Articles | Volume 14, issue 4
https://doi.org/10.5194/os-14-589-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-589-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atlantic Meridional Overturning Circulation at 14.5° N in 1989 and 2013 and 24.5° N in 1992 and 2015: volume, heat, and freshwater transports
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
State Key Laboratory of Tropical Oceanography, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Johannes Karstensen
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Peter Brandt
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Christian-Albrechts-Universität zu Kiel, Kiel, Germany
Related authors
Yao Fu, Johannes Karstensen, and Peter Brandt
Ocean Sci., 13, 531–549, https://doi.org/10.5194/os-13-531-2017, https://doi.org/10.5194/os-13-531-2017, 2017
Short summary
Short summary
Meridional Ekman transport in the tropical Atlantic was estimated directly by using observed ageostrophic velocity, and indirectly by using wind stress data. The direct and indirect methods agree well with each other. The top of the pycnocline represents the Ekman depth better than the mixed layer depth and a constant depth. The Ekman heat and salt fluxes calculated from sea surface temperature and salinity or from high-resolution temperature and salinity profile data differ only marginally.
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302, https://doi.org/10.5194/egusphere-2024-3302, 2024
Short summary
Short summary
Key parameters representing the gravity flux in global models are the sinking speed and the vertical attenuation of the exported material. We calculate for the first time, these parameters in situ for 6 intermittent blooms followed by export events using high-resolution (3 days) time series of 0–1000 m depth profiles from imaging sensor mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, density being an important property.
Joelle Habib, Lars Stemmann, Alexandre Accardo, Alberto Baudena, Franz Philip Tuchen, Peter Brandt, and Rainer Kiko
EGUsphere, https://doi.org/10.5194/egusphere-2024-3365, https://doi.org/10.5194/egusphere-2024-3365, 2024
Short summary
Short summary
This study investigates how carbon moves from the ocean surface to the depths in the equatorial Atlantic, contributing to long-term carbon storage. Using an Argo float equipped with a camera, we captured two periods with major carbon export events. By identifying particle types and their sinking behaviors, we found that smaller, compact particles are key drivers of carbon transport. Our findings underscore the value of using imaging tools on autonomous platforms in tracking carbon sequestration.
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3320, https://doi.org/10.5194/egusphere-2024-3320, 2024
Short summary
Short summary
The West African coastal region sustains highly productive fisheries and marine ecosystems influenced by sea surface temperature. We use oceanic models to show that the freshwater input from land to ocean strengthens a surface northward (southward) coastal current north (south) of the Congo river mouth, promoting a transfer of cooler (warmer) waters to north (south) of the Congo discharge location. We highlight the significant impact of river discharge on ocean temperatures and circulation.
Eike E. Köhn, Richard J. Greatbatch, Peter Brandt, and Martin Claus
Ocean Sci., 20, 1281–1290, https://doi.org/10.5194/os-20-1281-2024, https://doi.org/10.5194/os-20-1281-2024, 2024
Short summary
Short summary
The latitudinally alternating zonal jets are a ubiquitous feature of the ocean. We use a simple model to illustrate the potential role of these jets in the formation, maintenance, and multidecadal variability in the oxygen minimum zones, using the eastern tropical North Atlantic oxygen minimum zone as an example.
Taavi Liblik, Daniel Rak, Enriko Siht, Germo Väli, Johannes Karstensen, Laura Tuomi, Louise C. Biddle, Madis-Jaak Lilover, Māris Skudra, Michael Naumann, Urmas Lips, and Volker Mohrholz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2272, https://doi.org/10.5194/egusphere-2024-2272, 2024
Short summary
Short summary
Eight current meters were deployed to the seafloor across the Baltic to enhance knowledge about circulation and currents. The experiment was complemented by autonomous vehicles. Stable circulation patterns were observed at the sea when weather was steady. Strong and quite persistent currents were observed at the key passage for the deep-water renewal of the Northern Baltic Sea. Deep water renewal mostly occurs during spring and summer periods in the northern Baltic Sea.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Swantje Bastin, Martin Claus, Richard J. Greatbatch, and Peter Brandt
Ocean Sci., 19, 923–939, https://doi.org/10.5194/os-19-923-2023, https://doi.org/10.5194/os-19-923-2023, 2023
Short summary
Short summary
Equatorial deep jets are ocean currents that flow along the Equator in the deep oceans. They are relevant for oxygen transport and tropical surface climate, but their dynamics are not yet entirely understood. We investigate different factors leading to the jets being broader than theory predicts. Mainly using an ocean model, but corroborating the results with shipboard observations, we show that loss of momentum is the main factor for the broadening but that meandering also contributes.
Peter Brandt, Gaël Alory, Founi Mesmin Awo, Marcus Dengler, Sandrine Djakouré, Rodrigue Anicet Imbol Koungue, Julien Jouanno, Mareike Körner, Marisa Roch, and Mathieu Rouault
Ocean Sci., 19, 581–601, https://doi.org/10.5194/os-19-581-2023, https://doi.org/10.5194/os-19-581-2023, 2023
Short summary
Short summary
Tropical upwelling systems are among the most productive ecosystems globally. The tropical Atlantic upwelling undergoes a strong seasonal cycle that is forced by the wind. Local wind-driven upwelling and remote effects, particularly via the propagation of equatorial and coastal trapped waves, lead to an upward and downward movement of the nitracline. Turbulent mixing results in upward supply of nutrients. Here, we review the different physical processes responsible for biological productivity.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Mareike Körner, Peter Brandt, and Marcus Dengler
Ocean Sci., 19, 121–139, https://doi.org/10.5194/os-19-121-2023, https://doi.org/10.5194/os-19-121-2023, 2023
Short summary
Short summary
The coastal waters off Angola host a productive ecosystem. Surface waters at the coast are colder than further offshore. We find that surface heat fluxes warm the coastal region more strongly than the offshore region and cannot explain the differences. The influence of horizontal heat advection is minor on the surface temperature change. In contrast, ocean turbulence data suggest that cooling associated with vertical mixing is an important mechanism to explain the near-coastal cooling.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Jannes Koelling, Dariia Atamanchuk, Johannes Karstensen, Patricia Handmann, and Douglas W. R. Wallace
Biogeosciences, 19, 437–454, https://doi.org/10.5194/bg-19-437-2022, https://doi.org/10.5194/bg-19-437-2022, 2022
Short summary
Short summary
In this study, we investigate oxygen variability in the deep western boundary current in the Labrador Sea from multiyear moored records. We estimate that about half of the oxygen taken up in the interior Labrador Sea by air–sea gas exchange during deep water formation is exported southward the same year. Our results underline the complexity of the oxygen uptake and export in the Labrador Sea and highlight the important role this region plays in supplying oxygen to the deep ocean.
