Articles | Volume 21, issue 3
https://doi.org/10.5194/os-21-1003-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-1003-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
AdriE: a high-resolution ocean model ensemble for the Adriatic Sea under severe climate change conditions
National Research Council of Italy, Institute of Marine Sciences (CNR-ISMAR), Venice, Italy
Sandro Carniel
National Research Council of Italy, Institute of Polar Sciences, (CNR-ISP), Venice, Italy
Renato R. Colucci
National Research Council of Italy, Institute of Polar Sciences, (CNR-ISP), Venice, Italy
previously at: CNR-ISMAR, Trieste, Italy
Cléa Denamiel
Ruder Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
Institute of Adriatic Crops and Karst Reclamation, Split, Croatia
Petra Pranić
Institute of Oceanography and Fisheries, Split, Croatia
Fabio Raicich
National Research Council of Italy, Institute of Marine Sciences (CNR-ISMAR), Trieste, Italy
Antonio Ricchi
Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
Center of Excellence in Telesensing of Environment and Model Prediction of Severe Events (CETEMPS), University of L'Aquila, L'Aquila, Italy
Lorenzo Sangelantoni
CMCC Foundation – Euro-Mediterranean Center on Climate Change, Bologna, Italy
Ivica Vilibić
Ruder Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
Institute of Adriatic Crops and Karst Reclamation, Split, Croatia
Maria Letizia Vitelletti
National Research Council of Italy, Institute of Marine Sciences (CNR-ISMAR), Venice, Italy
Related authors
Peter Mlakar, Antonio Ricchi, Sandro Carniel, Davide Bonaldo, and Matjaž Ličer
Geosci. Model Dev., 17, 4705–4725, https://doi.org/10.5194/gmd-17-4705-2024, https://doi.org/10.5194/gmd-17-4705-2024, 2024
Short summary
Short summary
We propose a new point-prediction model, the DEep Learning WAVe Emulating model (DELWAVE), which successfully emulates the Simulating WAves Nearshore model (SWAN) over synoptic to climate timescales. Compared to control climatology over all wind directions, the mismatch between DELWAVE and SWAN is generally small compared to the difference between scenario and control conditions, suggesting that the noise introduced by surrogate modelling is substantially weaker than the climate change signal.
Renata Archetti, Agnese Paci, Sandro Carniel, and Davide Bonaldo
Nat. Hazards Earth Syst. Sci., 16, 1107–1122, https://doi.org/10.5194/nhess-16-1107-2016, https://doi.org/10.5194/nhess-16-1107-2016, 2016
Short summary
Short summary
An application to monitor the response of a beach to single storms, in order to predict shoreline changes and to plan the defence of the shore zone is presented. On the study area, Jesolo (Italy), video and current stations were installed. The methodology, which is economically attractive, proves to be a valuable system for providing detailed indications on beach erosion processes and can be used for improving the collaboration between coastal scientists and managers to solve beach-maintenance problems.
Francesco Marcello Falcieri, Lakshmi Kantha, Alvise Benetazzo, Andrea Bergamasco, Davide Bonaldo, Francesco Barbariol, Vlado Malačič, Mauro Sclavo, and Sandro Carniel
Ocean Sci., 12, 433–449, https://doi.org/10.5194/os-12-433-2016, https://doi.org/10.5194/os-12-433-2016, 2016
Short summary
Short summary
Between January 30th and February 4th we collected the first turbulence observations in the Gulf of Trieste under different wind forcing and water column structure. The vertical profiles of the turbulence kinetic energy dissipation rates showed that the presence near the sea floor of different water masses, inflowing from the open sea, can prevent the complete mixing of the water column. This dumping effect is enhanced when these masses present higher suspended sediment concentrations.
V. E. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. M. Falcieri, A. Coluccelli, A. Russo, and S. Carniel
Ocean Sci., 11, 909–920, https://doi.org/10.5194/os-11-909-2015, https://doi.org/10.5194/os-11-909-2015, 2015
Short summary
Short summary
Sea surface temperature and turbidity, derived from satellite imagery, were used to characterize river plumes in the northern Adriatic Sea during a significant flood event in November 2014. Circulation patterns and sea surface salinity, from an operational coupled ocean-wave model, supported the interpretation of the plumes' interaction with the receiving waters and among them.
Clea Lumina Denamiel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1363, https://doi.org/10.5194/egusphere-2025-1363, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study advances our understanding of Adriatic Marine Heatwaves (MHWs) under historical and far-future extreme warming scenarios, emphasizing the critical role of the Po River plume and Adriatic natural variability in shaping MHW dynamics. While the Pseudo Global Warming (PGW) approach used in the study provides valuable insights, future research should adopt more comprehensive modelling frameworks to better capture the complexities of future climate change and its impacts on MHWs.
Andrea Securo, Costanza Del Gobbo, Giovanni Baccolo, Carlo Barbante, Michele Citterio, Fabrizio De Blasi, Marco Marcer, Mauro Valt, and Renato R. Colucci
The Cryosphere, 19, 1335–1352, https://doi.org/10.5194/tc-19-1335-2025, https://doi.org/10.5194/tc-19-1335-2025, 2025
Short summary
Short summary
We have reconstructed the multi-decadal (1980s–2023) ice mass changes for all the current mountain glaciers in the Dolomites. We used historical aerial photographs, drone surveys, and lidar to fill the glaciological data gap for the region. We observed an alarming decline in both glacier area and volume, with some of the glaciers showing smaller losses due to local topography and debris cover feedback. We strongly recommend more specific monitoring of these glaciers.
Elena Terzić, Clara Gardiol, and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2025-600, https://doi.org/10.5194/egusphere-2025-600, 2025
Short summary
Short summary
Vertical salinity profiles with highest values at the surface layers – surface saline lakes – have been known to occur in the Eastern Mediterranean, where strong evaporation, warm summers and low winds all contribute to an increase in surface salinity. Our analysis of Argo data from the past 2 decades showed that saline lakes occur also in other regions across the Mediterranean Sea. This poses a question whether such changes indicate a salinification of the entire basin due to climate change.
Lorenzo Sangelantoni, Stefano Tibaldi, Leone Cavicchia, Enrico Scoccimarro, Pier Luigi Vidale, Kevin Hodges, Vivien Mavel, Mattia Almansi, Chiara Cagnazzo, and Samuel Almond
EGUsphere, https://doi.org/10.5194/egusphere-2024-4157, https://doi.org/10.5194/egusphere-2024-4157, 2025
Short summary
Short summary
We introduce a new dataset of European windstorms linked to extratropical cyclones, spanning whole ERA5 reanalysis period (1940–present). Developed under Copernicus Climate Change Service, the dataset provides standardized, high-quality information on windstorm tracks and footprints for industries like insurance and risk management. Preliminary findings show an increase in cold-season windstorms and their impacts in parts of Europe. Tracking methods contribute to uncertainties in key statistics.
