI) employed in
Hernández-Lasheras and Mourre (2018). It is a form of the
EnOI that has been a widely used scheme since it represents
a cost-effective alternative compared with more complex
methods as the ensemble Kalman filter or the 4D-Var (Oke
et al., 2002; Evensen, 2003; Counillon and Bertino, 2009).
EnOI is a three-dimensional sequential assimilation method
that allows the use of a large ensemble size together with
localization. A stationary ensemble of model simulations is
used to estimate background error covariances. The WMOP-
DA system consists of a sequence of analyses (model updates
given a set of observations) and model forward simulations.

For each analysis, the state vector x =

(T i,j,k,Si,j,k,ui,j,k,vi,j,k,SSH i,j )
T contains the model

trajectory, i.e. the prognostic model variables at all wet
grid points i, j , and k. During the analysis step, the state
vector xa is updated according to Eq. (1), where xf is the
background model state vector, H is the linear observation
operator projecting the model state onto the observation
space, and K̃ is the Kalman gain estimated from the sample
covariances (Eq. 2). y is the vector of observations. Matrices
P̃f and R are the error covariance matrices of the model and
the observations, respectively.

xa = xf + K̃
(
y−Hxf

)
(1)

K̃= P̃fHT
(

HP̃fHT
+R

)−1
(2)

P̃f contains the background error covariances (BECs). In our
approach, we estimated the BECs by sampling three long-run
simulations of the WMOP with different initial and bound-
ary forcings provided by the CMEMS MED-MFC (Simon-
celli et al., 2017) and CMEMS GLO-MFC (Lellouche et al.,
2018) forecasting systems and varying momentum and dif-
fusion parameters. An ensemble of 80 realizations is consid-
ered in each analysis. Each ensemble member is randomly
extracted from the three different long-run simulations within
a temporal window of 90 d centred on the day of the analysis
for the different years covered by the three long-run simu-
lations. The seasonal cycle is removed from the multivariate
fields before computing the ensemble anomalies to limit the
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Figure 1. Map of the Ibiza Channel showing the HFR coverage area for radial (a) and total (b) currents, together with the position of the two
antennas (GALF and FORM). Panel (c) shows the 13 drifters used for validation and their trajectories within the first 6 d after deployment.
Each drifter has a randomly assigned colour. Dots indicate start locations of the trajectories.

effects of large-scale correlations, mainly in terms of surface
temperature. This way, we obtain multivariate, inhomoge-
neous, and anisotropic three-dimensional model BECs char-
acteristic of the mesoscale variability. We used a domain lo-
calization of 200 km corresponding to the average distance
between two Argo profiles in the western Mediterranean Sea.
An independent analysis is performed for each water col-
umn of the model domain considering only the observations
within the localization radius.

We used a diagonal observation covariance error matrix
R. The observation error for all HFR observations was con-
sidered the same, with a value of 0.1 m s−1 (accounting for
instrumental and representativity errors). This value is con-
sistent with local comparisons against surface current mea-
surements from a point-wise current meter (1.5 m depth) and
a downward-looking ADCP (first bin at 5 m depth) carried
out by Lana et al. (2016), which reported a RMSD between
0.07 and 0.12 m s−1. This value of 0.1 m s−1 was fixed in our
experiments as it yielded a proper correction of surface cur-
rents without degrading the vertical structure. Once the ob-
servation error was set for HFR total observations, we per-
formed new experiments to evaluate the potential differences
between the total and radial observations. Total observations
were interpolated and projected to generate synthetic radial
observations containing the exact same information as the to-
tals but with a radial-like pattern in the area covered by both
antennas. The assimilation of these total and synthetic radial
observations using the same observation error led to almost
identical results in surface fields and vertical structure, with
complex correlation of 0.92 and a RMSD of 0.02 m s−1 ob-
tained between both analysis fields in the HFR grid points.
Based on these results, we decided to use the same observa-
tion error for both types of observations.

The state vector equivalents of HFR radials are obtained
using the following equation:

Hxf = ux cosα+uy sinα, (3)

where ux and uy are the model surface velocity components
interpolated at the observation point and α denotes the angle
(anti-clockwise towards the east) pointing from an antenna
station to a certain location.

A 3 d assimilation cycle is applied with different time win-
dows for each source of observation as explained in the fol-
lowing section. In each analysis (day n), the daily average
field is employed as background and two different initial-
ization approaches (Fig. 3) have been applied to restart the
model after the analysis. Sequential assimilation methods are
affected by initialization issues, as primitive equation models
are sensitive to discontinuous changes in their model fields
(Oke et al., 2002). These discontinuities may introduce arti-
ficial waves or structures in the model that affect the quality
of predictions. Different strategies have been proposed to ad-
dress this problem (Sandery et al., 2011; Yan et al., 2014).

