Articles | Volume 15, issue 5
https://doi.org/10.5194/os-15-1207-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1207-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DUACS DT2018: 25 years of reprocessed sea level altimetry products
Guillaume Taburet
CORRESPONDING AUTHOR
Collecte Localisation Satellites, Parc Technologique du Canal, 8–10 rue Hermès, 31520 Ramonville-Saint-Agne, France
Antonio Sanchez-Roman
Instituto Mediterráneo de Estudios Avanzados, C/Miquel
Marquès, 21, 07190 Esporles, Illes Balears, Spain
Maxime Ballarotta
Collecte Localisation Satellites, Parc Technologique du Canal, 8–10 rue Hermès, 31520 Ramonville-Saint-Agne, France
Marie-Isabelle Pujol
Collecte Localisation Satellites, Parc Technologique du Canal, 8–10 rue Hermès, 31520 Ramonville-Saint-Agne, France
Jean-François Legeais
Collecte Localisation Satellites, Parc Technologique du Canal, 8–10 rue Hermès, 31520 Ramonville-Saint-Agne, France
Florent Fournier
Collecte Localisation Satellites, Parc Technologique du Canal, 8–10 rue Hermès, 31520 Ramonville-Saint-Agne, France
Yannice Faugere
Collecte Localisation Satellites, Parc Technologique du Canal, 8–10 rue Hermès, 31520 Ramonville-Saint-Agne, France
Gerald Dibarboure
Centre National d'Etudes Spatiales, 18 avenue Edouard Belin, 31400 Toulouse, France
Related authors
Maxime Ballarotta, Clément Ubelmann, Marie-Isabelle Pujol, Guillaume Taburet, Florent Fournier, Jean-François Legeais, Yannice Faugère, Antoine Delepoulle, Dudley Chelton, Gérald Dibarboure, and Nicolas Picot
Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, https://doi.org/10.5194/os-15-1091-2019, 2019
Short summary
Short summary
This study investigates the resolving capabilities of the DUACS gridded products delivered through the CMEMS catalogue. Our method is based on the noise-to-signal ratio approach. While altimeter along-track data resolve scales on the order of a few tens of kilometers, we found that the merging of these along-track data into continuous maps in time and space leads to effective resolution ranging from ~ 800 km wavelength at the Equator to 100 km wavelength at high latitude.
Maxime Ballarotta, Clément Ubelmann, Valentin Bellemin-Laponnaz, Florian Le Guillou, Guillaume Meda, Cécile Anadon, Alice Laloue, Antoine Delepoulle, Yannice Faugère, Marie-Isabelle Pujol, Ronan Fablet, and Gérald Dibarboure
Ocean Sci., 21, 63–80, https://doi.org/10.5194/os-21-63-2025, https://doi.org/10.5194/os-21-63-2025, 2025
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented swath altimetry data. This study examines SWOT's impact on mapping systems, showing a moderate effect with the current nadir altimetry constellation and a stronger impact with a reduced one. Integrating SWOT with dynamic mapping techniques improves the resolution of satellite-derived products, offering promising solutions for studying and monitoring sea-level variability at finer scales.
Michel Tchilibou, Simon Barbot, Loren Carrere, Ariane Koch-Larrouy, Gérald Dibarboure, and Clément Ubelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3947, https://doi.org/10.5194/egusphere-2024-3947, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study presents the annual and monthly MIOST (MIOST24) internal tide atlases for the Indo-Philippine archipelago and the region off the Amazon shelf. Derived from 25 years of altimetry data and an updated wavelength database, the atlases reveal significant monthly variability of internal tides in both regions. The new atlas improves the correction of internal tides in altimetry data and outperforms MIOST 2022 and HRET existing atlases, thus supporting the development of a global atlas.
Antonio Sánchez-Román, Flora Gues, Romain Bourdalle-Badie, Marie-Isabelle Pujol, Ananda Pascual, and Marie Drévillon
State Planet, 4-osr8, 4, https://doi.org/10.5194/sp-4-osr8-4-2024, https://doi.org/10.5194/sp-4-osr8-4-2024, 2024
Short summary
Short summary
This study investigates the changing pattern of the Gulf Stream over the last 3 decades as observed in the altimetric record (1993–2022). Changes in the Gulf Stream path have an effect on its speed (and associated energy) and also on waters transported towards the subpolar North Atlantic, impacting Europe's climate. The observed shifts in the paths seem to be linked to variability in the North Atlantic Ocean during winter that may play an important role.