Gerhard Fischer, Oscar E. Romero, Johannes Karstensen, Karl-Heinz Baumann, Nasrollah Moradi, Morten Iversen, Götz Ruhland, Marco Klann, and Arne Körtzinger
Biogeosciences, 18, 6479–6500, https://doi.org/10.5194/bg-18-6479-2021, https://doi.org/10.5194/bg-18-6479-2021, 2021
Short summary
Short summary
Low-oxygen eddies in the eastern subtropical North Atlantic can form an oasis for phytoplankton growth. Here we report on particle flux dynamics at the oligotrophic Cape Verde Ocean Observatory. We observed consistent flux patterns during the passages of low-oxygen eddies. We found distinct flux peaks in late winter, clearly exceeding background fluxes. Our findings suggest that the low-oxygen eddies sequester higher organic carbon than expected for oligotrophic settings.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Josefine Herrford, Peter Brandt, Torsten Kanzow, Rebecca Hummels, Moacyr Araujo, and Jonathan V. Durgadoo
Ocean Sci., 17, 265–284, https://doi.org/10.5194/os-17-265-2021, https://doi.org/10.5194/os-17-265-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of the climate system. Understanding its structure and variability is a key priority for many scientists. Here, we present the first estimate of AMOC variations for the tropical South Atlantic from the TRACOS array at 11° S. Over the observed period, the AMOC was dominated by seasonal variability. We investigate the respective mechanisms with an ocean model and find that different wind-forced waves play a big role.
Tim Fischer, Annette Kock, Damian L. Arévalo-Martínez, Marcus Dengler, Peter Brandt, and Hermann W. Bange
Biogeosciences, 16, 2307–2328, https://doi.org/10.5194/bg-16-2307-2019, https://doi.org/10.5194/bg-16-2307-2019, 2019
Short summary
Short summary
We investigated air–sea gas exchange in oceanic upwelling regions for the case of nitrous oxide off Peru. In this region, routine concentration measurements from ships at 5 m or 10 m depth prove to overestimate surface (bulk) concentration. Thus, standard estimates of gas exchange will show systematic error. This is due to very shallow stratified layers that inhibit exchange between surface water and waters below and can exist for several days. Maximum bias occurs in moderate wind conditions.
Soeren Thomsen, Johannes Karstensen, Rainer Kiko, Gerd Krahmann, Marcus Dengler, and Anja Engel
Biogeosciences, 16, 979–998, https://doi.org/10.5194/bg-16-979-2019, https://doi.org/10.5194/bg-16-979-2019, 2019
Short summary
Short summary
Physical and biogeochemical observations from an autonomous underwater vehicle in combination with ship-based measurements are used to investigate remote and local drivers of the oxygen and nutrient variability off Mauritania. Beside the transport of oxygen and nutrients characteristics from remote areas towards Mauritania also local remineralization of organic material close to the seabed seems to be important for the distribution of oxygen and nutrients.
Mochamad Furqon Azis Ismail, Joachim Ribbe, Johannes Karstensen, and Vincent Rossi
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-142, https://doi.org/10.5194/os-2018-142, 2019
Publication in OS not foreseen
Jürgen Fischer, Johannes Karstensen, Marilena Oltmanns, and Sunke Schmidtko
Ocean Sci., 14, 1167–1183, https://doi.org/10.5194/os-14-1167-2018, https://doi.org/10.5194/os-14-1167-2018, 2018
Short summary
Short summary
Based on nearly 17 years of profiling (Argo) float data, high-resolution (~ 25 km grid) maps of mean flow and eddy kinetic energy (EKE) were constructed for the intermediate to deep subpolar North Atlantic. Robust boundary currents along topographic slopes, mid-basin advective pathways, and stagnation regimes were identified. The ratio of mean flow vs. the square root of EKE indicates regions dominated by advection, and large regions in which eddy diffusion prevails.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Yao Fu, Johannes Karstensen, and Peter Brandt
Ocean Sci., 13, 531–549, https://doi.org/10.5194/os-13-531-2017, https://doi.org/10.5194/os-13-531-2017, 2017
Short summary
Short summary
Meridional Ekman transport in the tropical Atlantic was estimated directly by using observed ageostrophic velocity, and indirectly by using wind stress data. The direct and indirect methods agree well with each other. The top of the pycnocline represents the Ekman depth better than the mixed layer depth and a constant depth. The Ekman heat and salt fluxes calculated from sea surface temperature and salinity or from high-resolution temperature and salinity profile data differ only marginally.
Johannes Hahn, Peter Brandt, Sunke Schmidtko, and Gerd Krahmann
Ocean Sci., 13, 551–576, https://doi.org/10.5194/os-13-551-2017, https://doi.org/10.5194/os-13-551-2017, 2017
Short summary
Short summary
Recent studies have shown that the eastern tropical North Atlantic is subject to a strong decrease of the oceanic oxygen concentration in the upper 1000 m from the 1960s to today. By analyzing a broad observational data set, this study found an even stronger oxygen decrease in the upper 400 m throughout the past decade, whereas oxygen increase was found below (400–1000 m). Changes in the strength of the zonal currents are the most likely reason for the observed decadal oxygen changes.
Johannes Karstensen, Florian Schütte, Alice Pietri, Gerd Krahmann, Björn Fiedler, Damian Grundle, Helena Hauss, Arne Körtzinger, Carolin R. Löscher, Pierre Testor, Nuno Vieira, and Martin Visbeck
Biogeosciences, 14, 2167–2181, https://doi.org/10.5194/bg-14-2167-2017, https://doi.org/10.5194/bg-14-2167-2017, 2017
Short summary
Short summary
High-resolution observational data from underwater gliders and ships are used to investigate drivers and pathways of nutrient upwelling in high-productive whirling ecosystems (eddies). The data suggest that the upwelling is created by the interaction of wind-induced internal waves with the local rotation of the eddy. Because of differences in nutrient and oxygen pathways, a low-oxygen core is established at shallow depth in the high-productive eddies.
Florian Schütte, Johannes Karstensen, Gerd Krahmann, Helena Hauss, Björn Fiedler, Peter Brandt, Martin Visbeck, and Arne Körtzinger
Biogeosciences, 13, 5865–5881, https://doi.org/10.5194/bg-13-5865-2016, https://doi.org/10.5194/bg-13-5865-2016, 2016
Short summary
Short summary
Mesoscale eddies with very low–oxygen concentrations at shallow depth have been recently discovered in the eastern tropical North Atlantic. Our analysis shows that low oxygen eddies occur more frequent than expected and are found even close to the equator (8° N). From budget calculations we show that an oxygen reduction of 7 µmol/kg in the depth range of 50–150 m in the eastern tropical North Atlantic (peak reduction is 16 µmol/kg at 100 m depth) can be associated with the dispersion of these eddies.
Björn Fiedler, Damian S. Grundle, Florian Schütte, Johannes Karstensen, Carolin R. Löscher, Helena Hauss, Hannes Wagner, Alexandra Loginova, Rainer Kiko, Péricles Silva, Toste Tanhua, and Arne Körtzinger
Biogeosciences, 13, 5633–5647, https://doi.org/10.5194/bg-13-5633-2016, https://doi.org/10.5194/bg-13-5633-2016, 2016
Short summary
Short summary
Oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered recently. This study examines biogeochemical structure and magnitudes of related processes within these isolated water masses. We found very low oxygen concentrations and strongly enhanced acidity at near-surface depth. Oxygen utilization and downward carbon export were found to exceed known values for this ocean region.