In the first approach, the simulation for day n+ 1 restarts
directly from the results of the analysis. The second ap-
proach, which will be referred to as nudging, consists of
running again the day n applying a very strong nudging
(timescale of one day) towards the temperature, salinity, and
SSH fields provided by the analysis. Notice that the nudging
is not applied to the velocity fields. These are adjusted by
the model itself according to its dynamics. This procedure
reduces the model corrections but guarantees updated multi-
variate fields closer to model equation balances, which limits
instabilities. This setup is very similar to the one employed
by Oke et al. (2007) in the Bluelink system.

https://doi.org/10.5194/os-17-1157-2021 Ocean Sci., 17, 1157–1175, 2021
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Figure 2. Illustration of the modelling domain and study area. (a) WMOP sea surface salinity (6 October 2014). The Ibiza and Mallorca
Channel area is delimited by the blue rectangle. (b) Bathymetry (m) and main circulation features in the Ibiza Channel. (c) Mean HFR surface
currents over the whole simulation period (20 September to 20 October 2014). (d) Mean surface currents over the whole simulation period
computed from the model.

Figure 3. Data assimilation procedure illustrating the two initialization methods and the 3 d cycles. The diagram in (a) describes the direct
initialization strategy from the analysis. The diagram in (b) describes the nudging strategy for initialization. Orange rectangles represent each
1 d run of WMOP. Grey rectangles represent the 1 d run of WMOP in which a strong nudging towards the results of the analysis is applied.

2.4 Simulations

Seven simulations of WMOP are used to investigate the im-
pact of both HFR observations and initialization methods
(Table 1). The period selected for the simulation experiments
covers 1 month, from 20 September to 20 October 2014, as-
similating different sets of observations every 3 d. During this
period, a total of 13 satellite-tracked surface drifters (Tintoré

et al., 2014) were deployed in the area covered by the HFR
and used as independent data for validating the numerical
experiments (Fig. 1). We adopted the operational prediction
setup of WMOP, considering only observations before the
analysis date. Notice that a “retrospective analysis” frame-
work considering a time window centred on the analysis date
could slightly improve the results presented in this paper.
However, since our objective is to implement this method
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for daily predictions, the operational setup has been selected.
Satellite SLA (sea level anomalies), SST (sea surface tem-
perature), and T –S (temperature and salinity) Argo profiles,
defined as the generic observing sources (GO), are assim-
ilated in all these simulations. The SLA consists of along-
track L3 multi-satellite reprocessed observations provided by
CMEMS. We consider a 3 d window for SLA observations.
The SST comes from a L4-GHRSST foundation SST product
distributed by JPL-MUR (NASA/JPL, 2015). The foundation
SST is the temperature free of diurnal temperature variability,
corresponding to the temperature of the surface just before
the daily heating by the sun. Since the model daily average
contains the signature of the diurnal cycle, this effect needs to
be accounted for in the representativity error. This is approx-
imated by computing the variance of the difference between
the model SST field at 08:00 and the daily average field used
as background for each of the grid points. The ultra-high
1 km resolution gridded fields have been smoothed and in-
terpolated to a 10 km grid to limit the number of observa-
tions, while still representing the effective scale that this SST
product can resolve (Chin et al., 2017). For the T –S Argo
profiles we have considered a 5 d time window, which corre-
sponds to the nominal time of Mediterranean Argo floats cy-
cles. For each profile, values are binned vertically to obtain
a single value for each model grid cell. The variance of the
data within a bin is used as the vertical representation error,
which is added to the horizontal one, assumed to be 0.25 ◦C2

and 0.052 for temperature and salinity measurements, respec-
tively.

A control run (CR) without data assimilation was used as
benchmark to assess the performance of the different assim-
ilation experiments. We called GNR the simulation in which
we only assimilated GO. Additionally, four other simulations
assimilating HFR data together with GO have been gener-
ated. In all four cases we assimilate daily averages to remove
the impact of inertial oscillations and tides, which are not
the focus of this study. Daily averaged fields from the model
are used as background for the analysis. TOT simulation em-
ploys HFR totals, computed as described before. We called
RAD the simulation assimilating all possible daily mean ra-
dial observations.

Data assimilation experiments have been repeated using
both types of initialization for every dataset. Our analysis
will first evaluate the impact and trade-offs of the different
kind of HFR observations when using the direct restart from
the analysis procedure. Then, the impact of the nudging ini-
tialization method will be specifically discussed.

Table 1. Basic description of the experiments, indicating the dataset
used in the simulations.

Experiment Assimilated observations

CR None
GNR SLA, SST, T –S
TOT SLA, SST, T –S, HFR totals
RAD SLA, SST, T –S, HFR radials

3 Results

3.1 Assessment of the impact of DA on SST, SLA, and
T –S profiles over the whole domain

To evaluate the general performance of the DA, all 1 month
experiments are first compared against SLA, SST, and Argo
T –S profiles over the whole modelling domain. For each ex-
periment, the WMOP fields are interpolated onto the obser-
vation points. Each day, the model SLA was assessed against
along-track daily multi-satellite altimetry observations pro-
vided by CMEMS. Model daily mean fields at the observa-
tion points are considered. The satellite SST product is com-
pared to the model SST at 08:00. to reduce the potential im-
pact of the diurnal cycle. For the comparison of the model
and the Argo T –S profiles, the available daily observations
are compared against model daily mean fields. The closest
grid point of the model was considered. Due to the backward-
in-time assimilation window, the observations used for the
validation have not been previously assimilated. However,
they can not be considered as fully independent since the
data employed for the validation come from the same plat-
forms that provide the assimilated measurements.

