Articles | Volume 21, issue 6
https://doi.org/10.5194/os-21-3221-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-3221-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface evolution and wind effects during a cyclonic eddy splitting event in the Balearic Sea
Sebastien Donnet
Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer (CNAM‐INTECHMER), Cherbourg‐en‐Cotentin, France
Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), Cherbourg‐en‐Cotentin, France
Consiglio Nazionale delle Ricerche – Istituto di Scienze Marine, Lerici, Italy
Helga S. Huntley
Department of Mathematics, Rowan University, Glassboro, NJ, USA
Maristella Berta
CORRESPONDING AUTHOR
Consiglio Nazionale delle Ricerche – Istituto di Scienze Marine, Lerici, Italy
Luca Centurioni
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
Leo Middleton
Woods Hole Oceanographic Institution, Woods Hole, MA, USA
University of Gothenburg, Gothenburg, Sweden
Tamay Özgökmen
Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
Pierre-Marie Poulain
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Alex Kinsella
Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Annalisa Griffa
Consiglio Nazionale delle Ricerche – Istituto di Scienze Marine, Lerici, Italy
Related authors
Jonathan Coyne, Frédéric Cyr, Sheila Atchison, Charlie Bishop, Sébastien Donnet, Peter S. Galbraith, Maxime Geoffroy, David Hebert, Chantelle Layton, Andry Ratsimandresy, Jose-Luis del Rio Iglesias, Jean-Luc Shaw, Stephen Snook, Nancy Soontiens, Elena Tel, and Wojciech Walkusz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-611, https://doi.org/10.5194/essd-2025-611, 2025
Preprint under review for ESSD
Short summary
Short summary
As part of the new Fisheries Act, Fisheries and Oceans Canada (DFO) has made it a priority to make oceanographic data publicly available. The Canadian Atlantic Shelf Temperature-Salinity (CASTS) aims to address this priority, by creating an open-access data product that includes most of the historical temperature and salinity profiles in Atlantic Canada and the eastern Arctic since 1873.
Jonathan Coyne, Frédéric Cyr, Sheila Atchison, Charlie Bishop, Sébastien Donnet, Peter S. Galbraith, Maxime Geoffroy, David Hebert, Chantelle Layton, Andry Ratsimandresy, Jose-Luis del Rio Iglesias, Jean-Luc Shaw, Stephen Snook, Nancy Soontiens, Elena Tel, and Wojciech Walkusz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-611, https://doi.org/10.5194/essd-2025-611, 2025
Preprint under review for ESSD
Short summary
Short summary
As part of the new Fisheries Act, Fisheries and Oceans Canada (DFO) has made it a priority to make oceanographic data publicly available. The Canadian Atlantic Shelf Temperature-Salinity (CASTS) aims to address this priority, by creating an open-access data product that includes most of the historical temperature and salinity profiles in Atlantic Canada and the eastern Arctic since 1873.
Alex Nalivaev, Francesco d'Ovidio, Laurent Bopp, Maristella Berta, Louise Rousselet, Clara Azarian, and Stéphane Blain
EGUsphere, https://doi.org/10.5194/egusphere-2025-2145, https://doi.org/10.5194/egusphere-2025-2145, 2025
Short summary
Short summary
The Kerguelen region hosts a phytoplankton bloom influenced by several iron sources. In particular, glaciers supply iron to the coastal waters. However, the importance of glacial iron for the bloom is not known. Here we calculate iron transport pathways from glaciers to the open ocean using in situ and satellite data, showing that one third of the offshore bloom is reached by glacial iron. These results are important in the context of the melting of the Kerguelen ice cap under climate change.
Maxime Duranson, Léo Berline, Loïc Guilloux, Alice Della Penna, Mark D. Ohman, Sven Gastauer, Cédric Cotte, Daniela Bănaru, Théo Garcia, Maristella Berta, Andrea Doglioli, Gérald Gregori, Francesco D'Ovidio, and François Carlotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-1125, https://doi.org/10.5194/egusphere-2025-1125, 2025
Short summary
Short summary
The zooplankton community was investigated using net sampling across the North Balearic Front at fine resolution. The front mostly acts as a zonal boundary between communities with a copepod dominated community to the north and a more diversified community to the south. The front itself showed lower biovolume and abundances. The main community difference occurred in the 0–100 m layer, while deeper layers were more homogeneous.