Cléa Denamiel, Iva Tojčić, and Petra Pranić
Ocean Sci., 21, 37–62, https://doi.org/10.5194/os-21-37-2025, https://doi.org/10.5194/os-21-37-2025, 2025
Short summary
Short summary
We use a high-resolution atmosphere–ocean model to project Adriatic Dense Water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
Florian Pantillon, Silvio Davolio, Elenio Avolio, Carlos Calvo-Sancho, Diego Saul Carrió, Stavros Dafis, Emanuele Silvio Gentile, Juan Jesus Gonzalez-Aleman, Suzanne Gray, Mario Marcello Miglietta, Platon Patlakas, Ioannis Pytharoulis, Didier Ricard, Antonio Ricchi, Claudio Sanchez, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024, https://doi.org/10.5194/wcd-5-1187-2024, 2024
Short summary
Short summary
Cyclone Ianos of September 2020 was a high-impact but poorly predicted medicane (Mediterranean hurricane). A community effort of numerical modelling provides robust results to improve prediction. It is found that the representation of local thunderstorms controlled the interaction of Ianos with a jet stream at larger scales and its subsequent evolution. The results help us understand the peculiar dynamics of medicanes and provide guidance for the next generation of weather and climate models.
Peter Mlakar, Antonio Ricchi, Sandro Carniel, Davide Bonaldo, and Matjaž Ličer
Geosci. Model Dev., 17, 4705–4725, https://doi.org/10.5194/gmd-17-4705-2024, https://doi.org/10.5194/gmd-17-4705-2024, 2024
Short summary
Short summary
We propose a new point-prediction model, the DEep Learning WAVe Emulating model (DELWAVE), which successfully emulates the Simulating WAves Nearshore model (SWAN) over synoptic to climate timescales. Compared to control climatology over all wind directions, the mismatch between DELWAVE and SWAN is generally small compared to the difference between scenario and control conditions, suggesting that the noise introduced by surrogate modelling is substantially weaker than the climate change signal.
Costanza Del Gobbo, Renato R. Colucci, Giovanni Monegato, Manja Žebre, and Filippo Giorgi
Clim. Past, 19, 1805–1823, https://doi.org/10.5194/cp-19-1805-2023, https://doi.org/10.5194/cp-19-1805-2023, 2023
Short summary
Short summary
We studied atmosphere–cryosphere interaction during the last phase of the Last Glacial Maximum in the Alpine region, using a high-resolution regional climate model. We analysed the climate south and north of the Alps, using a detailed map of the Alpine equilibrium line altitude (ELA) to study the mechanism that sustained the Alpine glaciers at 21 ka. The Genoa low and a mild Mediterranean Sea led to frequent snowfall in the southern Alps, thus preserving the glaciers and lowering the ELA.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Maria Chara Karypidou, Stefan Pieter Sobolowski, Lorenzo Sangelantoni, Grigory Nikulin, and Eleni Katragkou
Geosci. Model Dev., 16, 1887–1908, https://doi.org/10.5194/gmd-16-1887-2023, https://doi.org/10.5194/gmd-16-1887-2023, 2023
Short summary
Short summary
Southern Africa is listed among the climate change hotspots; hence, accurate climate change information is vital for the optimal preparedness of local communities. In this work we assess the degree to which regional climate models (RCMs) are influenced by the global climate models (GCMs) from which they receive their lateral boundary forcing. We find that although GCMs exert a strong impact on RCMs, RCMs are still able to display substantial improvement relative to the driving GCMs.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Petra Zemunik, Jadranka Šepić, Havu Pellikka, Leon Ćatipović, and Ivica Vilibić
Earth Syst. Sci. Data, 13, 4121–4132, https://doi.org/10.5194/essd-13-4121-2021, https://doi.org/10.5194/essd-13-4121-2021, 2021
Short summary
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Fabio Raicich and Renato R. Colucci
Earth Syst. Sci. Data, 13, 3363–3377, https://doi.org/10.5194/essd-13-3363-2021, https://doi.org/10.5194/essd-13-3363-2021, 2021
Short summary
Short summary
To understand climate change, it is essential to analyse long time series of atmospheric data. Here we studied the atmospheric pressure observed at Trieste (Italy) from 1841 to 2018. We examined the available information on the characteristics and elevations of the barometers and on the data sampling. A basic data quality control was also applied. As a result, we built a homogeneous time series of daily mean pressures at mean sea level, from which a trend of 0.5 hPa per century was estimated.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Rossella Ferretti, Annalina Lombardi, Barbara Tomassetti, Lorenzo Sangelantoni, Valentina Colaiuda, Vincenzo Mazzarella, Ida Maiello, Marco Verdecchia, and Gianluca Redaelli
Hydrol. Earth Syst. Sci., 24, 3135–3156, https://doi.org/10.5194/hess-24-3135-2020, https://doi.org/10.5194/hess-24-3135-2020, 2020
Short summary
Short summary
Floods and severe rainfall are among the major natural hazards in the Mediterranean basin. Though precipitation weather forecasts have improved considerably, precipitation estimation is still affected by errors that can deteriorate the hydrological forecast. To improve hydrological forecasting, a regional-scale meteorological–hydrological ensemble is presented. This allows for predicting potential severe events days in advance and for characterizing the uncertainty of the hydrological forecast.
Ivica Vilibić, Petra Zemunik, Jadranka Šepić, Natalija Dunić, Oussama Marzouk, Hrvoje Mihanović, Clea Denamiel, Robert Precali, and Tamara Djakovac
Ocean Sci., 15, 1351–1362, https://doi.org/10.5194/os-15-1351-2019, https://doi.org/10.5194/os-15-1351-2019, 2019
Fabio Raicich and Renato R. Colucci
Earth Syst. Sci. Data, 11, 761–768, https://doi.org/10.5194/essd-11-761-2019, https://doi.org/10.5194/essd-11-761-2019, 2019
Short summary
Short summary
Thanks to near-surface sea temperatures measured at Trieste, northern Adriatic Sea, from 1899 to 2015, we estimated mean daily temperatures at 2 m depth and built a quasi-homogeneous 117-year-long time series. We describe the instruments used and the sites of measurements, which are all within Trieste harbour. The data set represents a valuable tool to study sea temperature variability on different timescales. A mean temperature rise rate of 1.1 ± 0.3 °C per century was estimated.