Alice Laloue, Malek Ghantous, Yannice Faugère, Alice Dalphinet, and Lotfi Aouf
State Planet, 4-osr8, 6, https://doi.org/10.5194/sp-4-osr8-6-2024, https://doi.org/10.5194/sp-4-osr8-6-2024, 2024
Short summary
Short summary
Satellite altimetry shows that daily mean significant wave heights (SWHs) and extreme SWHs have increased in the Southern Ocean, the South Atlantic, and the southern Indian Ocean over the last 2 decades. In winter in the North Atlantic, SWH has increased north of 45°N and decreased south of 45°N. SWHs likely to be exceeded every 100 years have also increased in the North Atlantic and the eastern tropical Pacific. However, this study also revealed the need for longer and more consistent series.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Florence Birol, François Bignalet-Cazalet, Mathilde Cancet, Jean-Alexis Daguze, Wassim Fkaier, Ergane Fouchet, Fabien Léger, Claire Maraldi, Fernando Niño, Marie-Isabelle Pujol, and Ngan Tran
EGUsphere, https://doi.org/10.5194/egusphere-2024-2449, https://doi.org/10.5194/egusphere-2024-2449, 2024
Short summary
Short summary
We take advantage of the availability of several algorithms for most of the terms/corrections used to calculate altimetry sea level data to analyze the sources of uncertainties associated when approaching the coast. The results highlight the hierarchy of sources of uncertainties. Tidal corrections and mean sea surface contribute to coastal sea level data uncertainties. But, improving the retracking algorithm is today the main factor to bring accurate altimetry sea level data closer to the shore.
Michel Tchilibou, Loren Carrere, Florent Lyard, Clément Ubelmann, Gérald Dibarboure, Edward D. Zaron, and Brian K. Arbic
EGUsphere, https://doi.org/10.5194/egusphere-2024-1857, https://doi.org/10.5194/egusphere-2024-1857, 2024
Short summary
Short summary
This study is based on sea level observations along the swaths of the new SWOT altimetry mission during its Calibration / Validation period. Internal tides are characterised off the Amazon shelf in the tropical Atlantic. SWOT observes internal tides over a wide range of spatial scales and highlights structures between 50–2 km, which are very intense and difficult to predict. Compared to the reference used to correct the altimetry data, the internal tide derived from SWOT performs very well.
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig James Donlon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1802, https://doi.org/10.5194/egusphere-2024-1802, 2024
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ±0.1 mm/yr (16–84 % confidence level) on a global scale, for time intervals between the tandem phases of four years or more.
Gerald Dibarboure, Cécile Anadon, Frédéric Briol, Emeline Cadier, Robin Chevrier, Antoine Delepoulle, Yannice Faugère, Alice Laloue, Rosemary Morrow, Nicolas Picot, Pierre Prandi, Marie-Isabelle Pujol, Matthias Raynal, Anaelle Treboutte, and Clément Ubelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1501, https://doi.org/10.5194/egusphere-2024-1501, 2024
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath altimetry products. In this paper, we describe how we extended the Level-3 algorithms to handle SWOT’s unique swath-altimeter data. We also illustrate and discuss the benefits, relevance, and limitations of Level-3 swath-altimeter products for various research domains.
Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, and Marie-Helène Rio
Ocean Sci., 19, 1517–1527, https://doi.org/10.5194/os-19-1517-2023, https://doi.org/10.5194/os-19-1517-2023, 2023
Short summary
Short summary
Altimetry provides sea surface height (SSH) data along one-dimensional tracks. For many applications, the tracks are interpolated in space and time to provide gridded SSH maps. The operational SSH gridded products filter out the small-scale signals measured on the tracks. This paper evaluates the performances of a recently implemented dynamical method to retrieve the small-scale signals from real SSH data. We show a net improvement in the quality of SSH maps when compared to independent data.
Antonio Sánchez-Román, M. Isabelle Pujol, Yannice Faugère, and Ananda Pascual
Ocean Sci., 19, 793–809, https://doi.org/10.5194/os-19-793-2023, https://doi.org/10.5194/os-19-793-2023, 2023
Short summary
Short summary
This paper assesses the performance of the latest version (DT2021) of global gridded altimetry products distributed through the CMEMS and C3S Copernicus programs on the retrieval of sea level in the coastal zone of the European seas with respect to the previous DT2018 version. This comparison is made using an external independent dataset. DT2021 sea level products better solve the signal in the coastal band.
Oscar Vergara, Rosemary Morrow, Marie-Isabelle Pujol, Gérald Dibarboure, and Clément Ubelmann
Ocean Sci., 19, 363–379, https://doi.org/10.5194/os-19-363-2023, https://doi.org/10.5194/os-19-363-2023, 2023
Short summary
Short summary
Recent advances allow us to observe the ocean from space with increasingly higher detail, challenging our knowledge of the ocean's surface height signature. We use a statistical approach to determine the spatial scale at which the sea surface height signal is no longer dominated by geostrophic turbulence but in turn becomes dominated by wave-type motions. This information helps us to better use the data provided by ocean-observing satellites and to gain knowledge on climate-driving processes.