Pierre-Marie Poulain, Luca Centurioni, Carlo Brandini, Stefano Taddei, Maristella Berta, and Milena Menna
Ocean Sci., 19, 1617–1631, https://doi.org/10.5194/os-19-1617-2023, https://doi.org/10.5194/os-19-1617-2023, 2023
Short summary
Short summary
Drifters and a profiling float were deployed in the coastal waters of the southeastern Ligurian Sea to characterize the near-surface circulation at a scale of ~10 km. The drifters were trapped in an offshore-flowing filament and a cyclonic eddy that developed at the southwestern extremity of the filament. Drifter velocities are used to estimate differential kinematic properties and relative dispersion statistics of the surface currents.
Tiziana Ciuffardi, Zoi Kokkini, Maristella Berta, Marina Locritani, Andrea Bordone, Ivana Delbono, Mireno Borghini, Maurizio Demarte, Roberta Ivaldi, Federica Pannacciulli, Anna Vetrano, Davide Marini, and Giovanni Caprino
Earth Syst. Sci. Data, 15, 1933–1946, https://doi.org/10.5194/essd-15-1933-2023, https://doi.org/10.5194/essd-15-1933-2023, 2023
Short summary
Short summary
This paper presents the results of the first 2 years of the Levante Canyon Mooring, a mooring line placed since 2020 in the eastern Ligurian Sea, to study a canyon area at about 600 m depth characterized by the presence of cold-water living corals. It provides hydrodynamic and thermohaline measurements along the water column, describing a water-mass distribution coherent with previous evidence in the Ligurian Sea. The data also show a Northern Current episodic and local reversal during summer.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Giusy Fedele, Elena Mauri, Giulio Notarstefano, and Pierre Marie Poulain
Ocean Sci., 18, 129–142, https://doi.org/10.5194/os-18-129-2022, https://doi.org/10.5194/os-18-129-2022, 2022
Short summary
Short summary
Atlantic Water (AW) and Levantine Intermediate Water (LIW) are important water masses that play a crucial role in the internal variability of the Mediterranean thermohaline circulation. This work aims to characterize the inter-basin and inter-annual variability of AW and LIW in the Mediterranean Sea, taking advantage of the large observational dataset provided by Argo floats from 2001 to 2019. A clear salinification and warming trend characterizes AW and LIW over the last 2 decades.
Helen E. Phillips, Amit Tandon, Ryo Furue, Raleigh Hood, Caroline C. Ummenhofer, Jessica A. Benthuysen, Viviane Menezes, Shijian Hu, Ben Webber, Alejandra Sanchez-Franks, Deepak Cherian, Emily Shroyer, Ming Feng, Hemantha Wijesekera, Abhisek Chatterjee, Lisan Yu, Juliet Hermes, Raghu Murtugudde, Tomoki Tozuka, Danielle Su, Arvind Singh, Luca Centurioni, Satya Prakash, and Jerry Wiggert
Ocean Sci., 17, 1677–1751, https://doi.org/10.5194/os-17-1677-2021, https://doi.org/10.5194/os-17-1677-2021, 2021
Short summary
Short summary
Over the past decade, understanding of the Indian Ocean has progressed through new observations and advances in theory and models of the oceanic and atmospheric circulation. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean, describing Indian Ocean circulation patterns, air–sea interactions, climate variability, and the critical role of the Indian Ocean as a clearing house for anthropogenic heat.