Ivica Vilibić, Hrvoje Mihanović, Ivica Janeković, Cléa Denamiel, Pierre-Marie Poulain, Mirko Orlić, Natalija Dunić, Vlado Dadić, Mira Pasarić, Stipe Muslim, Riccardo Gerin, Frano Matić, Jadranka Šepić, Elena Mauri, Zoi Kokkini, Martina Tudor, Žarko Kovač, and Tomislav Džoić
Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, https://doi.org/10.5194/os-14-237-2018, 2018
Sandro Carniel, Judith Wolf, Vittorio E. Brando, and Lakshmi H. Kantha
Ocean Sci., 13, 495–501, https://doi.org/10.5194/os-13-495-2017, https://doi.org/10.5194/os-13-495-2017, 2017
Renata Archetti, Agnese Paci, Sandro Carniel, and Davide Bonaldo
Nat. Hazards Earth Syst. Sci., 16, 1107–1122, https://doi.org/10.5194/nhess-16-1107-2016, https://doi.org/10.5194/nhess-16-1107-2016, 2016
Short summary
Short summary
An application to monitor the response of a beach to single storms, in order to predict shoreline changes and to plan the defence of the shore zone is presented. On the study area, Jesolo (Italy), video and current stations were installed. The methodology, which is economically attractive, proves to be a valuable system for providing detailed indications on beach erosion processes and can be used for improving the collaboration between coastal scientists and managers to solve beach-maintenance problems.
Francesco Marcello Falcieri, Lakshmi Kantha, Alvise Benetazzo, Andrea Bergamasco, Davide Bonaldo, Francesco Barbariol, Vlado Malačič, Mauro Sclavo, and Sandro Carniel
Ocean Sci., 12, 433–449, https://doi.org/10.5194/os-12-433-2016, https://doi.org/10.5194/os-12-433-2016, 2016
Short summary
Short summary
Between January 30th and February 4th we collected the first turbulence observations in the Gulf of Trieste under different wind forcing and water column structure. The vertical profiles of the turbulence kinetic energy dissipation rates showed that the presence near the sea floor of different water masses, inflowing from the open sea, can prevent the complete mixing of the water column. This dumping effect is enhanced when these masses present higher suspended sediment concentrations.
Francesco Barbariol, Francesco Marcello Falcieri, Carlotta Scotton, Alvise Benetazzo, Sandro Carniel, and Mauro Sclavo
Ocean Sci., 12, 403–415, https://doi.org/10.5194/os-12-403-2016, https://doi.org/10.5194/os-12-403-2016, 2016
Short summary
Short summary
The analysis presented in the paper aims at extending the classification capabilities of Self-Organizing Maps (SOM) within the context of ocean waves. Indeed, the intrinsic SOM difficulty in representing extremes of the wave climate is discussed and alternative strategies are proposed in order to represent the whole wave climate at a given location. Among them, a two-step SOM together with a double-side map provides the best results.
V. E. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. M. Falcieri, A. Coluccelli, A. Russo, and S. Carniel
Ocean Sci., 11, 909–920, https://doi.org/10.5194/os-11-909-2015, https://doi.org/10.5194/os-11-909-2015, 2015
Short summary
Short summary
Sea surface temperature and turbidity, derived from satellite imagery, were used to characterize river plumes in the northern Adriatic Sea during a significant flood event in November 2014. Circulation patterns and sea surface salinity, from an operational coupled ocean-wave model, supported the interpretation of the plumes' interaction with the receiving waters and among them.
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
H. Mihanović, I. Vilibić, S. Carniel, M. Tudor, A. Russo, A. Bergamasco, N. Bubić, Z. Ljubešić, D. Viličić, A. Boldrin, V. Malačič, M. Celio, C. Comici, and F. Raicich
Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, https://doi.org/10.5194/os-9-561-2013, 2013
S. Pasquet, I. Vilibić, and J. Šepić
Nat. Hazards Earth Syst. Sci., 13, 473–482, https://doi.org/10.5194/nhess-13-473-2013, https://doi.org/10.5194/nhess-13-473-2013, 2013
Related subject area
Approach: Numerical Models | Properties and processes: Climate and modes of variability
Marine heatwaves in the Mediterranean Sea: a convolutional neural network study for extreme event prediction
Ocean wave spectrum bias correction through energy conservation for climate change impacts
A new vision of the Adriatic Dense Water future under extreme warming
Seafloor marine heatwaves outpace surface events in future on the northwest European shelf
Dynamically downscaled seasonal ocean forecasts for North American east coast ecosystems
On the response of the Equatorial Atmosphere and Ocean to changes in Sea Surface Temperature along the Path of the North Equatorial Counter Current
Exploring variability in climate change projections on the Nemunas River and Curonian Lagoon: coupled SWAT and SHYFEM modeling approach
An assessment of equatorial Atlantic interannual variability in Ocean Model Intercomparison Project (OMIP) simulations
Twenty-first century marine climate projections for the NW European shelf seas based on a perturbed parameter ensemble
Predictability of marine heatwaves: assessment based on the ECMWF seasonal forecast system
The Mediterranean Forecasting System – Part 1: Evolution and performance
Antonios Parasyris, Vassiliki Metheniti, Nikolaos Kampanis, and Sofia Darmaraki
Ocean Sci., 21, 897–912, https://doi.org/10.5194/os-21-897-2025, https://doi.org/10.5194/os-21-897-2025, 2025
Short summary
Short summary
The Mediterranean faces more frequent and intense marine heat waves, harming ecosystems and fisheries. Using machine learning, we developed a model to forecast these events up to 7 d in the future, outperforming traditional methods. This approach enables faster, accurate forecasts, helping authorities mitigate impacts and protect marine resources.
Andrea Lira Loarca and Giovanni Besio
Ocean Sci., 21, 767–785, https://doi.org/10.5194/os-21-767-2025, https://doi.org/10.5194/os-21-767-2025, 2025
Short summary
Short summary
A new method improves the accuracy of climate models by adjusting wave spectrum simulations in the Mediterranean Sea. It corrects biases and accounts for changes in wave patterns due to climate change, such as shifts in direction and frequency. This technique was applied to multiple climate models, assessing future wave conditions for mid-century and end-of-century scenarios. The results underline the importance of precise corrections for better predicting how waves may evolve as the climate changes.
Cléa Denamiel, Iva Tojčić, and Petra Pranić
Ocean Sci., 21, 37–62, https://doi.org/10.5194/os-21-37-2025, https://doi.org/10.5194/os-21-37-2025, 2025
Short summary
Short summary
We use a high-resolution atmosphere–ocean model to project Adriatic Dense Water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
Robert J. Wilson, Yuri Artioli, Giovanni Galli, James Harle, Jason Holt, Ana M. Queiros, and Sarah Wakelin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3810, https://doi.org/10.5194/egusphere-2024-3810, 2024
Short summary
Short summary
Marine heatwaves are of growing concern around the world. We use a state of the art ensemble of downscaled climate models to project how often heatwaves will occur in future across northwest Europe under a high-emissions scenario. The projections show that without emissions reductions, heatwaves will occur more than half of the time in future. We show that the seafloor is expected to experience much more frequent heatwaves than the sea surface in future.