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
Marie-Isabelle Pujol, Stéphanie Dupuy, Oscar Vergara, Antonio Sánchez-Román, Yannice Faugère, Pierre Prandi, Mei-Ling Dabat, Quentin Dagneaux, Marine Lievin, Emeline Cadier, Gérald Dibarboure, and Nicolas Picot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-292, https://doi.org/10.5194/essd-2022-292, 2022
Manuscript not accepted for further review
Short summary
Short summary
An altimeter sea level along-track level-3 product with a 5 Hz (~1.2 km) sampling is proposed. It takes advantage of recent advances in radar altimeter processing, and improvements made to different stages of the processing chain. Compared to the conventional 1 Hz (~7 km) product, it significantly improves the observability of the short wavelength signal in open ocean and near coast areas (> 5 km). It also contributes to improving high resolution numerical model outputs via data assimilation.
Mounir Benkiran, Pierre-Yves Le Traon, and Gérald Dibarboure
Ocean Sci., 18, 609–625, https://doi.org/10.5194/os-18-609-2022, https://doi.org/10.5194/os-18-609-2022, 2022
Short summary
Short summary
The SSH analysis and 7 d forecast error will be globally reduced by almost 50 %. Surface current forecast errors should be equivalent to today’s surface current analysis errors or alternatively will be improved (variance error reduction) by 30 % at the surface and 50 % for 300 m depth.
The resolution capabilities will be drastically improved and will be closer to 100 km wavelength as opposed to today where they are above 250 km (on average).
Clément Ubelmann, Loren Carrere, Chloé Durand, Gérald Dibarboure, Yannice Faugère, Maxime Ballarotta, Frédéric Briol, and Florent Lyard
Ocean Sci., 18, 469–481, https://doi.org/10.5194/os-18-469-2022, https://doi.org/10.5194/os-18-469-2022, 2022
Short summary
Short summary
The signature of internal tides has become an important component for high-resolution altimetry over oceans. Several studies have proposed some solutions to resolve part of these internal tides based on the altimetry record. Following these studies, we propose here a new inversion approach aimed to mitigate aliasing with other dynamics. After a description of the methodology, the solution for the main tidal components has been successfully validated against independent observations.
Cori Pegliasco, Antoine Delepoulle, Evan Mason, Rosemary Morrow, Yannice Faugère, and Gérald Dibarboure
Earth Syst. Sci. Data, 14, 1087–1107, https://doi.org/10.5194/essd-14-1087-2022, https://doi.org/10.5194/essd-14-1087-2022, 2022
Short summary
Short summary
The new global Mesoscale Eddy Trajectory Atlases (META3.1exp) provide eddy identification and trajectories from altimetry maps. These atlases comprise an improvement to and continuation of the historical META2.0 product. Changes in the detection parameters and tracking were tested by comparing the eddies from the different datasets. In particular, the eddy contours available in META3.1exp are an asset for multi-disciplinary studies.
Pierre Prandi, Jean-Christophe Poisson, Yannice Faugère, Amandine Guillot, and Gérald Dibarboure
Earth Syst. Sci. Data, 13, 5469–5482, https://doi.org/10.5194/essd-13-5469-2021, https://doi.org/10.5194/essd-13-5469-2021, 2021
Short summary
Short summary
We investigate how mapping sea level in the Arctic Ocean can benefit from combining data from three satellite radar altimeters: CryoSat-2, Sentinel-3A and SARAL/AltiKa. A dedicated processing for SARAL/AltiKa provides a baseline for the cross-referencing of CryoSat-2 and Sentinel-3A before mapping. We show that by combining measurements coming from three missions, we are able to increase the resolution of gridded sea level fields in the ice-covered Arctic Ocean.
Sandrine Mulet, Marie-Hélène Rio, Hélène Etienne, Camilia Artana, Mathilde Cancet, Gérald Dibarboure, Hui Feng, Romain Husson, Nicolas Picot, Christine Provost, and P. Ted Strub
Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, https://doi.org/10.5194/os-17-789-2021, 2021
Short summary
Short summary
Satellite altimetry has revolutionized ocean observation by allowing the sea level to be monitored with very good spatiotemporal coverage. However, only the sea level anomalies are retrieved; to monitor the whole oceanic signal a temporal mean (called mean dynamic topography, MDT) must be added to these anomalies. In this study we present the newly updated CNES-CLS18 MDT. An evaluation of this new solution shows significant improvements in both strong currents and coastal areas.
Yvan Gouzenes, Fabien Léger, Anny Cazenave, Florence Birol, Pascal Bonnefond, Marcello Passaro, Fernando Nino, Rafael Almar, Olivier Laurain, Christian Schwatke, Jean-François Legeais, and Jérôme Benveniste
Ocean Sci., 16, 1165–1182, https://doi.org/10.5194/os-16-1165-2020, https://doi.org/10.5194/os-16-1165-2020, 2020
Short summary
Short summary
This study provides for the first time estimates of sea level anomalies very close to the coastline based on high-resolution retracked altimetry data, as well as corresponding sea level trends, over a 14-year time span. This new information has so far not been provided by standard altimetry data.