Gerhard Fischer, Johannes Karstensen, Oscar Romero, Karl-Heinz Baumann, Barbara Donner, Jens Hefter, Gesine Mollenhauer, Morten Iversen, Björn Fiedler, Ivanice Monteiro, and Arne Körtzinger
Biogeosciences, 13, 3203–3223, https://doi.org/10.5194/bg-13-3203-2016, https://doi.org/10.5194/bg-13-3203-2016, 2016
Short summary
Short summary
Particle fluxes at the Cape Verde Ocean Observatory in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on deep sediment trap time-series data collected at 1290 and 3439 m water depths. The typically open-ocean flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen eddy in winter 2010. The eddy passage was accompanied by high biogenic and lithogenic fluxes, lasting from December 2009 to May 2010.
Marcela Cornejo D'Ottone, Luis Bravo, Marcel Ramos, Oscar Pizarro, Johannes Karstensen, Mauricio Gallegos, Marco Correa-Ramirez, Nelson Silva, Laura Farias, and Lee Karp-Boss
Biogeosciences, 13, 2971–2979, https://doi.org/10.5194/bg-13-2971-2016, https://doi.org/10.5194/bg-13-2971-2016, 2016
Florian Schütte, Peter Brandt, and Johannes Karstensen
Ocean Sci., 12, 663–685, https://doi.org/10.5194/os-12-663-2016, https://doi.org/10.5194/os-12-663-2016, 2016
Short summary
Short summary
We want to examine the characteristics of mesoscale eddies in the tropical northeastern Atlantic. They serve as transport agents, exporting water from the coast into the open ocean. Traditionally eddies are categorized with respect to their rotation: cyclonic and anticyclonic. But we could identify, with a combination of different satellite products, a third type called "anticyclonic mode-water eddy" transporting much larger anomalies. We propose a distinction into three classes for further studies.
Helena Hauss, Svenja Christiansen, Florian Schütte, Rainer Kiko, Miryam Edvam Lima, Elizandro Rodrigues, Johannes Karstensen, Carolin R. Löscher, Arne Körtzinger, and Björn Fiedler
Biogeosciences, 13, 1977–1989, https://doi.org/10.5194/bg-13-1977-2016, https://doi.org/10.5194/bg-13-1977-2016, 2016
Short summary
Short summary
In a low-oxygen eddy in the tropical Atlantic, total zooplankton biomass was increased. Larger plankton avoided the oxygen minimum zone (OMZ, < 20 µmol O2 kg−1). We identified four strategies by different plankton groups: (i) shallow OMZ avoidance and compression at surface, (ii) migration to shallow OMZ core during daytime, migration to surface at nighttime, (iii) residing in shallow OMZ day and night and (iv) migration through the shallow OMZ from oxygenated depths to surface and back.
L. Stramma, R. Czeschel, T. Tanhua, P. Brandt, M. Visbeck, and B. S. Giese
Ocean Sci., 12, 153–167, https://doi.org/10.5194/os-12-153-2016, https://doi.org/10.5194/os-12-153-2016, 2016
Short summary
Short summary
The subsurface circulation in the eastern tropical North Atlantic OMZ is derived from velocity, float and tracer data and data assimilation results, and shows a cyclonic flow around the Guinea Dome reaching into the oxygen minimum zone. The stronger cyclonic flow around the Guinea Dome in 2009 seem to be connected to a strong Atlantic Meridional Mode (AMM) event.
A continuous deoxygenation trend of the low oxygen layer was confirmed.
Eddy influence is weak south of the Cape Verde Islands.
C. R. Löscher, M. A. Fischer, S. C. Neulinger, B. Fiedler, M. Philippi, F. Schütte, A. Singh, H. Hauss, J. Karstensen, A. Körtzinger, S. Künzel, and R. A. Schmitz
Biogeosciences, 12, 7467–7482, https://doi.org/10.5194/bg-12-7467-2015, https://doi.org/10.5194/bg-12-7467-2015, 2015
Short summary
Short summary
The waters of the tropical Atlantic Open Ocean usually contain comparably high concentrations of oxygen. Now, it became clear that there are watermasses related to eddies that are nearly anoxic. We surveyed one of those eddies and found a biosphere that largely differed from the usual biosphere present in this area with a specific community responsible for primary production and for degradation processes. Further, we found the very first indication for active nitrogen loss in the open Atlantic.
J. Karstensen, B. Fiedler, F. Schütte, P. Brandt, A. Körtzinger, G. Fischer, R. Zantopp, J. Hahn, M. Visbeck, and D. Wallace
Biogeosciences, 12, 2597–2605, https://doi.org/10.5194/bg-12-2597-2015, https://doi.org/10.5194/bg-12-2597-2015, 2015
Short summary
Short summary
This study is the first report of the formation of dead zones in the open ocean. A combination of multiple ocean observing system elements (mooring, floats, satellites, ships) allowed us to reconstruct the generation of the dead zones and to connect the formation to enhanced respiration within mesoscale ocean eddies. The dead zones present specific threats to the ecosystem, such as the interruption of the diurnal migration of zooplankters.
P. Brandt, H. W. Bange, D. Banyte, M. Dengler, S.-H. Didwischus, T. Fischer, R. J. Greatbatch, J. Hahn, T. Kanzow, J. Karstensen, A. Körtzinger, G. Krahmann, S. Schmidtko, L. Stramma, T. Tanhua, and M. Visbeck
Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, https://doi.org/10.5194/bg-12-489-2015, 2015
Short summary
Short summary
Our observational study looks at the structure of the eastern tropical North Atlantic (ETNA) oxygen minimum zone (OMZ) in comparison with the less-ventilated, eastern tropical South Pacific OMZ. We quantify the OMZ’s oxygen budget composed of consumption, advection, lateral and vertical mixing. Substantial oxygen variability is observed on interannual to multidecadal timescales. The deoxygenation of the ETNA OMZ during the last decades represents a substantial imbalance of the oxygen budget.
J. Karstensen, T. Liblik, J. Fischer, K. Bumke, and G. Krahmann
Biogeosciences, 11, 3603–3617, https://doi.org/10.5194/bg-11-3603-2014, https://doi.org/10.5194/bg-11-3603-2014, 2014
P. J. Llanillo, J. Karstensen, J. L. Pelegrí, and L. Stramma
Biogeosciences, 10, 6339–6355, https://doi.org/10.5194/bg-10-6339-2013, https://doi.org/10.5194/bg-10-6339-2013, 2013
T. Fischer, D. Banyte, P. Brandt, M. Dengler, G. Krahmann, T. Tanhua, and M. Visbeck
Biogeosciences, 10, 5079–5093, https://doi.org/10.5194/bg-10-5079-2013, https://doi.org/10.5194/bg-10-5079-2013, 2013
Related subject area
Approach: In situ Observations | Depth range: All Depths | Geographical range: Deep Seas: North Atlantic | Phenomena: Current Field
3D reconstruction of ocean velocity from high-frequency radar and acoustic Doppler current profiler: a model-based assessment study
Mass, nutrients and dissolved organic carbon (DOC) lateral transports off northwest Africa during fall 2002 and spring 2003
Surface predictor of overturning circulation and heat content change in the subpolar North Atlantic
Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations
Atlantic water flow through the Faroese Channels
A stable Faroe Bank Channel overflow 1995–2015
Compensation between meridional flow components of the Atlantic MOC at 26° N
Deep drivers of mesoscale circulation in the central Rockall Trough
Impact of a 30% reduction in Atlantic meridional overturning during 2009–2010
Atlantic transport variability at 25° N in six hydrographic sections
On the seasonal cycles and variability of Florida Straits, Ekman and Sverdrup transports at 26° N in the Atlantic Ocean
The contribution of eastern-boundary density variations to the Atlantic meridional overturning circulation at 26.5° N
Ivan Manso-Narvarte, Erick Fredj, Gabriel Jordà, Maristella Berta, Annalisa Griffa, Ainhoa Caballero, and Anna Rubio
Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, https://doi.org/10.5194/os-16-575-2020, 2020
Short summary
Short summary
Our main aim is to study the feasibility of reconstructing oceanic currents by extending the data obtained from coastal multiplatform observatories to nearby areas in 3D in the SE Bay of Biscay. To that end, two different data-reconstruction methods with different approaches were tested, providing satisfactory results. This work is a first step towards the real applicability of these methods in this study area, and it shows the capabilities of the methods for a wide range of applications.