Andrew C. Ross, Charles A. Stock, Vimal Koul, Thomas L. Delworth, Feiyu Lu, Andrew Wittenberg, and Michael A. Alexander
Ocean Sci., 20, 1631–1656, https://doi.org/10.5194/os-20-1631-2024, https://doi.org/10.5194/os-20-1631-2024, 2024
Short summary
Short summary
In this paper, we use a high-resolution regional ocean model to downscale seasonal ocean forecasts from the Seamless System for Prediction and EArth System Research (SPEAR) model of the Geophysical Fluid Dynamics Laboratory (GFDL). We find that the downscaled model has significantly higher prediction skill in many cases.
David John Webb
EGUsphere, https://doi.org/10.5194/egusphere-2024-3560, https://doi.org/10.5194/egusphere-2024-3560, 2024
Preprint withdrawn
Short summary
Short summary
A modern climate model is used to test the hypothesis that changes observed during El Niños are, in part, forced by changes in the temperature of the North Equatorial Counter Current. This is a warm current that flows eastwards across the Pacific, a few degrees north of the Equator, close to the Inter-Tropical Convection Zone, a major region of deep atmospheric convection. The tests generate a significant El Niño type response in the ocean, giving confidence that the hypothesis is correct.
Natalja Čerkasova, Jovita Mėžinė, Rasa Idzelytė, Jūratė Lesutienė, Ali Ertürk, and Georg Umgiesser
Ocean Sci., 20, 1123–1147, https://doi.org/10.5194/os-20-1123-2024, https://doi.org/10.5194/os-20-1123-2024, 2024
Short summary
Short summary
This study advances the understanding of climate projection variability in the Nemunas River, Curonian Lagoon, and southeastern Baltic Sea continuum by analyzing a subset of climate models with a focus on a coupled ocean and drainage basin model. This study investigates the variability and trends in environmental parameters, such as water fluxes, timing, nutrient load, water temperature, ice cover, and saltwater intrusions in Representative Concentration Pathway 4.5 and 8.5 scenarios.
Arthur Prigent and Riccardo Farneti
Ocean Sci., 20, 1067–1086, https://doi.org/10.5194/os-20-1067-2024, https://doi.org/10.5194/os-20-1067-2024, 2024
Short summary
Short summary
We evaluate the eastern equatorial Atlantic's (EEA's) seasonal cycle and interannual variability in the Ocean Model Intercomparison Project Phases 1 and 2 (OMIP1 and OMIP2) for 1985–2004. While both simulate EEA patterns, biases like a diffusive thermocline and insufficient cooling exist during the development of the Atlantic cold tongue. OMIP1 exhibits 51% (33%) larger interannual sea surface temperature (sea surface height) variability than OMIP2, attributed to differences in wind forcing.
Jonathan Tinker, Matthew D. Palmer, Benjamin J. Harrison, Enda O'Dea, David M. H. Sexton, Kuniko Yamazaki, and John W. Rostron
Ocean Sci., 20, 835–885, https://doi.org/10.5194/os-20-835-2024, https://doi.org/10.5194/os-20-835-2024, 2024
Short summary
Short summary
The northwest European shelf (NWS) seas are economically and environmentally important but poorly represented in global climate models (GCMs). We combine use of a shelf sea model with GCM output to provide improved 21st century projections of the NWS. We project a NWS warming of 3.11 °C and freshening of −1.01, and we provide uncertainty estimates. We calculate the climate signal emergence and consider warming levels. We have released our data for the UK's Climate Change Risk Assessment.
Eric de Boisséson and Magdalena Alonso Balmaseda
Ocean Sci., 20, 265–278, https://doi.org/10.5194/os-20-265-2024, https://doi.org/10.5194/os-20-265-2024, 2024
Short summary
Short summary
Marine heatwaves are long periods of extremely warm ocean surface temperatures. Predicting such events a few months in advance would help decision-making to mitigate their impacts on marine ecosystems. This work investigates how well operational seasonal forecasts can predict marine heatwaves. Results show that such events can be predicted a few months in advance in the tropics but that extending the predictability skill to other regions will require additional work on the forecast models.
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, and Anna Zacharioudaki
Ocean Sci., 19, 1483–1516, https://doi.org/10.5194/os-19-1483-2023, https://doi.org/10.5194/os-19-1483-2023, 2023
Short summary
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
Cited articles
Amos, C. L., Umgiesser, G., Ghezzo, M., Kassem, H., and Ferrarin, C.: Sea Surface Temperature Trends in Venice Lagoon and the Adjacent Waters, J. Coast. Res., 33, 385–395, https://doi.org/10.2112/JCOASTRES-D-16-00017.1, 2017. a
Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., and Russo, A.: The Adriatic Sea General Circulation. Part II: Baroclinic Circulation Structure, J. Phys. Oceanogr., 27, 1515–1532, 1997. a
Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi, M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belušić, D., Berthou, S., Brisson, E., Cardoso, R. M., Chan, S. C., Christensen, O. B., Fernández, J., Fita, L., Frisius, T., Gašparac, G., Giorgi, F., Goergen, K., Haugen, J. E., Øivind Hodnebrog, Kartsios, S., Katragkou, E., Kendon, E. J., Keuler, K., Lavin-Gullon, A., Lenderink, G., Leutwyler, D., Lorenz, T., Maraun, D., Mercogliano, P., Milovac, J., Panitz, H. J., Raffa, M., Remedio, A. R., Schär, C., Soares, P. M., Srnec, L., Steensen, B. M., Stocchi, P., Tölle, M. H., Truhetz, H., Vergara-Temprado, J., de Vries, H., Warrach-Sagi, K., Wulfmeyer, V., and Zander, M. J.: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation, Clim. Dynam., 57, 275–302, https://doi.org/10.1007/s00382-021-05708-w, 2021. a