Maxime Ballarotta, Clément Ubelmann, Marie-Isabelle Pujol, Guillaume Taburet, Florent Fournier, Jean-François Legeais, Yannice Faugère, Antoine Delepoulle, Dudley Chelton, Gérald Dibarboure, and Nicolas Picot
Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, https://doi.org/10.5194/os-15-1091-2019, 2019
Short summary
Short summary
This study investigates the resolving capabilities of the DUACS gridded products delivered through the CMEMS catalogue. Our method is based on the noise-to-signal ratio approach. While altimeter along-track data resolve scales on the order of a few tens of kilometers, we found that the merging of these along-track data into continuous maps in time and space leads to effective resolution ranging from ~ 800 km wavelength at the Equator to 100 km wavelength at high latitude.
Yuri Cotroneo, Giuseppe Aulicino, Simon Ruiz, Antonio Sánchez Román, Marc Torner Tomàs, Ananda Pascual, Giannetta Fusco, Emma Heslop, Joaquín Tintoré, and Giorgio Budillon
Earth Syst. Sci. Data, 11, 147–161, https://doi.org/10.5194/essd-11-147-2019, https://doi.org/10.5194/essd-11-147-2019, 2019
Short summary
Short summary
We present data collected from the first three glider surveys in the Algerian Basin conducted during the ABACUS project. After collection, data passed a quality control procedure and were then made available through an unrestricted repository. The main objective of our project is monitoring the basin circulation of the Mediterranean Sea. Temperature and salinity data collected in the first 975 m of the water column allowed us to identify the main water masses and describe their characteristics.
Antonio Sanchez-Roman, Gabriel Jorda, Gianmaria Sannino, and Damia Gomis
Ocean Sci., 14, 1547–1566, https://doi.org/10.5194/os-14-1547-2018, https://doi.org/10.5194/os-14-1547-2018, 2018
Short summary
Short summary
We explore the vertical transfers of heat, salt and mass between the inflowing and outflowing layers at the Strait of Gibraltar by using a 3-D model with very high spatial resolution that allows for a realistic representation of the exchange. Results show a significant transformation of the water mass properties along their path through the strait, mainly induced by the recirculation of water between layers, while mixing seems to have little influence on the heat and salt exchanged.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Antonio Sánchez-Román, Simón Ruiz, Ananda Pascual, Baptiste Mourre, and Stéphanie Guinehut
Ocean Sci., 13, 223–234, https://doi.org/10.5194/os-13-223-2017, https://doi.org/10.5194/os-13-223-2017, 2017
Short summary
Short summary
In this work we investigate the capability of the Argo array in the Mediterranean Sea to capture mesoscale circulation structures (diameter of around 150 km). To do that we conduct several experiments to simulate different spatial sampling configurations of the Argo array in the basin. Results show that the actual Argo array in the Mediterranean (2° × 2°) might be enlarged until a spatial resolution of nearly 75 × 75 km (450 floats) in order to capture the mesoscale signal.
Marie-Isabelle Pujol, Yannice Faugère, Guillaume Taburet, Stéphanie Dupuy, Camille Pelloquin, Michael Ablain, and Nicolas Picot
Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, https://doi.org/10.5194/os-12-1067-2016, 2016
F. d'Ovidio, A. Della Penna, T. W. Trull, F. Nencioli, M.-I. Pujol, M.-H. Rio, Y.-H. Park, C. Cotté, M. Zhou, and S. Blain
Biogeosciences, 12, 5567–5581, https://doi.org/10.5194/bg-12-5567-2015, https://doi.org/10.5194/bg-12-5567-2015, 2015
Short summary
Short summary
Field campaigns are instrumental in providing ground truth for understanding and modeling global ocean biogeochemical budgets. A survey however can only inspect a fraction of the global oceans, typically a region hundreds of kilometers wide for a temporal window of the order of (at most) several weeks. In this spatiotemporal domain, mesoscale variability can mask climatological contrasts. Here we propose the use of multisatellite-based Lagrangian diagnostics to solve this issue.
M. Ballarotta, F. Roquet, S. Falahat, Q. Zhang, and G. Madec
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-3597-2015, https://doi.org/10.5194/cpd-11-3597-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We investigate the impact of the ocean geothermal heating (OGH) on a glacial ocean state using numerical simulations. We found that the OGH is a significant forcing of the abyssal ocean and thermohaline circulation. Applying the OGH warms the Antarctic Bottom Water by ~0.4°C and strengthens the deep circulation by 15% to 30%. The geothermally heated waters are advected from the Indo-Pacific to the North Atlantic basin, indirectly favouring the deep convection in the North Atlantic.