Nadia Burgoa, Francisco Machín, Ángeles Marrero-Díaz, Ángel Rodríguez-Santana, Antonio Martínez-Marrero, Javier Arístegui, and Carlos Manuel Duarte
Ocean Sci., 16, 483–511, https://doi.org/10.5194/os-16-483-2020, https://doi.org/10.5194/os-16-483-2020, 2020
Short summary
Short summary
The main objective of the study is to analyze the export of carbon to the open ocean from the rich waters of the upwelling system of North Africa. South of the Canary Islands, permanent upwelling interacts with other physical processes impacting the main biogeochemical processes. Taking advantage of data from two cruises combined with the outputs of models, important conclusions from the differences observed between seasons are obtained, largely related to changes in the CVFZ in this area.
Damien G. Desbruyères, Herlé Mercier, Guillaume Maze, and Nathalie Daniault
Ocean Sci., 15, 809–817, https://doi.org/10.5194/os-15-809-2019, https://doi.org/10.5194/os-15-809-2019, 2019
Short summary
Short summary
In the North Atlantic, ocean currents transport warm waters northward in the upper water column, and cold waters southwards at depth. This circulation is here reconstructed from surface data and thermodynamics theory. Its driving role in recent temperature changes (1993–2017) in the North Atlantic is evidenced, and predictions of near-future variability (5 years) are provided and discussed.
Svein Østerhus, Rebecca Woodgate, Héðinn Valdimarsson, Bill Turrell, Laura de Steur, Detlef Quadfasel, Steffen M. Olsen, Martin Moritz, Craig M. Lee, Karin Margretha H. Larsen, Steingrímur Jónsson, Clare Johnson, Kerstin Jochumsen, Bogi Hansen, Beth Curry, Stuart Cunningham, and Barbara Berx
Ocean Sci., 15, 379–399, https://doi.org/10.5194/os-15-379-2019, https://doi.org/10.5194/os-15-379-2019, 2019
Short summary
Short summary
Two decades of observations of the Arctic Mediterranean (AM) exchanges show that the exchanges have been stable in terms of volume transport during a period when many other components of the global climate system have changed. The total AM import is found to be 9.1 Sv and has a seasonal variation in amplitude close to 1 Sv, and maximum import in October. Roughly one-third of the imported water leaves the AM as surface outflow.
Bogi Hansen, Turið Poulsen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Svein Østerhus, Elin Darelius, Barbara Berx, Detlef Quadfasel, and Kerstin Jochumsen
Ocean Sci., 13, 873–888, https://doi.org/10.5194/os-13-873-2017, https://doi.org/10.5194/os-13-873-2017, 2017
Short summary
Short summary
On its way towards the Arctic, an important branch of warm Atlantic water passes through the Faroese Channels, but, in spite of more than a century of investigations, the detailed flow pattern through this channel system has not been resolved. This has strong implications for estimates of oceanic heat transport towards the Arctic. Here, we combine observations from various sources, which together paint a coherent picture of the Atlantic water flow and heat transport through this channel system.
Bogi Hansen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, and Svein Østerhus
Ocean Sci., 12, 1205–1220, https://doi.org/10.5194/os-12-1205-2016, https://doi.org/10.5194/os-12-1205-2016, 2016
Short summary
Short summary
The Faroe Bank Channel is one of the main passages for the flow of cold dense water from the Arctic into the depths of the world ocean where it feeds the deep branch of the AMOC. Based on in situ measurements, we show that the volume transport of this flow has been stable from 1995 to 2015. The water has warmed, but salinity increase has maintained its high density. Thus, this branch of the AMOC did not weaken during the last 2 decades, but increased its heat transport into the deep ocean.
E. Frajka-Williams, C. S. Meinen, W. E. Johns, D. A. Smeed, A. Duchez, A. J. Lawrence, D. A. Cuthbertson, G. D. McCarthy, H. L. Bryden, M. O. Baringer, B. I. Moat, and D. Rayner
Ocean Sci., 12, 481–493, https://doi.org/10.5194/os-12-481-2016, https://doi.org/10.5194/os-12-481-2016, 2016
Short summary
Short summary
The ocean meridional overturning circulation (MOC) is predicted by climate models to slow down in this century, resulting in reduced transport of heat northward to mid-latitudes. At 26° N, the Atlantic MOC has been measured continuously for the past decade (2004–2014). In this paper, we discuss the 10-year record of variability, identify the origins of the continued weakening of the circulation, and discuss high-frequency (subannual) compensation between transport components.
T. J. Sherwin, D. Aleynik, E. Dumont, and M. E. Inall
Ocean Sci., 11, 343–359, https://doi.org/10.5194/os-11-343-2015, https://doi.org/10.5194/os-11-343-2015, 2015
Short summary
Short summary
The Rockall Trough feeds warm salty water to Polar regions and the European Shelf. Detailed observations from an underwater glider show that a) the meandering surface current field in the central trough is driven by deep eddies; b) chance circulations deflect the eastern slope current and warm the western side; c) and altimeter observations omit the mean flow in the narrow slope current. There are wider implications for satellite altimeter observations, ocean monitoring and ocean model results.
H. L. Bryden, B. A. King, G. D. McCarthy, and E. L. McDonagh
Ocean Sci., 10, 683–691, https://doi.org/10.5194/os-10-683-2014, https://doi.org/10.5194/os-10-683-2014, 2014
C. P. Atkinson, H. L. Bryden, S. A. Cunningham, and B. A. King
Ocean Sci., 8, 497–523, https://doi.org/10.5194/os-8-497-2012, https://doi.org/10.5194/os-8-497-2012, 2012
C. P. Atkinson, H. L. Bryden, J. J-M. Hirschi, and T. Kanzow
Ocean Sci., 6, 837–859, https://doi.org/10.5194/os-6-837-2010, https://doi.org/10.5194/os-6-837-2010, 2010
M. P. Chidichimo, T. Kanzow, S. A. Cunningham, W. E. Johns, and J. Marotzke
Ocean Sci., 6, 475–490, https://doi.org/10.5194/os-6-475-2010, https://doi.org/10.5194/os-6-475-2010, 2010
Cited articles
Albatross IV data: the R/V Albatross IV data along the
14.5∘ N section in 1989, available at:
https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html, last access: 1 October
2017.