Cited articles
Amores, A., Jordà, G., Arsouze, T., and Le Sommer, J.: Up to what extent can we characterize ocean eddies using present-day gridded altimetric products?, J. Geophys. Res. Oceans, 123, 7220–7236, https://doi.org/10.1029/2018JC014140, 2018. a
Arai, M. and Yamagata, T.: Asymmetric evolution of eddies in rotating shallow water, Chaos, 4, 163–175, https://doi.org/10.1063/1.166001, 1994. a, b
Aravind, H. M., Huntley, H. S., Kirwan Jr., A. D., and Allshouse, M. R.: Drifter Deployment Strategies to Determine Lagrangian Surface Convergence in Submesoscale Flows, J. Atmos. Oceanic Technol., 41, 95–112, https://doi.org/10.1175/JTECH-D-22-0129.1, 2024. a, b
Asselin, O. and Young, W. R.: Penetration of Wind-Generated Near-Inertial Waves into a Turbulent Ocean, Journal of Physical Oceanography, 50, 1699–1716, https://doi.org/10.1175/JPO-D-19-0319.1, 2020. a
Berta, M., Griffa, A., Magaldi, M. G., Özgökmen, T. M., Poje, A. C., Haza, A. C., and Olascoaga, M. J.: Improved Surface Velocity and Trajectory Estimates in the Gulf of Mexico from Blended Satellite Altimetry and Drifter Data, J. Atmos. Oceanic Technol., 32, 1880–1901, https://doi.org/10.1175/JTECH-D-14-00226.1, 2015. a
Berta, M., Griffa, A., Özgökmen, T. M., and Poje, A. C.: Submesoscale evolution of surface drifter triads in the Gulf of Mexico, Geophys. Res. Lett., 43, 11751–11759, https://doi.org/10.1002/2016GL070357, 2016. a
Berta, M., Bellomo, L., Griffa, A., Magaldi, M. G., Molcard, A., Mantovani, C., Gasparini, G. P., Marmain, J., Vetrano, A., Béguery, L., Borghini, M., Barbin, Y., Gaggelli, J., and Quentin, C.: Wind-induced variability in the Northern Current (northwestern Mediterranean Sea) as depicted by a multi-platform observing system, Ocean Sci., 14, 689–710, https://doi.org/10.5194/os-14-689-2018, 2018. a
Berta, M., Griffa, A., Haza, A. C., Horstmann, J., Huntley, H. S., Ibrahim, R., Lund, B., Özgökmen, T. M., and Poje, A. C.: Submesoscale Kinematic Properties in Summer and Winter Surface Flows in the Northern Gulf of Mexico, J. Geophys. Res. Oceans, 125, e2020JC016085, https://doi.org/10.1029/2020JC016085, 2020. a, b
Cao, H., Freilich, M. A., Song, X., Jing, Z., Fox-Kemper, B., Qiu, B., Hetland, R. D., Chai, F., Ruiz, S., and Chen, D.: Isopycnal Submesoscale Stirring Crucially Sustaining Subsurface Chlorophyll Maximum in Ocean Cyclonic Eddies, Geophys. Res. Lett., 51, e2023GL105793, https://doi.org/10.1029/2023GL105793, 2024. a
Centurioni, L. R.: Drifter Technology and Impacts for Sea Surface Temperature, Sea-Level Pressure, and Ocean Circulation Studies, in: Observing the Oceans in Real Time, edited by: Venkatesan, R., Tandon, A., D'Asaro, E. A., and Atmanand, M. A., Springer, 37–57, https://doi.org/10.1007/978-3-319-66493-4_3, 2018. a
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011. a
Chen, Y., Straub, D., and Nadeau, L.-P.: Interaction of Nonlinear Ekman Pumping, Near-Inertial Oscillations, and Geostrophic Turbulence in an Idealized Coupled Model, Journal of Physical Oceanography, 51, 975–987, https://doi.org/10.1175/JPO-D-20-0268.1, 2021. a, b
CMEMS: Mediterranean Sea, Bio-Geo-Chemical, L3, daily Satellite Observations (1997–ongoing), Copernicus Climate Change Service, Climate Data Store [data set], https://doi.org/10.48670/moi-00299, 2022. a
Copernicus Climate Change Service, Climate Data Store: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023. a