M. Ballarotta, S. Falahat, L. Brodeau, and K. Döös
Ocean Sci., 10, 907–921, https://doi.org/10.5194/os-10-907-2014, https://doi.org/10.5194/os-10-907-2014, 2014
M. Ballarotta, L. Brodeau, J. Brandefelt, P. Lundberg, and K. Döös
Clim. Past, 9, 2669–2686, https://doi.org/10.5194/cp-9-2669-2013, https://doi.org/10.5194/cp-9-2669-2013, 2013
M. Ballarotta, L. Brodeau, J. Brandefelt, P. Lundberg, and K. Döös
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-297-2013, https://doi.org/10.5194/cpd-9-297-2013, 2013
Revised manuscript has not been submitted
Related subject area
Approach: Operational Oceanography | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Sea Level
On the resolutions of ocean altimetry maps
Assessing the impact of multiple altimeter missions and Argo in a global eddy-permitting data assimilation system
ENSURF: multi-model sea level forecast – implementation and validation results for the IBIROOS and Western Mediterranean regions
Maxime Ballarotta, Clément Ubelmann, Marie-Isabelle Pujol, Guillaume Taburet, Florent Fournier, Jean-François Legeais, Yannice Faugère, Antoine Delepoulle, Dudley Chelton, Gérald Dibarboure, and Nicolas Picot
Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, https://doi.org/10.5194/os-15-1091-2019, 2019
Short summary
Short summary
This study investigates the resolving capabilities of the DUACS gridded products delivered through the CMEMS catalogue. Our method is based on the noise-to-signal ratio approach. While altimeter along-track data resolve scales on the order of a few tens of kilometers, we found that the merging of these along-track data into continuous maps in time and space leads to effective resolution ranging from ~ 800 km wavelength at the Equator to 100 km wavelength at high latitude.
Simon Verrier, Pierre-Yves Le Traon, and Elisabeth Remy
Ocean Sci., 13, 1077–1092, https://doi.org/10.5194/os-13-1077-2017, https://doi.org/10.5194/os-13-1077-2017, 2017
B. Pérez, R. Brouwer, J. Beckers, D. Paradis, C. Balseiro, K. Lyons, M. Cure, M. G. Sotillo, B. Hackett, M. Verlaan, and E. A. Fanjul
Ocean Sci., 8, 211–226, https://doi.org/10.5194/os-8-211-2012, https://doi.org/10.5194/os-8-211-2012, 2012
Cited articles
Ablain, M., Legeais, J. F., Prandi, P., Fenoglio-Marc L., Marcos M.,
Benveniste, J., and Cazenave, A.: Satellite Altimetry-Based Sea Level at Global and Regional Scales, Surv. Geophys., 38, 9–33, https://doi.org/10.1007/s10712-016-9389-8, 2017.
Ablain, M., Meyssignac, B., Zawadzki, L., Jugier, R., Ribes, A., Cazenave,
A., and Picot, N.: Uncertainty in Satellite estimate of Global Mean Sea Level changes, trend and acceleration, Earth Syst. Sci. Data Discuss.,
https://doi.org/10.5194/essd-2019-10, in review, 2019.
AVISO: Annual report (2017) of Mean Sea Level activities, Edn. 1.0, available at: https://www.aviso.altimetry.fr/fileadmin/documents/calval/validation_report/SALP-RP-MA-EA-23189-CLS_AnnualReport_2017_MSL.pdf (last access: 4 October 2018), 2017a.
AVISO: Annual report (2017) of the assessment of Orbit Quality through the Sea Surface Height calculation, available at: https://www.aviso.altimetry.fr/fileadmin/documents/calval/validation_report/SALP-RP-MA-EA-CLS_1_0_YearlyReportOrbito_2017.pdf (last access: 4 October 2018), 2017b.
AVISO: Cal/Val and cross calibration annual reports, available at:
https://www.aviso.altimetry.fr/en/data/calval/systematic-calval.html (last access: 12 December 2018), 2017c.
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugere, Y., Delepoulle, A., Chelton, D., Dibarboure, G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-156, in review, 2019.
Beckley, B. D., Callahan, P. S., Hancock III, D. W., Mitchum, G. T., and Ray, R. D.: On the “cal mode” correction to TOPEX satellite altimetry and its effect on the global mean sea level time series, J. Geophys. Res.-Oceans, 122, 8371–8384, https://doi.org/10.1002/2017JC013090, 2017.
Carrere, L. and Lyard, F.: Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing Comparisons with observations, Geophys. Res. Lett., 30, 1275, https://doi.org/10.1029/2002GL016473, 2003.
Carrere L., Lyard, F., Cancet, M., Guillot, A., and Picot, N.: FES 2014, a new tidal model - Validation results and perspectives for improvements, presentation to ESA Living Planet Conference, 9–13 May 2016, Prague, 2016.
Cartwright, D. E. and Edden, A. C.: Corrected tables of tidal harmonics,
Geophys. J. R. Astr. Soc., 33, 253–264, 1973.
Cartwright, D. E. and Tayler, R. J.: New computations of the tide generating
potential, Geophys. J. R. Astr. Soc., 23, 45–74, 1971.