Taylor diagrams (Taylor, 2001) are presented here for
the evaluation of the simulations. They illustrate the cor-
respondence between model and observations in terms of
correlation coefficient, centred root mean square difference
(CRMSD), and standard deviation. However, note that the
diagram does not represent the mean error between the ob-
servations and the model, which was examined separately.
The magnitude of the SST mean error decreases from −0.29
to −0.14 ◦C, representing in all simulations less than 14 %
of the total RMSD.1 The mean error between the CR and the
Argo profiles is 0.4 and −0.13 ◦C for temperature and salin-
ity, respectively, representing less than 8 % of the RMSD in
both cases.

The use of DA results in a significant improvement of both
the SLA and SST fields, as shown in Fig. 4. For both data
sources, the symbols corresponding to each data assimilation
simulation overlap. This means that the validation metrics
are very similar for all of them. For the SLA, it leads to a sig-
nificant increase in the correlation, with values from 0.42 to

1The RMSD has a contribution from the bias and CRMSD ac-
cording to the following formula: RMSD2

=CRMSD2
+ bias2.
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around 0.70 and a 30 % reduction in the CRMSD for all the
experiments with DA. Notice that the model SLA presents a
relatively large mean error, with a value of around −0.07 m.
Discrepancies are common when comparing models to al-
timetry due to differences in the mean sea level. This mean
error, which persists after DA, accounts for the difference
between the mean dynamic topography of the model and ob-
servations. This way, the reduction in the RMSD is mostly
due to reductions of the CRMSD, which can be observed in
the diagrams. Concerning the SST, we obtain a similar error
reduction in terms of centred RMSD on the order of 30 %
closer to observations when using DA. An increase in corre-
lation is also obtained from 0.82 to around 0.92 when com-
pared with the CR. We do not observe a significant difference
between the simulations using different datasets.

Similar conclusions are obtained when examining the Tay-
lor diagrams focusing on Argo temperature and salinity pro-
files (Fig. 5). Although the CR simulation shows a very high
correlation with observations (0.88 and 0.95 for tempera-
ture and salinity, respectively), this correlation is further in-
creased for the experiments with DA. A CRMSD reduction
of more than 35 % is obtained for both salinity and temper-
ature observations in all data assimilative experiments. The
diagram for the salinity shows a decrease in the standard de-
viation with DA and slight differences between RAD and the
other two simulations.

The impact of the assimilation on the different fields was
also evaluated considering only observations surrounding the
IC area, leading to similar results.

3.2 Eulerian assessment of the impact of DA on surface
currents

To evaluate the DA capabilities to improve the representation
of surface currents, we performed an Eulerian analysis in the
HFR coverage area. WMOP surface daily mean velocities
are compared against HFR total daily mean fields. The total
observations are derived from the radial data, as described
in Sect. 2.1. We compute the daily mean field only at those
points that provide more than 50 % of hourly data and then
interpolate the model to HFR observation grid points. As for
the SLA, SST, and Argo T –S profiles, the validation can not
be considered fully independent since we use the same ob-
serving platform. However, the data used for validation at a
given time have not yet been assimilated in the model.

We first analyse the performance in terms of surface cur-
rents by using the Taylor diagrams for the velocity compo-
nents (Fig. 6). The zonal velocity component experiences a
strong correction with the assimilation of GO. Specifically,
the CRMSD is reduced by 28 % while the correlation in-
creases from 0.28 to 0.44. This performance is further im-
proved by the two experiments using HFR data, with more
than a 40 % reduction in CRMSD. While the TOT experi-
ment exhibits the largest error reduction, RAD provides the

best correlation with observations (0.7), compared to 0.63
obtained by TOT.

Considering the meridional velocity component, GNR has
a lower correlation and higher CRMSD than the CR. Here,
the use of HFR observations is necessary to reduce the dif-
ference between model and observations. The correlation
slightly increases with the assimilation of HFR, with the best
results obtained for TOT (0.47). Moreover, the standard de-
viation and CRMSD displays a significant reduction (27 %
for TOT and 19 % for RAD).

Figure 7 shows the spatial distribution of the surface cur-
rent speed mean error (bias), defined as the difference be-
tween the HFR and the model in terms of the module of the
velocities, at each grid point. Positive error reflects that ob-
servation mean values are larger than model estimates. The
control run, CR, overestimates the currents in most of the do-
main with the exception of a small area on the western side.
The mean bias over the whole HFR domain is 10.4 cm−1 s−1

(see Table 2). DA corrects the bias in all three experiments.
The assimilation of GO leads to a reduction of the error over
the whole domain, with a mean value of 5.4 cm−1 s−1. A fur-
ther reduction is achieved when assimilating HFR velocities.
RAD has a mean bias of 2.6 cm−1 s−1, which is particularly
higher near the Ibiza antenna, while TOT has the lowest bias,
with a mean value of 1.2 cm−1 s−1.