Cushman-Roisin, B. and Beckers, J.-M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, International geophysics series, Vol. 101, Academic Press, Waltham, Mass, 2nd edn., ISBN 1-283-27593-7, 2011. a
D'Asaro, E., Johnston, T. M. S., Mahadevan, A., Pascual, A., Rudnick, D. L., Ruiz, S., Tintoré, J., Abbott, K., Allen, J. T., Alou-Font, E., Aravind, H. M., Belgacem, M., Berta, M., Casas, B., Centurioni, L. R., Cheslack, H. R., Cutolo, E., Dever, M., Falcieri, F. M., Farrar, J. T., Freilich, M.A., Garcia-Jove, M., Gregori, G., Griffa, A., Hodges, B., Kinsella, A., Lankhorst, M., Lermusiaux, P., McNeil, C., Middleton, L., Mourre, B., Oms, L., Ozgokmen, T. M., Poulain, P.-M., Rypina, I. I., Send, U., Shcherbina, A. Y., Tarry, D. R., Testa, G., Worden, A. Z., Wu, W., and Zarokanellos, N: CALYPSO – Coherent Lagrangian Pathways from the Surface Ocean to Interior, MBLWHOI library [data set], https://doi.org/10.26025/1912/71856, 2025. a
D'Asaro, E. A., Shcherbina, A. Y., Klymak, J. M., Molemaker, M. J., Novelli, G., Guigand, C. M., Haza, A. C., Haus, B. K., Ryan, E. H., Jacobs, G. A., Huntley, H. S., Laxague, N. J. M., Chen, S., Judt, F., McWilliams, J. C., Barkan, R., Kirwan Jr., A. D., Poje, A. C., and Özgökmen, T. M.: Ocean convergence and the dispersion of flotsam, P. Natl. Acad. Sci. USA, 115, 1162–1167, https://doi.org/10.1073/pnas.1718453115, 2018. a
Dauhajre, D. P. and McWilliams, J. C.: Diurnal Evolution of Submesoscale Front and Filament Circulations, Journal of Physical Oceanography, 48, 2343–2361, https://doi.org/10.1175/JPO-D-18-0143.1, 2018. a
Davis, R. E.: Drifter observations of coastal surface currents during CODE: The method and descriptive view, J. Geophys. Res.-Oceans, 90, 4741–4755, https://doi.org/10.1029/JC090iC03p04741, 1985. a
Dever, M., Freilich, M. A., Farrar, J. T., Hodges, B., Lanagan, T., Baron, A. J., and Mahadevan, A.: EcoCTD for Profiling Oceanic Physical-Biological Properties from an Underway Ship, J. Atmos. Oceanic Technol., 37, 825–840, https://doi.org/10.1175/JTECH-D-19-0145.1, 2020. a
Dewar, W. K. and Flierl, G. R.: Some Effects of the Wind on Rings, Journal of Physical Oceanography, 17, 1653–1667, https://doi.org/10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2, 1987. a
Elipot, S., Lumpkin, R., and Prieto, G.: Modification of inertial oscillations by the mesoscale eddy field, Journal of Geophysical Research: Oceans, 115, C09010, https://doi.org/10.1029/2009JC005679, 2010. a
Escudier, R., Renault, L., Pascual, A., Brasseur, P., Chelton, D., and Beuvier, J.: Eddy properties in the Western Mediterranean Sea from satellite altimetry and a numerical simulation, J. Geophys. Res.-Oceans, 121, 3990–4006, https://doi.org/10.1002/2015JC011371, 2016. a, b
Esposito, G., Donnet, S., Berta, M., Shcherbina, A. Y., Freilich, M., Centurioni, L., D’Asaro, E. A., Farrar, J. T., Johnston, T. M. S., Mahadevan, A., Özgökmen, T., Pascual, A., Poulain, P.-M., Ruiz, S., Tarry, D. R., and Griffa, A.: Inertial Oscillations and Frontal Processes in an Alboran Sea Jet: Effects on Divergence and Vertical Transport, Journal of Geophysical Research: Oceans, 128, e2022JC019004, https://doi.org/10.1029/2022JC019004, 2023. a, b, c, d, e, f
Essink, S., Hormann, V., Centurioni, L. R., and Mahadevan, A.: On Characterizing Ocean Kinematics from Surface Drifters, J. Atmos. Oceanic Technol., 39, 1183–1198, https://doi.org/10.1175/JTECH-D-21-0068.1, 2022. a