Bao, X. and Zhang, F.: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 Reanalysis Datasets against Independent Sounding Observations over the Tibetan Plateau, J. Climate, 26, 206–214, https://doi.org/10.1175/JCLI-D-12-00056.1, 2013. a
Bargain, A., Foglini, F., Pairaud, I., Bonaldo, D., Carniel, S., Angeletti, L., Taviani, M., Rochette, S., and Fabri, M.: Predictive habitat modeling in two Mediterranean canyons including hydrodynamic variables, Prog. Oceanogr., 169, 151–168, https://doi.org/10.1016/j.pocean.2018.02.015, 2018. a
Bellafiore, D., Bucchignani, E., Gualdi, S., Carniel, S., Djurdjević, V., and Umgiesser, G.: Assessment of meteorological climate models as inputs for coastal studies, Ocean Dynam., 62, 555–568, https://doi.org/10.1007/s10236-011-0508-2, 2012. a
Belušić Vozila, A., Güttler, I., Ahrens, B., Obermann-Hellhund, A., and Telišman Prtenjak, M.: Wind Over the Adriatic Region in CORDEX Climate Change Scenarios, J. Geophys. Res.-Atmos., 124, 110–130, https://doi.org/10.1029/2018JD028552, 2019. a
Benetazzo, A., Fedele, F., Carniel, S., Ricchi, A., Bucchignani, E., and Sclavo, M.: Wave climate of the Adriatic Sea: a future scenario simulation, Nat. Hazards Earth Syst. Sci., 12, 2065–2076, https://doi.org/10.5194/nhess-12-2065-2012, 2012. a
Benetazzo, A., Bergamasco, A., Bonaldo, D., Falcieri, F., Sclavo, M., Langone, L., and Carniel, S.: Response of the Adriatic Sea to an intense cold air outbreak: Dense water dynamics and wave-induced transport, Prog. Oceanogr., 128, 115–138, https://doi.org/10.1016/j.pocean.2014.08.015, 2014. a
Bergamasco, A. and Malanotte-Rizzoli, P.: The circulation of the Mediterranean Sea: a historical review of experimental investigations, Adv. Oceanogr. Limnol., 1, 11–28, https://doi.org/10.1080/19475721.2010.491656, 2010. a
Bonaldo, D., Benetazzo, A., Bergamasco, A., Campiani, E., Foglini, F., Sclavo, M., Trincardi, F., and Carniel, S.: Interactions among Adriatic continental margin morphology, deep circulation and bedform patterns, Mar. Geol., 375, 82–98, https://doi.org/10.1016/j.margeo.2015.09.012, 2016. a, b, c, d
Bonaldo, D., Antonioli, F., Archetti, R., Bezzi, A., Correggiari, A., Davolio, S., Falco, G. D., and Fantini, M.: Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: lessons and challenges from the Adriatic Sea, Italy, J. Coast. Conserv., 23, 19–37, 2019. a, b
Bonaldo, D., Bucchignani, E., Pomaro, A., Ricchi, A., Sclavo, M., and Carniel, S.: Wind waves in the Adriatic Sea under a severe climate change scenario and implications for the coasts, Int. J. Climatol., 40, 5389–5406, https://doi.org/10.1002/joc.6524, 2020. a, b
Bonaldo, D., Bellafiore, D., Ferrarin, C., Ferretti, R., Ricchi, A., Sangelantoni, L., and Vitelletti, M. L.: The summer 2022 drought: a taste of future climate for the Po valley (Italy)?, Reg. Environ. Change, 23, 1–6, https://doi.org/10.1007/s10113-022-02004-z, 2023. a
Bonaldo, D., Carniel, S., Colucci, R. R., Denamiel, C., Pranić, P., Raicich, F., Ricchi, A., Sangelantoni, L., Vilibić, I., and Vitelletti, M. L.: AdriE ocean climate model ensemble for the Adriatic Sea – monthly fields, Zenodo [data set], https://doi.org/10.5281/zenodo.11202265, 2024a. a
Bonaldo, D., Carniel, S., Colucci, R. R., Denamiel, C., Pranić, P., Raicich, F., Ricchi, A., Sangelantoni, L., Vilibić, I., and Vitelletti, M. L.: Author comment 3, Reply on CC1, https://doi.org/10.5194/egusphere-2024-1468-AC3, 2024b. a
Carniel, S., Benetazzo, A., Bonaldo, D., Falcieri, F., Miglietta, M., Ricchi, A., and Sclavo, M.: Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of a dense water formation event, Ocean Model., 101, 101–112, https://doi.org/10.1016/j.ocemod.2016.03.007, 2016. a
Chapman, D. C.: Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model, J. Phys. Oceanogr., 15, 1060–1075, https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2, 1985. a
Christensen, J. H., Machenhauer, B., Jones, R. G., Scha¨r, C. S., Ruti, P. M., Castro, M., and Visconti, G.: Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Clim. Dynam., 13, 489–506, https://doi.org/10.1007/s0038200501781997, 1997. a, b
Christensen, O. B. and Kjellström, E.: Partitioning uncertainty components of mean climate and climate change in a large ensemble of European regional climate model projections, Clim. Dynam., 54, 4293–4308, https://doi.org/10.1007/s00382-020-05229-y, 2020. a
Christensen, O. B. and Kjellström, E.: Filling the matrix: an ANOVA-based method to emulate regional climate model simulations for equally-weighted properties of ensembles of opportunity, Clim. Dynam., 58, 2371–2385, https://doi.org/10.1007/s00382-021-06010-5, 2022. a
Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A., Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W., Stammer, D., and Unnikrishnan, A.: Sea Level Change, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, ISBN-13 978-1107057999, 2013. a
Civitarese, G., Gačić, M., Batistić, M., Bensi, M., Cardin, V., Dulčić, J., Garić, R., and Menna, M.: The BiOS mechanism: History, theory, implications, Prog. Oceanogr., 216, 103056, https://doi.org/10.1016/j.pocean.2023.103056, 2023. a
Coppola, E., Nogherotto, R., Ciarlo', J. M., Giorgi, F., van Meijgaard, E., Kadygrov, N., Iles, C., Corre, L., Sandstad, M., Somot, S., Nabat, P., Vautard, R., Levavasseur, G., Schwingshackl, C., Sillmann, J., Kjellström, E., Nikulin, G., Aalbers, E., Lenderink, G., Christensen, O. B., Boberg, F., Sørland, S. L., Demory, M.-E., Bülow, K., Teichmann, C., Warrach-Sagi, K., and Wulfmeyer, V.: Assessment of the European Climate Projections as Simulated by the Large EURO-CORDEX Regional and Global Climate Model Ensemble, J. Geophys. Res.-Atmos., 126, e2019JD032356, https://doi.org/10.1029/2019JD032356, 2021. a, b