3.3 Lagrangian assessment of the impact of DA on
surface currents

As previously stated, 13 surface drifters were deployed in
the HFR coverage area during the simulated period, as de-
scribed in Lana et al. (2016). Three different kinds of sur-
face drifters (ODi, MDOi, and CODEi) were employed, all
drifting at a depth between the surface and 1 m. No signif-
icant wind drag is expected for these drifters (more details
can be found in Révelard et al., 2021 or Barth et al., 2021a).
Virtual particle drifts were then computed using model sur-
face currents. For each experiment, and for eight consecutive
days (from 1 to 8 October), 1000 neutrally buoyant parti-
cles were launched at each of the positions of the 13 drifters
at 00:00 each day. Lagrangian tracks were simulated using
OceanParcels (Lange and Van Sebille, 2017) and a 5 d pe-
riod for WMOP velocity fields (at 3 h resolution). Addition-
ally, we included a diffusion term using a Brownian mo-
tion scheme with the objective of representing the impact
of the subgrid processes not resolved by the model. After
each advection step the diffusion is imposed using a ran-
dom distribution with a diffusion coefficient of 50 m2 s−1, in
line with recent Lagrangian studies using the WMOP model
(Cabanellas-Reboredo et al., 2019; Compa et al., 2020; Ker-
sting et al., 2020; Torrado et al., 2021). We have verified that
our results are not significantly affected by this value of the
diffusion coefficient, which has a significant impact on the
spread of the trajectories but not on the path of the mean tra-
jectory.
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Figure 4. Taylor diagrams comparing models and observations in terms of SLA (a) and SST (b) over the whole modelling domain. The
X and Y axes represent the standard deviations of the data. The distance from the reference point located on the X axis (noted as Ref in
magenta) represents the centred root mean square deviation (CRMSD). Correlation between observations and the model increases clockwise.
Symbols represent the different simulations, as specified in the legend

Figure 5. Same as Fig. 4 for the Argo salinity (a) and temperature (b) profiles.

The distance between real drifters and the centre of mass
of each set of the 1000 Lagrangian particles is computed at
each time step and a skill score (SS, Eqs. 4 and 5) is given
for each drifter every day following the description made by
Liu and Weisberg (2011). A non-dimensional index s is cal-
culated based on the normalized cumulative Lagrangian sep-
aration distance, from purely Lagrangian parameters (Eq. 4),
where di is the separation distance between the modelled and
observed endpoints of the Lagrangian trajectory at time step i
after initialization, loi is the length of the observed trajectory,

and N is the total number of time steps.

s =

N∑
i=1

di

/ N∑
i=1

loi (4)

SS= 1− s (5)

Trajectories are also simulated using the hourly DIVAnd
reconstructed velocity fields presented in Barth et al. (2021a).
DIVAnd is a n-dimensional variational analysis method that
is used here to reconstruct hourly two-dimensional vectorial
fields from radial observations. It was shown to improve the
reconstruction compared to the open-boundary modal analy-

https://doi.org/10.5194/os-17-1157-2021 Ocean Sci., 17, 1157–1175, 2021



1166 J. Hernandez-Lasheras et al.: Evaluating high-frequency radar data assimilation impact

Figure 6. Taylor diagrams for WMOP simulations compared to HFR surface currents observations. Separate diagrams for each velocity
component: U (a) and V (b). The symbols represent the different simulations, as specified in the legend.

Table 2. Bias, normalized RMSD, and total RMSD between the model and HFR surface currents speed. The two columns on the right
correspond to the RMSD for the zonal and meridional components.

Experiment Bias (cm s−1) nRMSD RMSD (m s−1) U -RMSD (m s−1) V -RMSD (m s−1)

CR 10.42 1.00 0.21 0.13 0.16
GNR 5.37 0.79 0.17 0.08 0.14
TOT 1.19 0.52 0.11 0.06 0.09
RAD 2.63 0.57 0.12 0.06 0.10

sis (Kaplan and Lekien, 2007). Figure 8 provides a few ex-
amples illustrating the Lagrangian prediction capacity for the
different simulations. Each panel shows the trajectories of
the drifter and the centre of mass of the virtual particles for
each experiment for 48 h of simulation. These plots illustrate
the diversity of situations associated with the spatio-temporal
variability of the surface ocean velocities. Particularly for
Panels (b), (c), (d), and (e), TOT displays very good agree-
ment with the observations, resulting in the best performance
over all the simulations. However, it is worth noting that this
behaviour is not systematic and the simulations assimilating
HFR sometimes fail in providing the best trajectories (Pan-
els a and f).

Figure 9 shows the skill score for all experiments
(four model simulations+DIVAnd fields) for a forecast hori-
zon of 48 h. Each point is located at the initial position of
the particles at the beginning of the Lagrangian simulations
and represents the value of the skill score of the centre of
mass of the cloud of virtual particles. For trajectories with
a cumulative separation distance larger than the cumulative
distance travelled by the particles, the model has a negative
skill score. On the other hand, values close to 1 indicate a
nearly perfect match between the drifter and virtual trajec-
tories. Values of the mean skill score are given in Table 3,

where the mean skill score is computed separately for (i) all
trajectories, (ii) the trajectories starting inside the HFR cover-
age area, and (iii) trajectories whose initial position is outside
the HFR area. The top left panel of Fig. 9 shows the spatial
distribution of the SS for the CR.