Fox-Kemper, B., Ferrari, R., and Hallberg, R.: Parameterization of Mixed Layer Eddies. Part I: Theory and Diagnosis, Journal of Physical Oceanography, 38, 1145–1165, https://doi.org/10.1175/2007JPO3792.1, 2008. a
Fu, L.-L., Chelton, D. B., Le Traon, P.-Y., and Morrow, R.: Eddy Dynamics from Satellite Altimetry, Oceanography, 23, 14–25, https://doi.org/10.5670/oceanog.2010.02, 2015. a, b
Gaube, P., Chelton, D. B., Samelson, R. M., Schlax, M. G., and O’Neill, L. W.: Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping, Journal of Physical Oceanography, 45, 104–132, https://doi.org/10.1175/JPO-D-14-0032.1, 2015. a, b, c, d
Gonçalves, R. C., Iskandarani, M., Özgökmen, T. M., and Thacker, W. C.: Reconstruction of Submesoscale Velocity Field from Surface Drifters, J. Phys. Oceanogr., 49, 941–958, https://doi.org/10.1175/JPO-D-18-0025.1, 2019. a
Graves, L. P., McWilliams, J. C., and Montgomery, M. T.: Vortex evolution due to straining: a mechanism for dominance of strong, interior anticyclones, Geophys. Astrophys. Fluid Dynam., 100, 151–183, https://doi.org/10.1080/03091920600792041, 2006. a
Hart, J. E.: A note on nonlinear corrections to the Ekman layer pumping velocity, Physics of Fluids, 12, 131–135, https://doi.org/10.1063/1.870300, 2000. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Climate Data Store [data set], https://doi.org/10.24381/cds.adbb2d47, 2023. a
Huntley, H. S., Berta, M., Esposito, G., Griffa, A., Mourre, B., and Centurioni, L. R.: Conditions for Reliable Divergence Estimates from Drifter Triplets, J. Atmos. Oceanic Technol., 39, 1499–1523, https://doi.org/10.1175/JTECH-D-21-0161.1, 2022. a, b, c, d
Johnson, H. K.: Simple expressions for correcting wind speed data for elevation, Coastal Eng., 36, 263–269, https://doi.org/10.1016/S0378-3839(99)00016-2, 1999. a
Kawai, H.: Scale dependence of divergence and vorticity of near-surface flows in the sea. Part 1. Measurements and calculations of area-averaged divergence and vorticity, J. Oceanogr. Soc. Jpn., 41, 157–166, https://doi.org/10.1007/BF02109190, 1985. a
Kirincich, A. R. and Barth, J. A.: Time-Varying Across-Shelf Ekman Transport and Vertical Eddy Viscosity on the Inner Shelf, Journal of Physical Oceanography, 39, 602–620, https://doi.org/10.1175/2008JPO3969.1, 2009. a
Kunze, E.: Near-Inertial Wave Propagation In Geostrophic Shear, Journal of Physical Oceanography, 15, 544–565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2, 1985. a
Li, D., Chang, P., Ramachandran, S., Jing, Z., Zhang, Q., Kurian, J., Gopal, A., and Yang, H.: Contribution of the Two Types of Ekman Pumping Induced Eddy Heat Flux to the Total Vertical Eddy Heat Flux, Geophysical Research Letters, 48, e2021GL092982, https://doi.org/10.1029/2021GL092982, 2021. a
Li, H., Xu, F., and Wang, G.: Global Mapping of Mesoscale Eddy Vertical Tilt, J. Geophys. Res. Oceans, 127, e2022JC019131, https://doi.org/10.1029/2022JC019131, 2022. a, b
Li, H., Xu, F., Wang, G., and Shi, R.: Numerical studies of the tilting of mesoscale eddies: The effects of rotation and stratification, Deep Sea Research Part I: Oceanographic Research Papers, 191, 103945, https://doi.org/10.1016/j.dsr.2022.103945, 2023. a
Lodise, J., Özgökmen, T. M., Gonçalves, R. C., Iskandarani, M., Lund, B., Horstmann, J., Poulain, P.-M., Klymak, J., Ryan, E. H., and Guigand, C.: Investigating the Formation of Submesoscale Structures along Mesoscale Fronts and Estimating Kinematic Quantities Using Lagrangian Drifters, Fluids, 5, 159, https://doi.org/10.3390/fluids5030159, 2020. a