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018. a
Cushman-Roisin, B., Gačić, M., Poulain, P., and Artegiani, A.: Physical Oceanography of the Adriatic Sea: past, present and future, Springer – Science+Business Media, B.V., ISBN 978-90-481-5921-5, https://doi.org/10.1007/978-94-015-9819-4, 2001. a
Davini, P. and D’Andrea, F.: From CMIP3 to CMIP6: Northern Hemisphere Atmospheric Blocking Simulation in Present and Future Climate, J. Climate, 33, 10021–10038, https://doi.org/10.1175/JCLI-D-19-0862.1, 2020. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Denamiel, C., Šepić, J., Ivanković, D., and Vilibić, I.: The Adriatic Sea and Coast modelling suite: Evaluation of the meteotsunami forecast component, Ocean Model., 135, 71–93, https://doi.org/10.1016/j.ocemod.2019.02.003, 2019. a
Denamiel, C., Pranić, P., Quentin, F., Mihanović, H., and Vilibić, I.: Pseudo-global warming projections of extreme wave storms in complex coastal regions: the case of the Adriatic Sea, Clim. Dynam., 55, 2483–2509, https://doi.org/10.1007/s00382-020-05397-x, 2020. a
Denamiel, C., Pranić, P., Ivanković, D., Tojčić, I., and Vilibić, I.: Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based coupled atmosphere–ocean modelling suite: atmospheric dataset, Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, 2021a. a, b, c, d
Denamiel, C., Tojčić, I., and Vilibić, I.: Balancing Accuracy and Efficiency of Atmospheric Models in the Northern Adriatic During Severe Bora Events, J. Geophys. Res.-Atmos., 126, e2020JD033516, https://doi.org/10.1029/2020JD033516, 2021b. a
Denamiel, C., Tojčić, I., Pranić, P., and Vilibić, I.: Modes of the BiOS-driven Adriatic Sea thermohaline variability, Clim. Dynam., 59, 1097–1113, https://doi.org/10.1007/s00382-022-06178-4, 2022. a
Diez-Sierra, J., Iturbide, M., Gutiérrez, J. M., Fernández, J., Milovac, J., Cofiño, A. S., Cimadevilla, E., Nikulin, G., Levavasseur, G., Kjellström, E., Bülow, K., Horányi, A., Brookshaw, A., García-Díez, M., Pérez, A., Baño-Medina, J., Ahrens, B., Alias, A., Ashfaq, M., Bukovsky, M., Buonomo, E., Caluwaerts, S., Chou, S. C., Christensen, O. B., Ciarlò, J. M., Coppola, E., Corre, L., Demory, M.-E., Djurdjevic, V., Evans, J. P., Fealy, R., Feldmann, H., Jacob, D., Jayanarayanan, S., Katzfey, J., Keuler, K., Kittel, C., Kurnaz, M. L., Laprise, R., Lionello, P., McGinnis, S., Mercogliano, P., Nabat, P., Önol, B., Ozturk, T., Panitz, H.-J., Paquin, D., Pieczka, I., Raffaele, F., Remedio, A. R., Scinocca, J., Sevault, F., Somot, S., Steger, C., Tangang, F., Teichmann, C., Termonia, P., Thatcher, M., Torma, C., van Meijgaard, E., Vautard, R., Warrach-Sagi, K., Winger, K., and Zittis, G.: The Worldwide C3S CORDEX Grand Ensemble: A Major Contribution to Assess Regional Climate Change in the IPCC AR6 Atlas, B. Am. Meteorol. Soc., 103, E2804–E2826, https://doi.org/10.1175/BAMS-D-22-0111.1, 2022. a, b
Dunić, N., Vilibić, I., Šepić, J., Mihanović, H., Sevault, F., Somot, S., Waldman, R., Nabat, P., Arsouze, T., Pennel, R., Jordà, G., and Precali, R.: Performance of multi-decadal ocean simulations in the Adriatic Sea, Ocean Model., 134, 84–109, https://doi.org/10.1016/j.ocemod.2019.01.006, 2019. a
Dunić, N., Supić, N., Sevault, F., and Vilibić, I.: The northern Adriatic circulation regimes in the future winter climate, Clim. Dynam., 60, 3471–3484, https://doi.org/10.1007/s00382-022-06516-6, 2022. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Enayati, M., Bozorg-Haddad, O., Bazrafshan, J., Hejabi, S., and Chu, X.: Bias correction capabilities of quantile mapping methods for rainfall and temperature variables, J. Water Clim. Change, 12, 401–419, https://doi.org/10.2166/wcc.2020.261, 2021. a
Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., J, A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cretí, S., Masina, S., Coppini, G., and Pinardi, N.: Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_ PHY_006_004_E3R1, 2020. a, b
Ferrarin, C., Bonaldo, D., Bergamasco, A., and Ghezzo, M.: Sea level and temperature extremes in a regulated Lagoon of Venice, Front. Climate, 5, 1330388, https://doi.org/10.3389/fclim.2023.1330388, 2023. a
Flather, R.: A tidal model of the northwest European continental shelf, Memoires de la Societe Royal des Sciences de Liege, 10, 141–164, 1976. a
Giorgi, F. and Coppola, E.: European climate-change oscillation (ECO), Geophys. Res. Lett., 34, L21703, https://doi.org/10.1029/2007GL031223, 2007. a
Haidvogel, D., Arango, H., Budgell, W., Cornuelle, B., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W., Hermann, A., Lanerolle, L., Levin, J., McWilliams, J., Miller, A., Moore, A., Powell, T., Shchepetkin, A., Sherwood, C., Signell, R., Warner, J., and Wilkin, J.: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System, J. Comput. Phys., 227, 3595–3624, 2008. a
Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., Gupta, A. S., and Wernberg, T.: A hierarchical approach to defining marine heatwaves, Prog. Oceanogr., 141, 227–238, https://doi.org/10.1016/j.pocean.2015.12.014, 2016. a, b, c
Huffman, G., Bolvin, D., Nelkin, E., and Adler, R.: TRMM (TMPA) Precipitation L3 1 day 0.25 degree x 0.25 degree V7, edited by: Savtchenko, A., Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/TRMM/TMPA/DAY/7, 2016. a
Janeković, I., Mihanović, H., Vilibić, I., and Tudor, M.: Extreme cooling and dense water formation estimates in open and coastal regions of the Adriatic Sea during the winter of 2012, J. Geophys. Res.-Oceans, 119, 3200–3218, https://doi.org/10.1002/2014JC009865, 2014. a, b