Inside the HFR coverage area the model has no skill for
multiple trajectories (SS< 0) according to Liu and Weisberg
(2011), resulting in a negative mean value (−0.35). Outside
there are several trajectories for which the model has some
skill (SS over 0.5) and a mean value of 0.36. All experiments
present a larger SS outside the HFR coverage area. This in
mainly due to the characteristics of the trajectories north of
the island of Ibiza, where the circulation is dominated by the
Balearic current with a more steady north-eastward flow gen-
erally better reproduced in the model, as previously described
by Révelard et al. (2021).

In general, all experiments with DA improve the trajecto-
ries. In particular, GNR increases the skill score compared
to CR with values increasing from −0.16 to 0.19 over the
whole domain. Note, however, that inside the coverage area
not all trajectories are properly represented by the model
(Fig. 9). The assimilation of HFR data along with GO fur-
ther increases the skill score. The improvement is particu-
larly significant inside the HFR domain, where most of the
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Figure 7. Mean total current speed error (bias, m s−1). The mean
model speed is subtracted from observations at each grid point. Pos-
itive values indicate that the model overestimates the observations
on average.

Table 3. Average skill score for the different experiments, over the
whole domain, and inside and outside the HFR coverage area.

Experiment SS whole domain SS inside SS outside

CR −0.16 −0.35 0.36
DIVAnd 0.45 0.51 0.28
GNR 0.19 0.05 0.58
TOT 0.45 0.41 0.57
RAD 0.42 0.36 0.59

trajectories have positive SS. TOT has the best results among
the model experiments, with a mean value of 0.41 inside the
coverage area, which is better than RAD (0.36). Outside the
coverage area all data assimilative simulations lead to a sim-
ilar performance (SS around 0.58), representing an improve-
ment with respect to CR (SS= 0.36). Assimilating HFR data
does not lead to any significant improvement nor degradation
of the model performance outside this coverage area with re-
spect to GNR.

The average separation distance is computed according to
Eq. (6), where ndrif = 13 is the number of drifters, npart =

1000 is the number of particles, and xd and xv are the posi-
tions of the real drifter and the corresponding virtual particle,
respectively (Fig. 10). For each 5 d trajectory, the mean sep-
aration distance is first computed averaging over the number
of drifters, providing a single distance as a function of time
d(t) for the 13 drifters (Eq. 6). Then, the four values of d(t),
one for each of the four simulations starting in consecutive

days are averaged.

d(t)=
1
ndrif

ndrif∑
i=1

(∣∣∣∣∣xid(t)− 1
npart

npart∑
j=1

xij
v(t)

∣∣∣∣∣
)

(6)

The mean distance between virtual and real drifters is sig-
nificantly reduced when DA is applied. The assimilation of
GO efficiently helps to reduce the mean separation distance,
with a reduction of 31 % after 48 h compared to CR (18.9
versus 27.2 km). Consistent with the previous analysis, the
assimilation of HFR total observations along with the GO
further increases the performance, leading to the lowest mean
separation distance (12.8 km) with a 53 % reduction com-
pared to the CR. The use of radial observations also leads
to a high reduction of the mean separation distance (48 %),
which is reduced to 14.3 km after 48 h.

DIVAnd simulations present a mean distance of 8.4 and
17.3 km after 24 and 48 h, respectively, affected by a signifi-
cant number of trajectories outside of the HFR coverage area
and so not properly constrained by the reconstruction algo-
rithm.

3.4 Impact of the nudging restart strategy

Overall, the results in the whole domain compared to satel-
lite and Argo observations are similar to those obtained for
the simulations restarting directly from the analysis. The im-
provement is slightly lower due to the nudging step but all
data assimilative simulations provide comparable metrics.
The reduction of the RMSD compared to the CR is around
8 % for the SLA, while for the SST it is reduced around
30 %. Considering Argo profiles, the reduction of the RMSD
is 35 % for all simulations, both for temperature and salinity.

Table 4 presents the bias and RMSD for the model surface
current speed and the zonal and meridional components. This
has to be compared with Table 2, which shows the results for
the simulations restarting from the analysis. We can observe
a slight improvement for the GNR-N simulation when us-
ing the nudging initialization in comparison with restarting
directly from the analysis, with a reduction of both the bias
and the RMSD. While this initialization method also helps to
reduce the bias compared to direct restart from the analysis
for RAD, this is not the case when using total observations.

The Lagrangian assessment confirms these results, reflect-
ing the usefulness of HFR data to correct surface currents us-
ing this initialization method even when the nudging is only
performed towards the SSH and T –S fields. The SS for the
GNR-N simulation (Table 5) increases significantly inside
the coverage area while decreasing outside, with an average
value of 0.39, which is larger than the value of 0.34 obtained
with the other approach. The correction obtained using HFR
total velocities together with GO is slightly degraded using
the nudging approach both inside and outside the coverage
area, with an average SS of 0.41 compared to 0.45 with the
direct restart from analysis. On the other hand, RAD has a
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Figure 8. Map showing two-day satellite-tracked drifters and model trajectories derived from different DA experiments for different dates.
Model trajectories represent the trajectories of the centre of mass of the 1000 particles launched at the drifter position at 00:00 of the indicated
starting day.

Table 4. Same as Table 2 for the simulations applying a nudging towards the analysis.