Lumpkin, R. and Pazos, M.: Measuring surface currents with Surface Velocity Program drifters: the instrument, its data, and some recent results, in: Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, edited by: Griffa, A., Kirwan Jr., A. D., Mariano, A. J., Özgökmen, T. M., and Rossby, H. T., Cambridge University Press, 39–67, https://doi.org/10.1017/CBO9780511535901.003, 2007. a
Mahadevan, A. and D'Asaro, E. A.: CALYPSO 2022 N/O Pourquoi Pas? Cruise Report, Woods Hole Oceanographic Institution, MBLWHOI Library, https://doi.org/10.1575/1912/71878, 2025. a
Mahadevan, A., Thomas, L. N., and Tandon, A.: Comment on “Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms”, Science, 320, 448–448, https://doi.org/10.1126/science.1152111, 2008. a, b
Mahadevan, A., Pascual, A., Rudnick, D. L., Ruiz, S., Tintoré, J., and D'Asaro, E. A.: Coherent pathways for vertical transport from the surface ocean to interior, B. Am. Meteorol. Soc., 101, E1996–E2004, https://doi.org/10.1175/BAMS-D-19-0305.1, 2020. a
Martínez-Moreno, J., Hogg, A. M., England, M. H., Constantinou, N. C., Kiss, A. E., and Morrison, A. K.: Global changes in oceanic mesoscale currents over the satellite altimetry record, Nature Climate Change, 11, 397–403, https://doi.org/10.1038/s41558-021-01006-9, 2021. a
McGillicuddy, D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C. A., Davis, C. S., Ewart, C., Falkowski, P. G., Goldthwait, S. A., Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V. K., Ledwell, J. R., Li, Q. P., Siegel, D. A., and Steinberg, D. K.: Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms, Science, 316, 1021–1026, https://doi.org/10.1126/science.1136256, 2007. a, b, c, d
McWilliams, J. C.: Submesoscale, coherent vortices in the ocean, Rev. Geophys., 23, 165–182, https://doi.org/10.1029/RG023i002p00165, 1985. a
McWilliams, J. C.: A survey of submesoscale currents, Geoscience Letters, 6, https://doi.org/10.1186/s40562-019-0133-3, 2019. a, b
Menna, M., Gerin, R., Bussani, A., and Poulain, P.-M.: The OGS Mediterranean Drifter Dataset: 1986-2016, Tech. Rep. Rel. 2017/92 Sez. OCE 28 MAOS, OGS, Trieste, Italy, https://argo.ogs.it/pub/Menna et al 2017_Drifter_database.pdf (last access: 10 November 2025), 2017. a
Middleton, L., Wu, W., Johnston, T. M. S., Tarry, D. R., Farrar, J. T., Poulain, P.-M., Özgökmen, T. M., Shcherbina, A. Y., Pascual, A., McNeill, C. L., Belgacem, M., Berta, M., Abbott, K., Worden, A. Z., Wittmers, F., Kinsella, A., Centurioni, L. R., Hormann, V., Cutolo, E., Tintoré, J., Ruiz, S., Casas, B., Cheslack, H., Collaboration, C., D'Asaro, E. A., and Mahadevan, A.: Observations of a splitting ocean cyclone resulting in subduction of surface waters, Science Advances, 11, eadu3221, https://doi.org/10.1126/sciadv.adu3221, 2025. a, b, c, d, e, f, g, h, i, j, k
Mkhinini, N., Coimbra, A. L. S., Stegner, A., Arsouze, T., Taupier-Letage, I., and Béranger, K.: Long-lived mesoscale eddies in the eastern Mediterranean Sea: Analysis of 20 years of AVISO geostrophic velocities, J. Geophys. Res.-Oceans, 119, 8603–8626, https://doi.org/10.1002/2014JC010176, 2014. a
Molinari, R. and Kirwan Jr., A. D.: Calculations of Differential Kinematic Properties From Lagrangian Observations in the Western Caribbean Sea, J. Phys. Oceanogr., 5, 483–491, https://doi.org/10.1175/1520-0485(1975)005<0483:CODKPF>2.0.CO;2, 1975. a, b, c