Delepoulle, A., Faugere, Y., Chelton, D., and Dibarboure, G.: A new 25 year
mesoscale eddy trajectory atlas on AVISO, poster presentation at OSTST 2018,
available at: https://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/Poster_OSTST2018_DUACS_eddy_aviso.pdf
(last acess: 17 April 2019), 2018.
Desai, S., Wahr, J., and Beckley, B.: Revisiting the pole tide for and from
satellite altimetry, J. Geod., 89, 12333, https://doi.org/10.1007/s00190-015-0848-7, 2015.
Dibarboure, G. and Pujol, M.-I.: Improving the quality of Sentinel-3A with a hybrid mean sea surface model, and implications for Sentinel-3B and SWOT, Adv. Space Res., https://doi.org/10.1016/j.asr.2019.06.018, 2019.
Dibarboure, G., Pujol, M.-I., Briol, F., Le Traon, P.-Y., Larnicol, G., Picot, N., Mertz, F., Escudier, P., Ablain, M., and Dufau, C.: Jason-2 in DUACS: first tandem results and impact on processing and products, Mar. Geod., 34, 214–241, https://doi.org/10.1080/01490419.2011.584826, 2011.
Dieng, H. B., Cazenave, A., Meyssignac, B., and Ablain, M.: New estimate of the current rate of sea level rise from a sea level budget approach, Geophys. Res. Lett., 3744–3751, https://doi.org/10.1002/2017GL073308, 2017.
d'Ovidio, F., Della Penna, A., Trull, T. W., Nencioli, F., Pujol, M. I., Rio,
M.-H., Park, Y.-H., Cotté, C., Zhou, M., and Blain, S.: The biogeochemical structuring role of horizontal stirring: Lagrangian perspectives on iron delivery downstream of the Kerguelen Plateau, Biogeosciences, 12, 5567–5581, https://doi.org/10.5194/bg-12-5567-2015, 2015.
Ducet, N., Le Traon, P.-Y., and Reverdun, G.: Global highresolution mapping
of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J. Geophys. Res.,
105, 19477–19498, 2000.
Escudier, P., Couhert, A., Mercier, F., Mallet, A., Thibaut, P., Tran, N.,
Amarouche, L., Picard, B., Carrère, L., Dibarboure, G., Ablain, M.,
Richard, J., Steunou, N., Dubois, P., Rio, M. H., and Dorandeu, J.: Satellite radar altimetry: principle, geophysical correction and orbit, accuracy and precision, in: Satellite Altimetry Over Oceans and Land Surfaces, edited by: Stammer, D. and Cazenave, A., CRC Press, Taylor & Francis, Boca Raton, 2017.
Fernandes, M. J., Lázaro, C., Ablain, M., and Pires, N.: Improved wet path delays for all ESA and reference altimetric missions, Remote Sens. Environ., 169, 50–74, https://doi.org/10.1016/j.rse.2015.07.023, 2015.
Gaspar, P., Ogor, F., Le Traon, P. Y., and Zanife, O. Z.: Estimating the sea state bias of the TOPEX and POSEIDON altimeters from crossover differences, J. Geophys. Res.-Oceans, 992, https://doi.org/10.1029/94JC01430, 1994.
Guibbaud, M., Ollivier, A., and Ablain, M.: A new approach for dual-frequency
ionospheric correction filtering, ENVISAT Altimetry Quality Working Group (QWG), available in the Section 8.5 of the 2012 Envisat annual activity
report at: http://www.aviso.altimetry.fr/fileadmin/documents/calval/validation_report/EN/annual_report_en_2012.pdf, (last access: 9 September 2019), 2015.
Ijima, B. A., Harris, I. L., Ho, C. M., Lindqwiste, U. J., Mannucci, A. J., Pi, X., Reyes, M. J., Sparks, L. C., and Wilson, B. D.: Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System
data, J. Atmos. Sol.-Terr. Phy., 61, 1205–1218, 1999.
Keihm, S. J.: TOPEX/Poseidon Microwave Radiometer (TMR): II. Antenna Pattern Correction and Brightness Temperature Algorithm, IEEE T. Geosci. Remote, 33, 138–146, 1995.
Legeais, J.-F., Prandi, P., and Guinehut, S.: Analyses of altimetry errors using Argo and GRACE data, Ocean Sci., 12, 647–662, https://doi.org/10.5194/os-12-647-2016, 2016.
Legeais, J.-F., Ablain, M., Zawadzki, L., Zuo, H., Johannessen, J. A.,
Scharffenberg, M. G., Fenoglio-Marc, L., Fernandes, M. J., Andersen, O. B.,
Rudenko, S., Cipollini, P., Quartly, G. D., Passaro, M., Cazenave, A., and
Benveniste, J.: An improved and homogeneous altimeter sea level record from
the ESA Climate Change Initiative, Earth Syst. Sci. Data, 10, 281–301,
https://doi.org/10.5194/essd-10-281-2018, 2018a.