Arhan, M., Mercier, H., Bourlès, B., and Gouriou, Y.: Hydrographic
sections across the Atlantic at 7∘30 N and 4∘30 S, Deep-Sea
Res., 45, 829–872, https://doi.org/10.1016/S0967-0637(98)00001-6, 1998.
Atkinson, C. P., Bryden, H. L., Hirschi, J. J.-M., and Kanzow, T.: On the
seasonal cycles and variability of Florida Straits, Ekman and Sverdrup
transports at 26∘ N in the Atlantic Ocean, Ocean Sci., 6, 837–859,
https://doi.org/10.5194/os-6-837-2010, 2010.
Atkinson, C. P., Bryden, H. L., Cunningham, S. A., and King, B. A.: Atlantic
transport variability at 25∘ N in six hydrographic sections, Ocean
Sci., 8, 497–523, https://doi.org/10.5194/os-8-497-2012, 2012.
Baringer, M. O. and Larsen, J. C.: Sixteen years of Florida current transport
at 27∘ N, Geophys. Res. Lett., 28, 3179–3182,
https://doi.org/10.1029/2001GL013246, 2001.
Baringer, M. O., McCarthy, G., Willis, J., Smeed, D. A., Rayner, D., Johns,
W. E., Meinen, C. S., Lankhorst, M., Send, U., Cunningham, S. A., and Kanzow,
T. O.: Meridional Overturning Circulation Observations in the North Atlantic,
B. Am. Meteorol. Soc., 96, 78–80, 2015.
Beal, L. M., De Ruijter, W. P. M., Biastoch, A., Zahn, R., Cronin, M.,
Hermes, J., Lutjeharms, J., Quartly, G., Tozuka, T., Baker-Yeboah, S.,
Bornman, T., Cipollini, P., Dijkstra, H., Hall, I., Park, W., Peeters, F.,
Penven, P., Ridderinkhof, H., and Zinke, J.: On the role of the Agulhas
system in ocean circulation and climate, Nature, 472, 429–436,
https://doi.org/10.1038/nature09983, 2011.
Brandt, P., Bange, H. W., Banyte, D., Dengler, M., Didwischus, S.-H.,
Fischer, T., Greatbatch, R. J., Hahn, J., Kanzow, T., Karstensen, J.,
Körtzinger, A., Krahmann, G., Schmidtko, S., Stramma, L., Tanhua, T., and
Visbeck, M.: On the role of circulation and mixing in the ventilation of
oxygen minimum zones with a focus on the eastern tropical North Atlantic,
Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, 2015.
Bryden, H. L., Johns, W. E., and Saunders, P. M.: Deep western boundary
current east of Abaco: mean structure and transport, J. Mar. Res., 63,
35–57, https://doi.org/10.1357/0022240053693806, 2005.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G.,
Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate
Change: Projections, Commitments and Irreversibility, Clim. Chang. 2013 Phys.
Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim.
Chang., 1029–1136, https://doi.org/10.1017/CBO9781107415324.024, 2013.
Cunningham, S. A., Kanzow, T., Rayner, D., Baringer, M. O., Johns, W. E.,
Marotzke, J., Longworth, H. R., Grant, E. M., Hirschi, J. J. M., Beal, L. M.,
Meinen, C. S., and Bryden, H. L.: Temporal Variability of the Atlantic
Meridional Overturning Circulation at 26.5∘ N, Science, 317,
935–938, 2007.
Curry, R., Dickson, B., and Yashayaev, I.: A change in the freshwater balance
of the Atlantic Ocean over the past four decades, Nature, 426, 826–829,
https://doi.org/10.1038/nature02206, 2003.
Dengler, M., Quadfasel, D., Schott, F., and Fischer, J.: Abyssal circulation
in the Somali Basin, Deep-Sea Res. Pt II., 49, 1297–1322,
https://doi.org/10.1016/S0967-0645(01)00167-9, 2002.
Dickson, B., Yashayaev, I., Meincke, J., Turrell, B., Dye, S., and Holfort,
J.: Rapid freshening of the deep North Atlantic Ocean over the past four
decades, Nature, 416, 832–837, https://doi.org/10.1038/416832a, 2002.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Technol., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Fischer, J. and Visbeck, M.: Deep Velocity Profiling with Sel-contained
ADCPs, J. Atmos. Ocean. Technol., 10, 764–773, 1993.
Fischer, J., Brandt, P., Dengler, M., Müller, M., and Symonds, D.:
Surveying the Upper Ocean with the Ocean Surveyor: A New Phased Array Doppler
Current Profiler, J. Atmos. Ocean. Technol., 20, 742–751,
https://doi.org/10.1175/1520-0426(2003)20<742:STUOWT>2.0.CO;2, 2003.
Fennig, K., Andersson, A., Bakan, S., Klepp, C., and Schroeder, M.: Hamburg
Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS 3.2 –
Monthly Means/6-Hourly Composites, Satellite Application Facility on Climate
Monitoring, https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V001, 2012.
Fraile-Nuez, E., Machín, F., Vélez-Belchí, P.,
López-Laatzen, F., Borges, R., Benítez-Barrios, V., and
Hernández-Guerra, A.: Nine years of mass transport data in the eastern
boundary of the North Atlantic Subtropical Gyre, J. Geophys. Res., 115,
C09009, https://doi.org/10.1029/2010JC006161, 2010.
Frajka-Williams, E., Lankhorst, M., Koelling, J., and Send, U.: Coherent
Circulation Changes in the Deep North Atlantic from 16∘ N and
26∘ N Transport Arrays, J. Geophys. Res.-Oceans, 123, 3427–3443,
https://doi.org/10.1029/2018JC013949, 2018.
Friedrichs, M. A. M. and Hall, M. M.: Deep circulation in the tropical North
Atlantic, J. Mar. Res., 51, 697–736, https://doi.org/10.1357/0022240933223909, 1993.
Fröb, F., Olsen, A., Våge, K., Moore, G. W. K., Yashayaev, I.,
Jeansson, E., and Rajasakaren, B.: Irminger Sea deep convection injects
oxygen and anthropogenic carbon to the ocean interior, Nat. Commun., 7,
13244, https://doi.org/10.1038/ncomms13244, 2016.
Fu, Y., Karstensen, J., and Brandt, P.: On the meridional ageostrophic
transport in the tropical Atlantic, Ocean Sci., 13, 531–549,
https://doi.org/10.5194/os-13-531-2017, 2017.
Fu, Y., Karstensen, J., and Brandt, P.: Physical oceanography and meteorology
during METEOR cruises M96, M97 and M98, PANGAEA,
https://doi.org/10.1594/PANGAEA.870516, 2017.
Ganachaud, A.: Large-scale mass transports, water mass formation, and
diffusivities estimated from World Ocean Circulation Experiment (WOCE)
hydrographic data, J. Geophys. Res., 108, 3213, https://doi.org/10.1029/2002JC001565,
2003.