Munk, W., Armi, L., Fischer, K., and Zachariasen, F.: Spirals on the sea, Proc. R. Soc. A, 456, 1217–1280, https://doi.org/10.1098/rspa.2000.0560, 2000. a
Niiler, P.: Chapter 4.1: The world ocean surface circulation, in: Ocean Circulation and Climate, edited by: Siedler, G., Church, J., and Gould, J., Academic Press, 193–204, https://doi.org/10.1016/S0074-6142(01)80119-4, 2001. a
Niiler, P. P.: On the Ekman divergence in an oceanic jet, Journal of Geophysical Research, 74, 7048–7052, https://doi.org/10.1029/JC074i028p07048, 1969. a
Niiler, P. P., Sybrandy, A. S., Bi, K., Poulain, P.-M., and Bitterman, D.: Measurements of the water-following capability of holey-sock and TRISTAR drifters, Deep-Sea Res. Pt. I, 42, 1951–1964, https://doi.org/10.1016/0967-0637(95)00076-3, 1995. a
Nof, D.: The role of angular momentum in the splitting of isolated eddies, Tellus A, 42, 469–481, https://doi.org/10.3402/tellusa.v42i4.11891, 1990. a
Nof, D.: Fission of Single and Multiple Eddies, J. Phys. Oceanogr., 21, 40–52, https://doi.org/10.1175/1520-0485(1991)021<0040:FOSAME>2.0.CO;2, 1991. a
Novelli, G., Guigand, C. M., Cousin, C., Ryan, E. H., Laxague, N. J. M., Dai, H., Haus, B. K., and Özgökmen, T. M.: A Biodegradable Surface Drifter for Ocean Sampling on a Massive Scale, J. Atmos. Oceanic Technol., 34, 2509–2532, https://doi.org/10.1175/JTECH-D-17-0055.1, 2017. a
Ohlmann, J. C., Molemaker, M. J., Baschek, B., Holt, B., Marmorino, G., and Smith, G.: Drifter observations of submesoscale flow kinematics in the coastal ocean, Geophys. Res. Lett., 44, 330–337, https://doi.org/10.1002/2016GL071537, 2017. a
Okubo, A., Ebbesmeyer, C. C., and Helseth, J. M.: Determination of Lagrangian deformations from analysis of current followers, J. Phys. Oceanogr., 6, 524–527, https://doi.org/10.1175/1520-0485(1976)006<0524:DOLDFA>2.0.CO;2, 1976. a, b
Perkins, H.: Observed effect of an eddy on inertial oscillations, Deep Sea Research and Oceanographic Abstracts, 23, 1037–1042, https://doi.org/10.1016/0011-7471(76)90879-2, 1976. a
Petersen, M. R., Williams, S. J., Maltrud, M. E., Hecht, M. W., and Hamann, B.: A three-dimensional eddy census of a high-resolution global ocean simulation, J. Geophys. Res.-Oceans, 118, 1759–1774, https://doi.org/10.1002/jgrc.20155, 2013. a
Pinot, J.-M., Tintoré, J., and Gomis, D.: Quasi-synoptic mesoscale variability in the Balearic Sea, Deep Sea Research Part I: Oceanographic Research Papers, 41, 897–914, https://doi.org/10.1016/0967-0637(94)90082-5, 1994. a
Polvani, L. M., McWilliams, J. C., Spall, M. A., and Ford, R.: The coherent structures of shallow-water turbulence: Deformation-radius effects, cyclone/anticyclone asymmetry and gravity-wave generation, Chaos, 4, 177–186, https://doi.org/10.1063/1.166002, 1994. a
Poulain, P.-M.: Drifter observations of surface circulation in the Adriatic Sea between December 1994 and March 1996, J Mar. Syst., 20, 231–253, https://doi.org/10.1016/S0924-7963(98)00084-0, 1999. a
Poulain, P.-M., Centurioni, L. R., and Özgökmen, T. M.: Comparing the Currents Measured by CARTHE, CODE and SVP Drifters as a Function of Wind and Wave Conditions in the Southwestern Mediterranean Sea, Sensors, 22, 353, https://doi.org/10.3390/s22010353, 2022. a
Resplandy, L., Lévy, M., and McGillicuddy Jr., D. J.: Effects of Eddy-Driven Subduction on Ocean Biological Carbon Pump, Global Biogeochemical Cycles, 33, 1071–1084, https://doi.org/10.1029/2018GB006125, 2019. a