Experiment Bias (cm s−1) nRMSD RMSD U -RMSD V -RMSD

CR 10.42 1.00 0.21 0.13 0.16
GNR-N 5.04 0.75 0.16 0.09 0.12
TOT-N 2.21 0.59 0.12 0.07 0.09
RAD-N 2.16 0.58 0.12 0.07 0.10

Table 5. Same as Table 3 for the simulations applying a nudging
towards the analysis.

Experiment SS whole domain SS inside SS outside

CR −0.16 −0.35 0.36
GNR-N 0.28 0.18 0.54
TOT-N 0.41 0.35 0.56
RAD-N 0.43 0.38 0.57

better SS when using the nudging approach. The average SS
inside the radar domain increases from 0.36 to 0.38, while
outside the domain it slightly decreases from 0.59 to 0.57.

The mean separation distance after 48 h when assimilat-
ing GO is also reduced from 18.9 to 16.7 km when using
the nudging initialization. Although the assimilation of to-
tal HFR velocities further decreases the mean separation dis-
tance, results are slightly degraded when using the nudg-
ing compared to restarting directly from the analysis, with
a mean distance of 14.0 km after 48 h. On the contrary, the
assimilation of HFR radials benefits from the nudging ap-
proach, reducing the mean separation distance from 14.3 to
13.4 km after the first two days compared to the direct restart
from analysis (which represents a 51 % reduction in compar-
ison to CR) and giving the best results among all simulations
using this initialization method.
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Figure 9. Scattered dots represent the skill score (Liu and Weisberg, 2011) of each simulation to represent a drifter trajectory. The dot
position is the starting point of each Lagrangian simulation. Values lower than 0 mean the simulation has no skill at representing that specific
drifter trajectory according to the metric used, while values close to 1 mean a perfect performance of the model. Skill score was calculated
for 48 h.

Figure 10. Mean separation distance between drifter and the centre
of mass of virtual particles using the direct restart from analysis.

4 Discussion

The assimilation of high-resolution HFR surface current ob-
servations in a reduced part of the modelling domain could
have a negative effect on the rest of the variables under the
effect of spurious model error correlations. While in Stanev
et al. (2015, 2016) the positive outcome of the data assim-
ilation extends beyond the HFR covered area, Zhang et al.
(2010) showed that the assimilation of HFR led to an im-
provement of surface currents in their experiments but with a
degradation of the sub-surface temperature forecasts. Sperre-

vik and Christensen (2015) evidenced that using T –S profiles
along with HFR observations led to better results, as they
control the density fields while adding a constraint on the
circulation. Here we show that the assimilation of local HFR
(both totals and radials) observations along with the generic
ones does not degrade the improvement on the SLA, SST
fields, and Argo T –S profiles achieved over the whole do-
main when assimilating only the generic observations. The
results obtained for all experiments with DA show similar
performance in this sense. Differences mostly depend on the
type of initialization employed. Nevertheless, this work is
mainly focused on the study of surface currents and thus the
impact on sub-surface fields has not been deeply analysed.
CTD casts or glider data in the region should help to com-
plete the assessment in future studies.

We have used DIVAnd reconstructed fields as a bench-
mark for our Lagrangian validation. These hourly fields prop-
erly represent the inertial oscillations compared to other gap-
filling techniques (Barth et al., 2021a), and we consider it as
the best possible high resolution representation of the sur-
face currents in the area, which allows the simulation of La-
grangian trajectories. It is very positive that the skill scores
obtained for the HFR DA experiments are very close to that
obtained by DIVAnd. While DIVAnd outperforms the ca-
pabilities of the WMOP DA system inside the coverage of
both HFR antennas, it is the opposite outside this region,
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which demonstrates the capacity of the model to improve
the representation of the currents beyond the HFR coverage
area. The assimilation of GO, in particular SLA, constrains
the geostrophic circulation, leading to a better representa-
tion of the Balearic current and an increase of the SS in that
area. The importance of this constraint is highlighted when
comparing it to DIVAnd-derived trajectories, which do not
properly represent these features. While the mean SS for the
DIVAnd-derived trajectories inside the area is 0.53, it drops
to 0.29 outside of it, being significantly lower than all model-
derived trajectories. This behaviour is consistent with the re-
sults of Barth et al. (2021a), which show that the DIVAnd
reconstructed fields outside the area covered by both HFR
antennas are much less reliable. Our results demonstrate the
utility of dynamical models assimilating high-resolution ob-
servations as good alternatives to data-driven short-term fore-
casting methods, due to their capacity to extend the correc-
tion beyond the observation coverage area. They also show
the importance of combining HFR and altimeter observa-
tions, which help to constrain the geostrophic circulation
over a wider area.

Two different initialization strategies have been evalu-
ated. While restarting directly from the analysis may intro-
duce some high-frequency and spurious waves or instabil-
ities in the system due to inconsistencies between the cor-
rected fields and the model equations, it considers an initial
state that is closer to observations. On the other hand, the
nudging strategy provides a more conservative framework in
which the model dynamics are better respected but with the
drawback that some of the correction achieved with the ob-
servations may be lost. Overall, both approaches show simi-
lar results leading to a reduction of the RMSD over the whole
domain. As in the case of the direct restart from the analysis,
the use of the “nudging” strategy also leads to an improve-
ment of the predictions of surface currents when assimilating
HFR observations compared to the simulation that only uses
generic data sources. It is important to point out that, in our
case, nudging is only applied towards the temperature, salin-
ity, and sea surface height fields, but not towards the velocity
fields, to avoid model instabilities. Therefore, the assimila-
tion of the surface currents enables us to correct the density
fields, which in turn improves the surface velocities due to
the model initial adjustments.