Ganachaud, A. and Wunsch, C.: Improved estimates of global ocean circulation,
heat transport and mixing from hydrographic data, Nature, 408, 453–7,
https://doi.org/10.1038/35044048, 2000.
Ganachaud, A. and Wunsch, C.: Large-Scale Ocean Heat and Freshwater
Transports during the World Ocean Circulation Experiment, J. Climate, 16,
696–705, https://doi.org/10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2, 2003.
Ganachaud, A., Wunsch, C., Marotzke, J., and Toole, J.: Meridional
overturning and large-scale circulation of the Indian Ocean, J. Geophys. Res.-Oceans, 105, 26117–26134, https://doi.org/10.1029/2000JC900122, 2000.
Hansen, B., Húsgaro Larsen, K. M., Hátún, H., and Østerhus,
S.: A stable Faroe Bank Channel overflow 1995–2015, Ocean Sci., 12,
1205–1220, https://doi.org/10.5194/os-12-1205-2016, 2016.
Hernández-Guerra, A., Fraile-Nuez, E., Borges, R., López-Laatzen, F.,
Vélez-Belchí, P., Parrilla, G., and Müller, T. J.: Transport
variability in the Lanzarote passage (eastern boundary current of the North
Atlantic subtropical Gyre), Deep-Sea Res. Pt. I, 50, 189–200,
https://doi.org/10.1016/S0967-0637(02)00163-2, 2003.
Hernández-Guerra, A., Fraile-Nuez, E., López-Laatzen, F.,
Martínez, A., Parrilla, G., and Vélez-Belchí, P.: Canary
Current and North Equatorial Current from an inverse box model, J. Geophys.
Res., 110, C12019, https://doi.org/10.1029/2005JC003032, 2005.
Hernández-Guerra, A., Pelegrí, J. L., Fraile-Nuez, E.,
Benítez-Barrios, V., Emelianov, M., Pérez-Hernández, M. D., and
Vélez-Belchí, P.: Meridional overturning transports at 7.5∘ N and
24.5∘ N in the Atlantic Ocean during 1992–93 and 2010–11, Prog. Oceanogr.,
128, 98–114, https://doi.org/10.1016/j.pocean.2014.08.016, 2014.
Herrford, J., Brandt, P., and Zenk, W.: Property changes of deep and bottom
waters in the Western Tropical Atlantic, Deep-Sea Res. Pt. I, 124, 103–125,
https://doi.org/10.1016/j.dsr.2017.04.007, 2017.
Hummels, R., Brandt, P., Dengler, M., Fischer, J., Araujo, M., Veleda, D.,
and Durgadoo, J. V: Interannual to decadal changes in the western boundary
circulation in the Atlantic at 11∘ S, Geophys. Res. Lett., 42,
7615–7622, https://doi.org/10.1002/2015GL065254, 2015.
Hydrography along 24.5∘ N: Hydrographic section data along
24.5∘ N in 1992, 1998, 2004, 2010, 2011, and 2015, available at:
https://cchdo.ucsd.edu/, last access: 1 October 2017.
Jochumsen, K., Moritz, M., Nunes, N., Quadfasel, D., Larsen, K. M. H.,
Hansen, B., Valdimarsson, H., and Jonsson, S.: Revised transport estimates of
the Denmark Strait overflow, J. Geophys. Res.-Oceans, 122, 3434–3450,
https://doi.org/10.1002/2017JC012803, 2017.
Johns, W. E., Beal, L. M., Baringer, M. O., Molina, J. R., Cunningham, S. A.,
Kanzow, T., and Rayner, D.: Variability of shallow and deep western boundary
currents off the Bahamas during 2004–05: results from the 26∘ N
RAPID–MOC Array, J. Phys. Oceanogr., 38, 605–623,
https://doi.org/10.1175/2007JPO3791.1, 2008.
Johns, W. E., Baringer, M. O., Beal, L. M., Cunningham, S. A., Kanzow, T.,
Bryden, H. L., Hirschi, J. J. M., Marotzke, J., Meinen, C. S., Shaw, B., and
Curry, R.: Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport
at 26.5∘ N, J. Climate, 24, 2429–2449, https://doi.org/10.1175/2010JCLI3997.1,
2011.
Johnson, G. C., Purkey, S. G., and Toole, J. M.: Reduced Antarctic meridional
overturning circulation reaches the North Atlantic Ocean, Geophys. Res.
Lett., 35, L22601, https://doi.org/10.1029/2008GL035619, 2008.
Kanzow, T., Send, U., Zenk, W., Chave, A., and Rhein, M.: Monitoring the
integrated deep meridional flow in the tropical North Atlantic: Long-term
performance of a geostrophic array, Deep-Sea Res. Pt. I, 53, 528–546,
https://doi.org/10.1016/j.dsr.2005.12.007, 2006.
Kanzow, T., Send, U., and McCartney, M.: On the variability of the deep
meridional transports in the tropical North Atlantic, Deep-Sea Res. Pt. I,
55, 1601–1623, https://doi.org/10.1016/j.dsr.2008.07.011, 2008.
Kanzow, T., Cunningham, S. A., Johns, W. E., Hirschi, J. J. M., Marotzke, J.,
Baringer, M. O., Meinen, C. S., Chidichimo, M. P., Atkinson, C. P., Beal, L.
M., Bryden, H. L., and Collins, J.: Seasonal Variability of the Atlantic
Meridional Overturning Circulation at 26.5∘ N, J. Climate, 23,
5678–5698, https://doi.org/10.1175/2010JCLI3389.1, 2010.
Kirchner, K., Rhein, M., Mertens, C., Böning, C. W., and Hüttl, S.:
Observed and modeled meridional overturning circulation related flow into the
Caribbean, J. Geophys. Res.-Oceans, 113, 1–9, https://doi.org/10.1029/2007JC004320,
2008.
Kirchner, K., Rhein, M., Hüttl-Kabus, S., and Böning, C. W.: On the
spreading of South Atlantic Water into the Northern Hemisphere, J. Geophys.
Res., 114, C05019, https://doi.org/10.1029/2008JC005165, 2009.
Klein, B.: Die Kapverden-Frontalzone, Berichte Inst. f. Meereskunde, Kiel,
227, 1992.
Klein, B., Molinari, R. L., Müller, T. J., and Siedler, G.: A
transatlantic section at 14.5∘ N: Meridional volume and heat fluxes,
J. Mar. Res., 53, 929–957, https://doi.org/10.1357/0022240953212963, 1995.
Köhl, A.: Evaluation of the GECCO2 ocean synthesis: transports of volume,
heat and freshwater in the Atlantic, Q. J. Roy. Meteor. Soc., 141, 166–181,
https://doi.org/10.1002/qj.2347, 2015.
Leaman, K. D., Molinari, R. L., and Vertes, P. S.: Structure and Variability
of the Florida Current at 27∘ N: April 1982–July 1984, J. Phys.
Oceanogr., 17, 565–583, https://doi.org/10.1175/1520-0485(1987)017<0565:SAVOTF>2.0.CO;2,
1987.
Lumpkin, R. and Speer, K.: Large-Scale Vertical and Horizontal Circulation in
the North Atlantic Ocean, J. Phys. Oceanogr., 33, 1902–1920,
https://doi.org/10.1175/1520-0485(2003)033<1902:LVAHCI>2.0.CO;2, 2003.