Juza, M. and Tintoré, J.: Multivariate Sub-Regional Ocean Indicators in the Mediterranean Sea: From Event Detection to Climate Change Estimations, Front. Mar. Sci., 8, 785771, https://doi.org/10.3389/fmars.2021.610589, 2021. a
Juza, M., Fernández-mora, À., and Tintoré, J.: Sub-Regional Marine Heat Waves in the Mediterranean Sea From Observations: Long-Term Surface Changes , Sub-Surface and Coastal Responses, Front. Mar. Sci., 9, 4230, https://doi.org/10.3389/fmars.2022.785771, 2022. a
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014. a, b
Kuzmić, M., Grisogono, B., Li, X., and Lehner, S.: Examining deep and shallow Adriatic bora events, Q. J. Roy. Meteor. Soc., 141, 3434–3438, https://doi.org/10.1002/qj.2578, 2015. a
Lionello, P., Galati, M. B., and Elvini, E.: Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral, Phys. Chem. Earth, 40-41, 86–92, https://doi.org/10.1016/j.pce.2010.04.001, 2012. a
Lipizer, M., Partescano, E., Rabitti, A., Giorgetti, A., and Crise, A.: Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea, Ocean Sci., 10, 771–797, https://doi.org/10.5194/os-10-771-2014, 2014. a
Mears, C., Lee, T., Ricciardulli, L., Wang, X., and Wentz, F.: Improving the Accuracy of the Cross-Calibrated Multi-Platform (CCMP) Ocean Vector Winds, Remote Sens., 14, 4230, https://doi.org/10.3390/rs14174230, 2022. a
Medugorac, I., Pasarić, M., and Orlić, M.: Long-term measurements at Bakar tide-gauge station (east Adriatic), Geofizika, 39, 151–162, https://doi.org/10.15233/gfz.2022.39.8, 2022. a
Medugorac, I., Pasarić, M., and Orlić, M.: Historical sea-level measurements at Bakar (east Adriatic), SEANOE [data set], https://doi.org/10.17882/85171, 2023. a
Mihanović, H., Janeković, I., Vilibić, I., Kovačević, V., and Bensi, M.: Modelling Interannual Changes in Dense Water Formation on the Northern Adriatic Shelf, Pure Appl. Geophys., 175, 4065–4081, https://doi.org/10.1007/s00024-018-1935-5, 2018. a
Mohamed, B., Abdallah, A. M., Alam El-Din, K., Nagy, H., and Shaltout, M.: Inter-Annual Variability and Trends of Sea Level and Sea Surface Temperature in the Mediterranean Sea over the Last 25 Years, Pure Appl. Geophys., 176, 3787–3810, https://doi.org/10.1007/s00024-019-02156-w, 2019. a
Paladini de Mendoza, F., Schroeder, K., Langone, L., Chiggiato, J., Borghini, M., Giordano, P., Verazzo, G., and Miserocchi, S.: Deep-water hydrodynamic observations of two moorings sites on the continental slope of the southern Adriatic Sea (Mediterranean Sea), Earth Syst. Sci. Data, 14, 5617–5635, https://doi.org/10.5194/essd-14-5617-2022, 2022. a
Parras-Berrocal, I. M., Vazquez, R., Cabos, W., Sein, D., Mañanes, R., Perez-Sanz, J., and Izquierdo, A.: The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model, Ocean Sci., 16, 743–765, https://doi.org/10.5194/os-16-743-2020, 2020. a
Pisano, A., Buongiorno Nardelli, B., Tronconi, C., and Santoleri, R.: The new Mediterranean optimally interpolated pathfinder AVHRR SST Dataset (1982–2012), Remote Sens. Environ., 176, 107–116, https://doi.org/10.1016/j.rse.2016.01.019, 2016. a, b
Pranić, P., Denamiel, C., and Vilibić, I.: Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based one-way coupled atmosphere–ocean modelling suite: ocean results, Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Pranić, P., Denamiel, C., Janeković, I., and Vilibić, I.: Multi-model analysis of the Adriatic dense-water dynamics, Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, 2023. a
Raicich, F.: The sea level time series of Trieste, Molo Sartorio, Italy (1869–2021), Earth Syst. Sci. Data, 15, 1749–1763, https://doi.org/10.5194/essd-15-1749-2023, 2023a. a
Raicich, F.: Sea level observations at Trieste, Molo Sartorio, Italy, SEANOE [data set], https://doi.org/10.17882/62758, 2023b. a
Raicich, F. and Colucci, R. R.: A near-surface sea temperature time series from Trieste, northern Adriatic Sea (1899–2015), Earth Syst. Sci. Data, 11, 761–768, https://doi.org/10.5194/essd-11-761-2019, 2019. a
Ricchi, A., Miglietta, M. M., Barbariol, F., Benetazzo, A., Bergamasco, A., Bonaldo, D., Cassardo, C., Falcieri, F. M., Modugno, G., Russo, A., Sclavo, M., and Carniel, S.: Sensitivity of a Mediterranean tropical-like Cyclone to different model configurations and coupling strategies, Atmosphere, 8, 92, https://doi.org/10.3390/atmos8050092, 2017. a
Ricchi, A., Bonaldo, D., Cioni, G., Carniel, S., and Miglietta, M. M.: Simulation of a flash-flood event over the Adriatic Sea with a high-resolution atmosphere–ocean–wave coupled system, Sci. Rep., 9388, 1–11, https://doi.org/10.1038/s41598-021-88476-1, 2021. a
Samuelsson, P., Jones, C. G., Willén, U., Ullerstig, A., Gollvik, S., Hansson, U., Jansson, C., Kjellström, E., Nikulin, G., and Wyser, K.: The Rossby Centre Regional Climate model RCA3: Model description and performance, Tellus Ser. A, 63, 4–23, https://doi.org/10.1111/j.1600-0870.2010.00478.x, 2011. a
Sanchez-Arcilla, A., Staneva, J., Cavaleri, L., Badger, M., Bidlot, J., Sorensen, J. T., Hansen, L. B., Martin, A., Saulter, A., Espino, M., Miglietta, M. M., Mestres, M., Bonaldo, D., Pezzutto, P., Schulz-Stellenfleth, J., Wiese, A., Larsen, X., Carniel, S., Bolaños, R., Abdalla, S., and Tiesi, A.: CMEMS-Based Coastal Analyses: Conditioning, Coupling and Limits for Applications, Front. Mar. Sci., 8, 604741, https://doi.org/10.3389/fmars.2021.604741, 2021. a, b
Sangelantoni, L., Sobolowski, S., Lorenz, T., Hodnebrog, Cardoso, R. M., Soares, P. M., Ferretti, R., Lavín-Gullón, A., Fernandez, J., Goergen, K., Milovac, J., Katragkou, E., Kartsios, S., Coppola, E., Pichelli, E., Adinolfi, M., Mercogliano, P., Berthou, S., de Vries, H., Dobler, A., Belušić, D., Feldmann, H., Tölle, M. H., and Bastin, S.: Investigating the representation of heatwaves from an ensemble of km-scale regional climate simulations within CORDEX-FPS convection, Clim. Dynam., 62, 4635–4671, https://doi.org/10.1007/s00382-023-06769-9, 2023. a