The nudging strategy limits the possible shocks and
anomalous gradients that may be generated in the analysis
so that the solution remains closer to the physical balances.
We found that it was not optimal for surface currents pre-
diction when using HFR total velocities but a better choice
for radial data. This is probably due to the fact that recon-
structed total velocities are already smoothed out through
a pre-processing step contrarily to the case of radial data,
which are more noisy and directly benefit from the smooth-
ing effect of the nudging approach. The nudging strategy ap-
pears to be a good solution for operational purposes when
the occurrence of noisy data tends to be more frequent. It

may also be a good choice for systems depending on oper-
ational data sources for which HFR antennas, for instance,
may not work during certain periods or satellite and Argo
data may not be available on time. It could also be less sen-
sitive to potential errors in data in cases where near real-time
observations could be affected by significant errors.

The observation error was considered the same for total
and radial currents in this study, as explained in Sect. 2.3,
without considering any spatial variability. Some authors
used spatially variable observation errors depending on
whether the area is covered by a single antenna or more than
one (Vandenbulcke et al., 2017). Here we have considered
the same error for all HFR radial observations so as to also
exploit the potential benefit of observations in areas covered
by only one antenna, as discussed in Shulman and Paduan
(2009); Stanev et al. (2015). However, the evaluation of the
effect of penalizing observations with larger errors in areas
covered by a single antenna or affected by geometry dilu-
tion of precision (GDOP) effects is relevant and would need
further research. The observation error should also ideally in-
clude correlated observation errors, even if our knowledge of
these errors is still somehow limited. This is another interest-
ing aspect that should be evaluated in future studies.

5 Conclusions

In this work, we have integrated different multivariate ocean
observations with numerical modelling to improve the dy-
namical knowledge of ocean currents in line with the actual
concerns in operational oceanography (De Mey-Frémaux
et al., 2019; Kourafalou et al., 2015a, b; Schiller et al., 2015).
This work has benefitted from the collaborative framework
of the JERICO-NEXT European research infrastructure ini-
tiative (Farcy et al., 2019), which aims at fostering coopera-
tion to build a sustained coastal observing network. We com-
bined high-resolution modelling with satellite and in situ ob-
serving sources and HFR surface currents measurements to
discuss the contribution that the developing HFR networks
could provide to regional and coastal operational modelling.
The impact of HFR-DA was evaluated using both radial and
total observations along with generic data sources as SLA,
SST, and Argo T –S profiles. The system showed its ability
to improve the representation of ocean fields by assimilat-
ing different types of observations from a variety of sources
observing a wide range of spatio-temporal scales.

The assimilation of generic observation sources helps to
correct surface currents in the IC as revealed by both the Eu-
lerian and Lagrangian validations. The employment of HFR
observations further improves the forecasting of surface cur-
rents in the IC. While GNR simulations reduce the RMSD
and the mean error, the assimilation of HFR leads to an in-
crease in the correlation between model and observations for
both components of the velocity. The Lagrangian validation
reveals the capacity of HFR data assimilation to improve the
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prediction of surface currents inside the area covered by both
antennas, while not degrading the representation of the more
steady currents found outside of it. The experiment assimilat-
ing HFR total velocities is the one that best fits the observa-
tions. In addition, it provides the best average skill score for
Lagrangian prediction and the lowest mean separation dis-
tance between drifters and virtual particles. The use of radial
observations benefits from the use of an intermediate nudg-
ing initialization approach after the analysis. The results pre-
sented in this study confirm the usefulness of HFR systems to
improve regional operational ocean forecasting models, even
when providing limited coverage with respect to the model
domain extension.

Data availability. Simulations are archived on the SOCIB server
and are available upon request to info@socib.es. Drifter data
can be accessed at https://doi.org/10.25704/mhbg-q265 (Tin-
toré et al., 2014). HFR total currents can be accessed from
https://doi.org/10.25704/17gs-2b59 (Tintoré et al., 2020) and
http://thredds.socib.es/. DIVAnd HFR reconstructed fields data and
information can be found at https://doi.org/10.13155/78713 (Barth
et al., 2021b). Argo data can be downloaded from IFREMER
at https://doi.org/10.17882/42182 (Argo, 2021). Sea Surface
Temperature can be downloaded from the NASA-JPL portal
(https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1,
JPL MUR MEaSUREs Project, 2015). Sea Level anomaly
(SEALEVEL_EUR_PHY_L3_REP_OBSERVATIONS_008_061)
and MED-MFC model (MEDSEA_MULTIYEAR_PHY_006_004)
products can be downloaded from the Copernicus Marine Service
(CMEMS).