Luyten, J. R., Pedlosky, J., and Stommel, H.: The Ventilated Thermocline, J.
Phys. Oceanogr., 13, 292–309,
https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2, 1983.
Macdonald, A. M.: The global ocean circulation: A hydrographic estimate and
regional analysis, Prog. Oceanogr., 41, 281–382,
https://doi.org/10.1016/S0079-6611(98)00020-2, 1998.
Machín, F. and Pelegrí, J. L.: Northward Penetration of Antarctic
Intermediate Water off Northwest Africa, J. Phys. Oceanogr., 39, 512–535,
https://doi.org/10.1175/2008JPO3825.1, 2009.
Machín, F., Pelegrí, J. L., Fraile-Nuez, E., Vélez-Belchí,
P., López-Laatzen, F., and Hernández-Guerra, A.: Seasonal Flow
Reversals of Intermediate Waters in the Canary Current System East of the
Canary Islands, J. Phys. Oceanogr., 40, 1902–1909,
https://doi.org/10.1175/2010JPO4320.1, 2010.
McCarthy, G., Frajka-Williams, E., Johns, W. E., Baringer, M. O., Meinen, C.
S., Bryden, H. L., Rayner, D., Duchez, A., Roberts, C., and Cunningham, S.
A.: Observed interannual variability of the Atlantic meridional overturning
circulation at 26.5∘ N, Geophys. Res. Lett., 39, 1–5,
https://doi.org/10.1029/2012GL052933, 2012.
McCartney, M. S., Bennett, S. L., and Woodgate-Jones, M. E.: Eastward flow
through the Mid-Atlantic Ridge at 11∘ N and its influence on the
abyss of the eastern basin, J. Phys. Oceanogr., 21, 1089–1121,
https://doi.org/10.1175/1520-0485(1991)021<1089:EFTTMA>2.0.CO;2, 1991.
McCreary, J. P. and Lu, P.: Interaction between the Subtropical and
Equatorial Ocean Circulations: The Subtropical Cell, J. Phys. Oceanogr., 24,
466–497, https://doi.org/10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2, 1994.
McDonagh, E. L., King, B. A., Bryden, H. L., Courtois, P., Szuts, Z.,
Baringer, M., Cunningham, S. A., Atkinson, C., and McCarthy, G.: Continuous
Estimate of Atlantic Oceanic Freshwater Flux at 26.5∘ N, J. Climate,
28, 8888–8906, https://doi.org/10.1175/JCLI-D-14-00519.1, 2015.
McIntosh, P. C. and Rintoul, S. R.: Do Box Inverse Models Work?, J. Phys.
Oceanogr., 27, 291–308, https://doi.org/10.1175/1520-0485(1997)027<0291:DBIMW>2.0.CO;2,
1997.
Meinen, C. S., Baringer, M. O., and Garcia, R. F.: Florida Current transport
variability: An analysis of annual and longer-period signals, Deep-Sea Res.
Pt. I, 57, 835–846, https://doi.org/10.1016/j.dsr.2010.04.001, 2010.
Meinen, C. S., Johns, W. E., Garzoli, S. L., van Sebille, E., Rayner, D.,
Kanzow, T., and Baringer, M. O.: Variability of the Deep Western Boundary
Current at 26.5∘ N during 2004–2009, Deep-Sea Res. Pt. II, 85,
154–168, https://doi.org/10.1016/j.dsr2.2012.07.036, 2013.
Molinari, R. L., Fine, R. A., and Johns, E.: The Deep Western Boundary
Current in the tropical North Atlantic Ocean, Deep-Sea Res., 39, 1967–1984,
https://doi.org/10.1016/0198-0149(92)90008-H, 1992.
Morgan, P.: Box Inverse Modelling with Dobox 4.2, CSIRO Mar. Lab. Rep., 26,
1994.
Owens, W. B. and Millard, R. C.: A New Algorithm for CTD Oxygen Calibration,
J. Phys. Oceanogr., 15, 621–631,
https://doi.org/10.1175/1520-0485(1985)015<0621:ANAFCO>2.0.CO;2, 1985.
Pickart, R. S.: Space–Time Variability of the Deep Western Boundary Current
Oxygen Core, J. Phys. Oceanogr., 22, 1047–1061,
https://doi.org/10.1175/1520-0485(1992)022<1047:SVOTDW>2.0.CO;2, 1992.
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A.,
Rutherford, S., and Schaffernicht, E. J.: Exceptional twentieth-century
slowdown in Atlantic Ocean overturning circulation, Nat. Clim. Change, 5,
475–480, https://doi.org/10.1038/nclimate2554, 2015.
Roach, A. T., Aagaard, K., Pease, C. H., Salo, S. A., Weingartner, T.,
Pavlov, V., and Kulakov, M.: Direct measurements of transport and water
properties through the Bering Strait, J. Geophys. Res., 100, 18443,
https://doi.org/10.1029/95JC01673, 1995.
Roemmich, D. and Wunsch, C.: Two transatlantic sections: meridional
circulation and heat flux in the subtropical North Atlantic Ocean, Deep-Sea
Res., 32, 619–664, https://doi.org/10.1016/0198-0149(85)90070-6, 1985.
Rosón, G., Ríos, A. F., Pérez, F. F., Lavin, A., and Bryden, H.
L.: Carbon distribution, fluxes and budgets in the subtropical North Atlantic
Ocean (24.5∘ N), J. Geophys. Res., 108, 3144,
https://doi.org/10.1029/1999JC000047, 2003.
Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y., Chuang, H., Juang, H. H., Sela, J., Iredell,
M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M.,
Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W.,
Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J., Ebisuzaki, W., Lin,
R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C., Liu, Q., Chen, Y.,
Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: NCEP
Climate Forecast System Reanalysis (CFSR) 6-hourly Products, January 1979 to
December 2010, Research Data Archive at the National Center for Atmospheric
Research, Computational and Information Systems Laboratory, Dataset,
https://doi.org/10.5065/D69K487J, 2010.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer,
D., Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M.
P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: NCEP
Climate Forecast System Version 2 (CFSv2) 6-hourly Products. Research Data
Archive at the National Center for Atmospheric Research, Computational and
Information Systems Laboratory, Dataset, https://doi.org/10.5065/D61C1TXF, 2011.
Sarafanov, A., Sokov, A., and Demidov, A.: Water mass characteristics in the
equatorial North Atlantic: A section nominally along 6.5∘ N, July
2000, J. Geophys. Res.-Oceans, 112, 1–11, https://doi.org/10.1029/2007JC004222, 2007.
Sarafanov, A., Demidov, A., and Sokov, A.: On the warming of intermediate and
deep waters in the equatorial North Atlantic, Russ. Meteorol. Hydrol., 33,
175–179, https://doi.org/10.3103/S1068373908030060, 2008.
Schmidtko, S. and Johnson, G. C.: Multidecadal warming and shoaling of
antarctic intermediate water, J. Climate, 25, 207–221,
https://doi.org/10.1175/JCLI-D-11-00021.1, 2012.
