Articles | Volume 20, issue 4
https://doi.org/10.5194/os-20-931-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-931-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring water accumulation dynamics in the Pearl River estuary from a Lagrangian perspective
Mingyu Li
State Key Laboratory of Internet of Things for Smart City, Department of Ocean Science and Technology, University of Macau, Macau SAR, 999078, China
Alessandro Stocchino
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
Center for Ocean Research in Hong Kong and Macau (CORE), Hong Kong SAR, 999077, China
State Key Laboratory of Internet of Things for Smart City, Department of Ocean Science and Technology, University of Macau, Macau SAR, 999078, China
Center for Ocean Research in Hong Kong and Macau (CORE), Hong Kong SAR, 999077, China
Tingting Zu
CORRESPONDING AUTHOR
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
Related authors
No articles found.
Qibang Tang, Zhongya Cai, and Zhiqiang Liu
Ocean Sci., 21, 1291–1301, https://doi.org/10.5194/os-21-1291-2025, https://doi.org/10.5194/os-21-1291-2025, 2025
Short summary
Short summary
The South China Sea is the largest semi-enclosed marginal sea in the western Pacific, featuring unique layered circulation with rotating currents in its upper, middle, and deep layers. This study uses simulations to explore how stronger currents in the upper layer influence circulation across the entire basin. The vorticity analyses show that the enhanced upper currents increase the strength of middle and deep currents, driven by changes in bottom pressure and cross-slope movements.
Yunping Song, Yunxin Lin, Peng Zhan, Zhiqiang Liu, and Zhongya Cai
EGUsphere, https://doi.org/10.5194/egusphere-2025-2712, https://doi.org/10.5194/egusphere-2025-2712, 2025
Short summary
Short summary
Our research investigates year-to-year changes in the Northern South China Sea's shelf currents, which are influenced by climate patterns like El Niño and freshwater discharge from the Pearl River Estuary. Using long-term observations and computer models , we analyzed these dynamic shifts. Our findings reveal that El Niño generates distinct sea-level patterns, intensifying currents and altering large-scale ocean flows, while increased river runoff reduces coastal salinity.
Cited articles
Acha, E. M., Mianzan, H. W., Iribarne, O., Gagliardini, D. A., Lasta, C., and Daleo, P.: The role of the Rio de la Plata bottom salinity front in accumulating debris, Mar. Pollut. Bull., 46, 197–202, https://doi.org/10.1016/S0025-326X(02)00356-9, 2003.
Acha, E. M., Mianzan, H. W., Guerrero, R. A., Favero, M., and Bava, J.: Marine fronts at the continental shelves of austral South America: Physical and ecological processes, J. Marine Syst., 44, 83–105, 10.1016/j.jmarsys.2003.09.005, 2004.
Ascione Kenov, I., Garcia, A. C., and Neves, R.: Residence time of water in the Mondego estuary (Portugal), Estuar. Coast. Shelf Sci., 106, 13–22, https://doi.org/10.1016/j.ecss.2012.04.008, 2012.
Balachandran, K. K., Lalu Raj, C. M., Nair, M., Joseph, T., Sheeba, P., and Venugopal, P.: Heavy metal accumulation in a flow restricted, tropical estuary, Estuar. Coast. Shelf Sci., 65, 361–370, https://doi.org/10.1016/j.ecss.2005.06.013, 2005.
Banas, N. S. and Hickey, B. M.: Mapping exchange and residence time in a model of Willapa Bay, Washington, a branching, macrotidal estuary, J. Geophys. Res., 110, C11011, https://doi.org/10.1029/2005JC002950, 2005.
Cai, Z., Liu, G., Liu, Z., and Gan, J.: Spatiotemporal variability of water exchanges in the Pearl River Estuary by interactive multiscale currents, Estuar. Coast. Shelf Sci., 265, 107730, https://doi.org/10.1016/j.ecss.2021.107730, 2022.
Chenillat, F., Blanke, B., Grima, N., Franks, P. J. S., Capet, X., and Rivière, P.: Quantifying tracer dynamics in moving fluids: a combined Eulerian-Lagrangian approach, Front. Environ. Sci., 3, 43, https://doi.org/10.3389/fenvs.2015.00043, 2015.
Chu, N., Liu, G., Xu, J., Yao, P., Du, Y., Liu, Z., and Cai, Z.: Hydrodynamical transport structure and lagrangian connectivity of circulations in the Pearl River Estuary, Front. Mar. Sci., 9, 996551, https://doi.org/10.3389/fmars.2022.996551, 2022a.
Chu, N., Liu, G., Xu, J., Yao, P., Du, Y., Liu, Z., and Cai, Z.: Hydrodynamical transport structure and lagrangian connectivity of circulations in the Pearl River Estuary, Front. Mar. Sci., 9, 996551, https://doi.org/10.3389/fmars.2022.996551, 2022b.
Cui, L., Liu, Z., Chen, Y., and Cai, Z.: Three-Dimensional Water Exchanges in the Shelf Circulation System of the Northern South China Sea Under Climatic Modulation From ENSO, J. Geophys. Res.-Oceans, 129, e2023JC020290, https://doi.org/10.1029/2023JC020290, 2024.
Cui, Y., Wu, J., Ren, J., and Xu, J.: Physical dynamics structures and oxygen budget of summer hypoxia in the Pearl River Estuary, Limnol. Oceanogr., 64, 131–148, https://doi.org/10.1002/lno.11025, 2019.