Ruiz, S., Pascual, A., Garau, B., Faugère, Y., Alvarez, A., and Tintoré, J.: Mesoscale dynamics of the Balearic Front, integrating glider, ship and satellite data, Journal of Marine Systems, 78, S3–S16, https://doi.org/10.1016/j.jmarsys.2009.01.007, 2009. a
Saucier, W. J.: Principles of meteorological analysis, vol. 438, University of Chicago Press, Chicago, IL, ISBN 0226735338, 1955. a
Song, H., Marshall, J., McGillicuddy, D. J., and Seo, H.: Impact of Current-Wind Interaction on Vertical Processes in the Southern Ocean, J. Geophys. Res.-Oceans, 125, e2020JC016046, https://doi.org/10.1029/2020JC016046, 2020. a
Stegner, A., Le Vu, B., Dumas, F., Ghannami, M. A., Nicolle, A., Durand, C., and Faugere, Y.: Cyclone-Anticyclone Asymmetry of Eddy Detection on Gridded Altimetry Product in the Mediterranean Sea, J. Geophys. Res.-Oceans, 126, e2021JC017475, https://doi.org/10.1029/2021JC017475, 2021. a
Stern, M. E.: Interaction of a uniform wind stress with a geostrophic vortex, Deep Sea Res., 12, 355–367, https://doi.org/10.1016/0011-7471(65)90007-0, 1965. a, b, c, d
Tang, Q., Gulick, S. P. S., Sun, J., Sun, L., and Jing, Z.: Submesoscale Features and Turbulent Mixing of an Oblique Anticyclonic Eddy in the Gulf of Alaska Investigated by Marine Seismic Survey Data, Journal of Geophysical Research: Oceans, 125, e2019JC015393, https://doi.org/10.1029/2019JC015393, 2020. a
Tarry, D. R., Essink, S., Pascual, A., Ruiz, S., Poulain, P.-M., Özgökmen, T., Centurioni, L. R., Farrar, J. T., Shcherbina, A., Mahadevan, A., and D’Asaro, E.: Frontal Convergence and Vertical Velocity Measured by Drifters in the Alboran Sea, Journal of Geophysical Research: Oceans, 126, e2020JC016614, https://doi.org/10.1029/2020JC016614, 2021. a, b
Tarry, D. R., Ruiz, S., Johnston, T. M. S., Poulain, P.-M., Özgökmen, T. M., Centurioni, L. R., Berta, M., Esposito, G., Farrar, J. T., Mahadevan, A., and Pascual, A.: Drifter observations reveal intense vertical velocity in a surface ocean front, Geophys. Res. Lett., 49, e2022GL098969, https://doi.org/10.1029/2022GL098969, 2022. a, b
Tintoré, J., Gomis, D., Alonso, S., and Parrilla, G.: Mesoscale Dynamics and Vertical Motion in the Alborán Sea, Journal of Physical Oceanography, 21, 811–823, https://doi.org/10.1175/1520-0485(1991)021<0811:MDAVMI>2.0.CO;2, 1991. a
Volpe, G., Colella, S., Brando, V. E., Forneris, V., La Padula, F., Di Cicco, A., Sammartino, M., Bracaglia, M., Artuso, F., and Santoleri, R.: Mediterranean ocean colour Level 3 operational multi-sensor processing, Ocean Sci., 15, 127–146, https://doi.org/10.5194/os-15-127-2019, 2019. a
Wenegrat, J. O. and Thomas, L. N.: Ekman Transport in Balanced Currents with Curvature, J. Phys. Oceanogr., 47, 1189–1203, https://doi.org/10.1175/JPO-D-16-0239.1, 2017. a, b, c
Short summary
Oceanographic and atmospheric data is used to study the properties and evolution of an eddy in the Balearic Sea. During the period of observation, this eddy elongates and splits. The unusually dense set of observations from satellites, drifters, and ship-mounted instruments provide insight into this splitting process. In particular, the contribution from the wind is assessed. These mechanisms are known to impact the vertical exchanges of oxygen, carbon dioxide, nutrients, and pollutants.
Oceanographic and atmospheric data is used to study the properties and evolution of an eddy in...