Schroeder, K., Ismail, S. B., Bensi, M., Bosse, A., Chiggiato, J., Civitarese, G., Falcieri, F. M., Fusco, G., Gačić, M., Gertman, I., Kubin, E., Malanotte-Rizzoli, P., Martellucci, R., Menna, M., Ozer, T., Taupier-Letage, I., Vargas-Yanez, M., Velaoras, D., and Vilibić, I.: A consensus-based, revised and comprehensive catalogue for Mediterranean water masses acronyms, Mediter. Mar. Sci., 25, 783–791, https://doi.org/10.12681/mms.38736, 2024. a
Schumacher, D. L., Singh, J., Hauser, M., Fischer, E. M., Wild, M., and Seneviratne, S. I.: Exacerbated summer European warming not captured by climate models neglecting long-term aerosol changes, Commu. Earth Environ., 5, 182, https://doi.org/10.1038/s43247-024-01332-8, 2024. a
Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Fogli, P. G., Manzini, E., Vichi, M., Oddo, P., and Navarra, A.: Effects of Tropical Cyclones on Ocean Heat Transport in a High-Resolution Coupled General Circulation Model, J. Climate, 24, 4368–4384, https://doi.org/10.1175/2011JCLI4104.1, 2011. a
Signell, R. P., Carniel, S., Cavaleri, L., Chiggiato, J., Doyle, J. D., Pullen, J., and Sclavo, M.: Assessment of wind quality for oceanographic modelling in semi-enclosed basins, J. Mar. Syst., 53, 217–233, https://doi.org/10.1016/j.jmarsys.2004.03.006, 2005. a
Sikirić, M. D., Janeković, I., and Kuzmić, M.: A new approach to bathymetry smoothing in sigma-coordinate ocean models, Ocean Model., 29, 128–136, https://doi.org/10.1016/j.ocemod.2009.03.009, 2009. a
Simoncelli, S., Fratianni, C., Pinardi, N., Grandi, A., Drudi, M., Oddo, P., and Dobricic, S.: Mediterranean Sea Physical Reanalysis (CMEMS MED-Physics) (Version 1), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/MEDSEA_REANALYSIS_PHYS_ 006_004, 2019. a, b
SI@SIMC@ARPAE: Dext3r beta, https://simc.arpae.it/dext3r/ (last access: 1 September 2022), 2022. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93, 485 – 498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Tojčić, I., Denamiel, C., and Vilibić, I.: Kilometer-scale trends and variability of the Adriatic present climate (1987–2017), Clim. Dynam., 61, 2521–2545, https://doi.org/10.1007/s00382-023-06700-2, 2023. a
Tojčić, I., Denamiel, C., and Vilibić, I.: Kilometer-scale trends, variability, and extremes of the Adriatic far-future climate (RCP 8.5, 2070-2100), Front. Mar. Sci., 11, 1329020, https://doi.org/10.3389/fmars.2024.1329020, 2024. a
Umgiesser, G., Ferrarin, C., Bajo, M., Bellafiore, D., Cucco, A., De Pascalis, F., Ghezzo, M., McKiver, W., and Arpaia, L.: Hydrodynamic modelling in marginal and coastal seas-The case of the Adriatic Sea as a permanent laboratory for numerical approach, Ocean Model., 179, 102123, https://doi.org/10.1016/j.ocemod.2022.102123, 2022. a
Varga, A. J. and Breuer, H.: Sensitivity of simulated temperature, precipitation, and global radiation to different WRF configurations over the Carpathian Basin for regional climate applications, Clim. Dynam., 55, 2849–2866, https://doi.org/10.1007/s00382-020-05416-x, 2020. a
Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., Bülow, K., Coppola, E., Corre, L., van Meijgaard, E., Nogherotto, R., Sandstad, M., Schwingshackl, C., Somot, S., Aalbers, E., Christensen, O. B., Ciarlo, J. M., Demory, M.-E., Giorgi, F., Jacob, D., Jones, R. G., Keuler, K., Kjellström, E., Lenderink, G., Levavasseur, G., Nikulin, G., Sillmann, J., Solidoro, C., Sørland, S. L., Steger, C., Teichmann, C., Warrach-Sagi, K., and Wulfmeyer, V.: Evaluation of the Large EURO-CORDEX Regional Climate Model Ensemble, J. Geophys. Res.-Atmos., 126, e2019JD032344, https://doi.org/10.1029/2019JD032344, 2021. a, b
Vilibić, I.: Evaluation of the AdriSC Climate Component: Ocean Results, Zenodo [data set], https://doi.org/10.5281/zenodo.5707773, 2021. a
Vilibić, I., Sepić, J., Pasarić, M., and Orlić, M.: The Adriatic Sea: A Long-Standing Laboratory for Sea Level Studies, Pure Appl. Geophys., 174, 3765–3811, https://doi.org/10.1007/s00024-017-1625-8, 2017. a
Vilibić, I., Pranić, P., and Denamiel, C.: North Adriatic Dense Water: lessons learned since the pioneering work of Mira Zore-Armanda 60 years ago, Acta Adriatica, 64, 53–78, https://doi.org/10.32582/aa.64.1.11, 2023. a
Wentz, F., Scott, J., Hoffman, R., Leidner, M., Atlas, R., and Ardizzone, J.: Remote Sensing Systems Cross-Calibrated Multi-Platform (CCMP) 6-hourly ocean vector wind analysis product on 0.25 deg grid, Version 2.0, Remote Sensing Systems, Santa Rosa, CA, http://www.remss.com/measurements/ccmp (last access: 22 December 2023), 2015. a
Woollings, T.: Dynamical influences on European climate: an uncertain future, Philos. T. Roy. Soc. A, 368, 3733–3756, https://doi.org/10.1098/rsta.2010.0040, 2010. a
Woollings, T., Barriopedro, D., Methven, J., Son, S. W., Martius, O., Harvey, B., Sillmann, J., Lupo, A. R., and Seneviratne, S.: Blocking and its Response to Climate Change, Curr. Clim. Change Rep., 4, 287–300, https://doi.org/10.1007/s40641-018-0108-z, 2018. a
Zuliani, A., Zaggia, L., Collavini, F., and Zonta, R.: Freshwater discharge from the drainage basin to the Venice Lagoon (Italy), Environ. Int., 31, 929–938, https://doi.org/10.1016/j.envint.2005.05.004, 2005. a
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (i.e. use of multiple simulations) allowing us to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a basis for a set of multidisciplinary studies in this area over a multi-decadal horizon.
We present a high-resolution modelling effort to investigate the possible end-of-century...