Legeais, J.-F., von Schuckmann, K., Melet, A., Storto, A., and Meyssignac, B.: Sea Level, in: von Schuckmann et al., 2018, The Copernicus Marine Environment Monitoring Service Ocean State Report, J. Oper. Oceanogr., 11, s1–s142, https://doi.org/10.1080/1755876X.2018.1489208, 2018b.
Le Traon, P.-Y. and Ogor, F.: ERS-1/2 orbit improvement using TOPEX/POSEIDON: The 2 cm challenge, J. Geophys. Res., 103, 8045–8057, 1998.
Le Traon, P.-Y., Faugere, Y., Hernamdez, F., Dorandeu, J., Mertz, F., and
Abalin, M.: Can We Merge GEOSAT Follow-On with TOPEX/PoseidonandERS-2 for an
Improved Description of the Ocean Circulation?, J. Atmos. Ocean. Tech.,
20, 889–895, 2003.
Lumpkin, R., Grodsky, S., Rio, M.-H., Centurioni, L., Carton, J., and Lee, D.: Removing spurious low-frequency variability in surface drifter velocities, J. Atmos. Ocean. Tech., 30, 353–360, https://doi.org/10.1175/JTECH-D-12-00139.1, 2013.
Manca, B., Burca, M., Giorgetti, A., Coatanoan, C., Garcia, M.-J., and Ion, A.: Physical and biochemical averaged vertical profiles in the Mediterranean
regions: an important tool to trace the climatology of water masses and to
validate incoming data from operational oceanography, J. Mar. Syst., 48,
83–116, https://doi.org/10.1016/j.jmarsys.2003.11.025, 2004.
Mertz, F., Mercier, F., Labroue, S., Tran, N., and Dorandeu, J.: ERS-2 OPR data quality assessment long-term monitoring – Particular investigation,
CLS.DOS.NT-06-001, available at: https://www.aviso.altimetry.fr/fileadmin/documents/calval/validation_report/E2/annual_report_e2_2005.pdf
(last access: 9 September 2019), 2005.
Morrow, R., Blurmstein, D., and Dibarboure, G.: Fine-scale Altimetry and
the Future SWOT Mission, in: New Frontiers In Operational Oceanography, available at: http://purl.flvc.org/fsu/fd/FSU_libsubv1_scholarship_submission_1536170512_b3d57dea
(last access: 9 September 2019), 2018.
Obligis, E., Rahmani, A., Eymard, L., Labroue, S., and Bronner, E.: An Improved Retrieval Algorithm for Water Vapor Retrieval: Application to the Envisat Microwave Radiometer, IEEE T. Geosci. Remote, 47, 3057–3064,
https://doi.org/10.1109/TGRS.2009.2020433, 2009.
Ollivier, A., Guibbaud, M., Faugere, Y., Labroue, S., Picot, N., and Boy, F.: Cryosat-2 altimeter performance assessment over ocean, in: 2014 Ocean Surface Topography Science Team Meeting oral presentation, available at:
https://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/29Ball1615-7_Pres_PerfoC2_Ollivier.pdf (last access: 4 October 2018), 2014.
Ollivier, A., Philipps, S., Couhert, A., and Picot, N.: Assessment of Orbit Quality through the SSH calculation: POE-E orbit standards, in: Ocean Surface Topography Science Team Meeting 2015 presentation, available at:
https://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/Poster_OSTST15_Orbit.pdf (last acess: 4 October 2018), 2015.
Pascual A., Faugere, Y., Larnicol, G., and Le Traon, P.-Y.: Improved description of the ocean mesoscale variability by combining four satellite altimeters, Geophys. Res. Lett., 33, L02611, https://doi.org/10.1029/2005GL024633, 2006.
Pascual, A., Ruiz, S., Olita, A., Troupin, C., Claret, M., Casas, B., Mourre, B., Poulain, P.-M., Tovar-Sanchez, A., Capet, A., Mason, E., Allen, J. T., Mahadevan, A., and Tintoré, J.: A Multiplatform Experiment to Unravel Meso- and Submesoscale Processes in an Intense Front (AlborEx), Front. Mar. Sci., 4, 39, https://doi.org/10.3389/fmars.2017.00039, 2017.
Picard, B., Frery, M. L., Obligis, E., Eymard, L., Steunou, N., and Picot, N.: SARAL/AltiKa Wet Tropospheric Correction: In-Flight Calibration, Retrieval Strategies and Performances, Mar. Geod., 38, 277–296, 2015.
PSMSL – Permanent Service for Mean Sea Level: “Tide Gauge Data”, available
at: http://www.psmsl.org/data/obtaining/ (last access 1 June 2014), 2016.
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., and Picot, N.: DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years, Ocean Sci., 12, 1067–1090,
https://doi.org/10.5194/os-12-1067-2016, 2016.