Author contributions. JHL and BM conceptualized the experi-
ments. JHL conducted the experiments, performed the analysis, and
wrote the manuscript with the support of BM and AO. ER helped
in the interpretation of the HFR data and the discussion of the re-
sults. AS helped with the coding and in the discussion of the results.
JT was in charge of the SOCIB Observing and Forecasting System
design and direction. All authors contributed to the review of the
article.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Special issue statement. This article is part of the special issue
“Coastal marine infrastructure in support of monitoring, science,
and policy strategies”. It is not associated with a conference.

Acknowledgements. We want to thank all the data providers listed
for making their data available and the Spanish Meteorologi-
cal Agency (AEMET) for providing the HIRLAM model outputs
used. We would also like to thank Mélanie Juza, Eugenio Cutolo,
Adèle Revelard, Eva Aguiar, Máximo Garcia-Jove, Sun Yong Kim,
and Alexander Barth for their technical support and fruitful discus-
sions.

Financial support. This research has been supported by the the EU
Horizon 2020 JERICO-NEXT (grant agreement no. 654410) and
EuroSea (grant agreement no. 862626) projects as well as MED-
CLIC, a joint project between SOCIB and the “La Caixa” Founda-
tion.

Review statement. This paper was edited by Ingrid Puillat and re-
viewed by Jeffrey Paduan and one anonymous referee.

References

Aguiar, E., Mourre, B., Juza, M., Reyes, E., Hernández-Lasheras, J.,
Cutolo, E., Mason, E., and Tintoré, J.: Multi-platform model as-
sessment in the Western Mediterranean Sea: impact of downscal-
ing on the surface circulation and mesoscale activity, Ocean Dy-
nam., 70, 273–288, https://doi.org/10.1007/s10236-019-01317-
8, 2019.

Argo: Argo float data and metadata from Global Data As-
sembly Centre (Argo GDAC), SEANOE [data set],
https://doi.org/10.17882/42182 (last access: 15 March 2021),
2021.

Balbín, R., López-Jurado, J. L., Flexas, M. M., Reglero, P., Vélez-
Velchí, P., González-Pola, C., Rodríguez, J. M., García, A., and
Alemany, F.: Interannual variability of the early summer circu-
lation around the Balearic Islands: Driving factors and poten-
tial effects on the marine ecosystem, J. Mar. Syst., 138, 70–81,
https://doi.org/10.1016/j.jmarsys.2013.07.004, 2014.

Barrick, D. E.: 30 Years of CMTC and COPAR, Proceedings of
the IEEE Working Conference on Current Measurement Tech-
nology, 131–136, https://doi.org/10.1109/CCM.2008.4480856,
2008.

Barth, A., Alvera-Azcárate, A., and Weisberg, R. H.: Assimila-
tion of high-frequency radar currents in a nested model of
the West Florida Shelf, J. Geophys. Res.-Ocean., 113, 1–15,
https://doi.org/10.1029/2007JC004585, 2008.

Barth, A., Alvera-Azcarate, A., Beckers, J.-M., Staneva, J.,
Stanev, E. V., and Schulz-stellenfleth, J.: Correcting sur-
face winds by assimilating high-frequency radar surface cur-
rents in the German Bight, J. Geophys.l Res., 113, 599–610,
https://doi.org/10.1007/s10236-010-0369-0, 2011.

Barth, A., Troupin, C., Reyes, E., Alvera-Azcárate, A., Beckers, J.-
M., and Tintoré, J.: Variational interpolation of high-frequency
radar surface currents using DIVAnd, Ocean Dynam., 71, 293–
308, 2021a.

Barth, A., Troupin, C., Reyes, E., Alvera-Azcarate, A., Beckers, J.-
M., and Tintoré, J.: Surface currents of the Ibiza Channel (Oc-
tober 2014), Product Information Document (PIDoc) [data set],
https://doi.org/10.13155/78713, last access: 15 March 2021b.

https://doi.org/10.5194/os-17-1157-2021 Ocean Sci., 17, 1157–1175, 2021

https://doi.org/10.25704/mhbg-q265
https://doi.org/10.25704/17gs-2b59
http://thredds.socib.es/
https://doi.org/10.13155/78713
https://doi.org/10.17882/42182
https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1
https://doi.org/10.1007/s10236-019-01317-8
https://doi.org/10.1007/s10236-019-01317-8
https://doi.org/10.17882/42182
https://doi.org/10.1016/j.jmarsys.2013.07.004
https://doi.org/10.1109/CCM.2008.4480856
https://doi.org/10.1029/2007JC004585
https://doi.org/10.1007/s10236-010-0369-0
https://doi.org/10.13155/78713


1172 J. Hernandez-Lasheras et al.: Evaluating high-frequency radar data assimilation impact

Breivik, O.: Real time assimilation of HF radar currents
into a coastal ocean model, J. Mar. Syst., 28, 161–182,
https://doi.org/10.1016/S0924-7963(01)00002-1, 2001.

Cabanellas-Reboredo, M., Vázquez-Luis, M., Mourre, B., Álvarez,
E., Deudero, S., Amores, A., Addis, P., Ballesteros, E., Barra-
jón, A., Coppa, S., García-March, J. R., Giacobbe, S., Casal-
duero, F. G., Hadjioannou, L., Jiménez-Gutiérrez, S. V., Kat-
sanevakis, S., Kersting, D., Mačić, V., Mavrič, B., Patti, F. P.,
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