Schott, F. A., McCreary, J. P., and Johnson, G. C.: Shallow Overturning
Circulations of the Tropical- Subtropical Oceans, Earth's Clim., 147,
261–304, https://doi.org/10.1029/147GM15, 2004.
Send, U., Lankhorst, M., and Kanzow, T.: Observation of decadal change in the
Atlantic meridional overturning circulation using 10 years of continuous
transport data, Geophys. Res. Lett., 38, 1–5, https://doi.org/10.1029/2011GL049801,
2011.
Sloyan, B. M. and Rintoul, S. R.: Circulation, Renewal, and Modification of
Antarctic Mode and Intermediate Water, J. Phys. Oceanogr., 31, 1005–1030,
https://doi.org/10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2, 2001a.
Sloyan, B. M. and Rintoul, S. R.: The Southern Ocean Limb of the Global Deep
Overturning Circulation, J. Phys. Oceanogr., 31, 143–173,
https://doi.org/10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2, 2001b.
Smeed, D., McCarthy, G. D., Cunningham, S. A., Frajka-Williams, E.,
Rayner, D., Johns, W. E., Meinen, C. S., Baringer, M. O., Moat, B. I.,
Duchez, A., and Bryden, H. L.: Observed decline of the Atlantic meridional
overturning circulation 2004–2012, Ocean Sci., 10, 29–38,
https://doi.org/10.5194/os-10-29-2014, 2014.
Smeed, D., McCarthy, G., Rayner, D., Moat, B. I., Johns, W. E., Baringer, M.
O., and Meinen, C. S.: Atlantic meridional overturning circulation observed
by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and
Heatflux Array-Western Boundary Time Series) array at 26∘ N from
2004 to 2017, British Oceanographic Data Centre – Natural Environment
Research Council, UK, https://doi.org/10.5285/5acfd143-1104-7b58-e053-6c86abc0d94b, 2017
Smethie, W. M., Fine, R. A., Putzka, A., and Jones, E. P.: Tracing the flow
of North Atlantic Deep Water using chlorofluorocarbons, J. Geophys.
Res.-Oceans, 105, 14297–14323, https://doi.org/10.1029/1999JC900274, 2000.
Speer, K. G. and McCartney, M. S.: Tracing lower North Atlantic deep water
across the equator, J. Geophys. Res., 96, 20443, https://doi.org/10.1029/91JC01878, 1991.
Srokosz, M., Baringer, M., Bryden, H., Cunningham, S., Delworth, T., Lozier,
S., Marotzke, J., and Sutton, R.: Past, present, and future changes in the
atlantic meridional overturning circulation, B. Am. Meteorol. Soc., 93,
1663–1676, https://doi.org/10.1175/BAMS-D-11-00151.1, 2012.
Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen
minima expansions and their biological impacts, Deep-Sea Res. Pt. I, 57,
587–595, https://doi.org/10.1016/j.dsr.2010.01.005, 2010.
Talley, L. D. and McCartney, M. S.: Distribution and Circulation of Labrador
Sea Water, J. Phys. Oceanogr., 12, 1189–1205,
https://doi.org/10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2, 1982.
Tsubouchi, T., Bacon, S., Naveira Garabato, A. C., Aksenov, Y., Laxon, S. W.,
Fahrbach, E., Beszczynska-Möller, A., Hansen, E., Lee, C. M., and
Ingvaldsen, R. B.: The Arctic Ocean in summer: A quasi-synoptic inverse
estimate of boundary fluxes and water mass transformation, J. Geophys. Res.
Ocean., 117, C01024, https://doi.org/10.1029/2011JC007174, 2012.
Tsuchiya, M.: Circulation of the Antarctic Intermediate Water in the North
Atlantic Ocean, J. Mar. Res., 47, 747–755, https://doi.org/10.1357/002224089785076136,
1989.
van Sebille, E., Baringer, M. O., Johns, W. E., Meinen, C. S., Beal, L. M.,
de Jong, M. F., and van Aken, H. M.: Propagation pathways of classical
Labrador Sea water from its source region to 26∘ N, J. Geophys.
Res., 116, C12027, https://doi.org/10.1029/2011JC007171, 2011.
Visbeck, M.: Deep Velocity Profiling Using Lowered Acoustic Doppler Current
Profilers: Bottom Track and Inverse Solutions, J. Atmos. Ocean. Technol., 19,
794–807, https://doi.org/10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2, 2002.
Wijffels, S. E., Schmitt, R. W., Bryden, H. L., and Stigebrandt, A.:
Transport of Freshwater by the Oceans, J. Phys. Oceanogr., 22, 155–162,
https://doi.org/10.1175/1520-0485(1992)022<0155:TOFBTO>2.0.CO;2, 1992.
Wilburn, A. M., Johns, E., and Bushnell, M.: Current velocity and
hydrographic observa- tions in the southwestern North Atlantic Ocean:
Subtropical Atlantic Climate Studies (STACS), 1989, NOAA Data Rep. ERL
AOML-18, 97, 1990.
Woodgate, R. A., Aagaard, K., and Weingartner, T. J.: Monthly temperature,
salinity, and transport variability of the Bering Strait through flow,
Geophys. Res. Lett., 32, L04601, https://doi.org/10.1029/2004GL021880, 2005.
Wunsch, C.: Determining the general circulation of the oceans: a preliminary
discussion, Science, 196, 871–875, https://doi.org/10.1126/science.196.4292.871, 1977.
Wunsch, C.: The Ocean Circulation Inverse Problem, Cambridge University
Press, Cambridge, 1996.
Wunsch, C.: The Total Meridional Heat Flux and Its Oceanic and Atmospheric
Partition, J. Climate, 18, 4374–4380, https://doi.org/10.1175/JCLI3539.1, 2005.
Wunsch, C. I. and Heimbach, P.: Estimated decadal changes in the North
Atlantic Meridional overturning circulation and heat flux 1993–2004, J.
Phys. Oceanogr., 36, 2013–2024, https://doi.org/10.1175/JPO2957.1, 2006.
Wüst, G.: Schichtung und Zirkulation des Atlantischen Ozeans, Die
Stratophäre, in Wissenschaftliche Ergebnisse der Deutschen Atlantischen
Expedition auf dem Forschungs- und Vermessungsschiff “Meteor” 1925–1927,
6, 180, Berlin, 1935.
Zantopp, R., Fischer, J., Visbeck, M., and Karstensen, J.: From interannual
to decadal: 17 years of boundary current transports at the exit of the
Labrador Sea, J. Geophys. Res.-Oceans, 122, 1724–1748,
https://doi.org/10.1002/2016JC012271, 2017.
Short summary
Hydrographic analysis in the Atlantic along 14.5° N and 24.5° N shows that between the periods of 1989/92 and 2013/15, the Antarctic Intermediate Water became warmer and saltier at 14.5° N, and that the Antarctic Bottom Water became lighter at both latitudes. By applying a box inverse model, the Atlantic Meridional Overturning Circulation (AMOC) was determined. Comparison among the inverse solution, GECCO2, RAPID, and MOVE shows that the AMOC has not significantly changed in the past 20 years.
Hydrographic analysis in the Atlantic along 14.5° N and 24.5° N shows that between the periods...