Pujol, I. , Schaeffer, P., Faugere, Y., Raynal, M., Dibarboure, G., and Picot, N.: Gauging the Improvement of Recent Mean Sea Surface Models: A New Approach for Identifying and Quantifying Their Errors, J. Geophys. Res.-Oceans, 123, 5889–5911, https://doi.org/10.1029/2017JC013503, 2018a.
Pujol, M.-I., Schaeffer, P., Faugère, Y., Davanne, F.-X., Dibarboure G., and Picot, N.: Improvements and limitations of recent mean sea surface models: importance for Sentinel-3 and SWOT, in: Poster at 2018 Ocean Surface Topography Science Team Meeting, available at:
https://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/OSTST2018_PMS3A_Poster_Pujol.pdf (last access: 12 December 2018), 2018b.
Quartly, G. D., Legeais, J.-F., Ablain, M., Zawadzki, L., Fernandes, M. J.,
Rudenko, S., Carrère, L., García, P. N., Cipollini, P., Andersen, O. B., Poisson, J.-C., Mbajon Njiche, S., Cazenave, A., and Benveniste, J.: A new phase in the production of quality-controlled sea level data, Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, 2017.
Rio, M.-H.: Use of altimeter and wind data to detect the anomalous loss of
SVP-type drifter's drogue, J. Atmos. Ocean. Tech., 1663–1674,
https://doi.org/10.1175/JTECH-D-12-00008.1, 2012.
Rio, M. H., Guinehut, S., and Larnicol, G.: New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry,
and in-situ measurements, J. Geophys. Res., 116, C07018,
https://doi.org/10.1029/2010JC006505, 2011.
Rogé, M., Morrow, R., Ubelmann, C., and Dibarboure, G.: Using a dynamical
advection to reconstruct a part of the SSH evolution in the context of SWOT,
application to the Mediterranean Sea, Ocean Dynam., 67, 1047, https://doi.org/10.1007/s10236-017-1073-0, 2017.
Rudenko, S., Otten, M., Visser, P., Scharroo, R., Schöne, T., and
Esselborn, S.: New improved orbit solutions for the ERS-1 and ERS-2 satellites, Adv. Space Res., 49, 1229–1244, 2012.
Scharroo, R. and Smith, W. H. F.: A global positioning system based climatology for the total electron content in the ionosphere, J. Geophys. Res., 115, A10318, https://doi.org/10.1029/2009JA014719, 2010.
Sotillo, M. G., Garcia-Ladona, E., Orfila, A., Rodríguez-Rubio, P., Maraver, J. C., Conti, D., Padorno, E., Jiménez, J. A., Capó, E.,
Pérez, F., Sayol, J. M., de los Santos, F. J., Amo, A., Rietz, A., Troupin, C., Tintore, J., and Álvarez-Fanjul, E.: The MEDESS-GIB database: tracking the Atlantic water inflow, Earth Syst. Sci. Data, 8,
141–149, https://doi.org/10.5194/essd-8-141-2016, 2016.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res., 106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001.
Tran, N., Labroue, S., Philipps, S., Bronner, E., and Picot, N.: Overview
and Update of the Sea State Bias Corrections for the Jason-2, Jason-1 and
TOPEX Missions, Mar. Geod., 33, 348–362, 2010.
Tran, N., Philipps, S., Poisson, J.-C., Urien, S., Bronner, E., and Picot, N.: Impact of GDR_D standards on SSB corrections, in: Presentation OSTST2012 in Venice, available at: http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2012/oral/02_friday_28/01_instr_processing_I/01_IP1_Tran.pdf (last access: 31 August 2016), 2012.
Ubelmann, C., Cornuelle, B., and Fu, L.-L.: Dynamic Mapping of Along-Track Ocean Altimetry: Method and Performance from Observing System Simulation
Experiments, J. Atmos. Ocean. Tech., 33, 1691–1699, https://doi.org/10.1175/JTECH-D-15-0163.1, 2016.
Valladeau, G., Legeais, J.-F., Ablain, M., Guinehut, S., and Picot, N.:
Comparing Altimetry with Tide Gauges and Argo Profiling Floats for Data
Quality Assessment and Mean Sea Level Studies, Mar. Geod., 35, 42–60,
https://doi.org/10.1080/01490419.2012.718226, 2012.
Watson, C. S., White, N. J., Church, J. A., King, M. A., Burgette, R. J., and Legresy, B.: Unabated global mean sea level over the satellite altimeter era, Nat. Clim. Change, 5, 565–568, https://doi.org/10.1038/NCLIMATE2635, 2015.
WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present,
Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, 2018.
Short summary
This paper deals with sea level altimetery products. These geophysical data are distributed as along-track and gridded data through Copernicus programs CMEMS and C3S. We present in detail a new reprocessing of the data (DT2018) from 1993 to 2017. The main changes and their impacts since the last version (DT2014) are carefully discussed. This comparison is made using an independent dataset. DT2018 sea level products are improved at the global and regional scale, especially in coastal areas.
This paper deals with sea level altimetery products. These geophysical data are distributed as...