Dai, M., Guo, X., Zhai, W., Yuan, L., Wang, B., Wang, L., Cai, P., Tang, T., and Cai, W.-J.: Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought, Mar. Chem., 102, 159–169, https://doi.org/10.1016/j.marchem.2005.09.020, 2006.
Dawson, M. N., Sen Gupta, A., and England, M. H.: Coupled Biophysical Global Ocean Model and Molecular Genetic Analyses Identify Multiple Introductions of Cryptogenic Species, P. Natl. Acad. Sci. USA, 102, 11968–11973, https://doi.org/10.1073/pnas.0503811102, 2005.
Defontaine, S., Sous, D., Tesan, J., Monperrus, M., Lenoble, V., and Lanceleur, L.: Microplastics in a salt-wedge estuary: Vertical structure and tidal dynamics, Mar. Pollut. Bull., 160, 111688, https://doi.org/10.1016/j.marpolbul.2020.111688, 2020.
Deng, Y., Liu, Z., Zu, T., Hu, J., Gan, J., Lin, Y., Li, Z., Quan, Q., and Cai, Z.: Climatic Controls on the Interannual Variability of Shelf Circulation in the Northern South China Sea, J. Geophys. Res.-Oceans, 127, e2022JC018419, https://doi.org/10.1029/2022JC018419, 2022.
Dippner, W.: Mathematical modeling of the transport of pollution in water, Hydrol. Syst. Model, 2, 204–246, 2009.
Dong, L., Su, J., Ah Wong, L., Cao, Z., and Chen, J.-C.: Seasonal variation and dynamics of the Pearl River plume, Cont. Shelf Res., 24, 1761–1777, https://doi.org/10.1016/j.csr.2004.06.006, 2004.
Drouin, K. L. and Lozier, M. S.: The Surface Pathways of the South Atlantic: Revisiting the Cold and Warm Water Routes Using Observational Data, J. Geophys. Res.-Oceans, 124, 7082–7103, https://doi.org/10.1029/2019JC015267, 2019.
Drouin, K. L., Lozier, M. S., Beron-Vera, F. J., Miron, P., and Olascoaga, M. J.: Surface Pathways Connecting the South and North Atlantic Oceans, Geophys. Res. Lett., 49, e2021GL096646, https://doi.org/10.1029/2021GL096646, 2022.
Fairall, C. W., Bradley, E. F., Hare, J., Grachev, A. A., and Edson, J. B.: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm, J. Climate, 16, 571–591, 2003.
Fok, L. and Cheung, P. K.: Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution, Mar. Pollut. Bull., 99, 112–118, https://doi.org/10.1016/j.marpolbul.2015.07.050, 2015.
Gong, W., Shen, J., and Hong, B.: The influence of wind on the water age in the tidal Rappahannock River, Mar. Enviro. Res., 68, 203–216, https://doi.org/10.1016/j.marenvres.2009.06.008, 2009.
Harrison, P. J., Yin, K., Lee, J. H. W., Gan, J., and Liu, H.: Physical–biological coupling in the Pearl River Estuary, Cont. Shelf Res., 28, 1405–1415, https://doi.org/10.1016/j.csr.2007.02.011, 2008.
Haza, A. C., Özgökmen, T. M., and Hogan, P.: Impact of submesoscales on surface material distribution in a gulf of Mexico mesoscale eddy, Ocean Model., 107, 28–47, https://doi.org/10.1016/j.ocemod.2016.10.002, 2016.
He, C., Yin, Z.-Y., Stocchino, A., Wai, O. W. H., and Li, S.: The coastal macro-vortices dynamics in Hong Kong waters and its impact on water quality, Ocean Model., 175, 102034, https://doi.org/10.1016/j.ocemod.2022.102034, 2022.
He, C., Yin, Z.-Y., Stocchino, A., and Wai, O. W. H.: Generation of macro-vortices in estuarine compound channels, Front. Mar. Sci., 10, 1082506, https://doi.org/10.3389/fmars.2023.1082506, 2023.
He, Q., Zhan, H., Cai, S., He, Y., Huang, G., and Zhan, W.: A New Assessment of Mesoscale Eddies in the South China Sea: Surface Features, Three-Dimensional Structures, and Thermohaline Transports, J. Geophys. Res.-Oceans, 123, 4906–4929, https://doi.org/10.1029/2018JC014054, 2018.
Hinojosa, I. A., Rivadeneira, M. M., and Thiel, M.: Temporal and spatial distribution of floating objects in coastal waters of central–southern Chile and Patagonian fjords, Cont. Shelf Res., 31, 172–186, https://doi.org/10.1016/j.csr.2010.04.013, 2011.
Jalón-Rojas, I., Wang, X.-H., and Fredj, E.: Technical note: On the importance of a three-dimensional approach for modelling the transport of neustic microplastics, Ocean Sci., 15, 717–724, https://doi.org/10.5194/os-15-717-2019, 2019.
Jönsson, B. F. and Watson, J. R.: The timescales of global surface-ocean connectivity, Nat. Commun., 7, 11239–11239, https://doi.org/10.1038/ncomms11239, 2016.
Lam, T. W. L., Fok, L., Lin, L., Xie, Q., Li, H.-X., Xu, X.-R., and Yeung, L. C.: Spatial variation of floatable plastic debris and microplastics in the Pearl River Estuary, South China, Mar. Pollut. Bull., 158, 111383, https://doi.org/10.1016/j.marpolbul.2020.111383, 2020.
Lane, R. R., Day, J. W., Marx, B. D., Reyes, E., Hyfield, E., and Day, J. N.: The effects of riverine discharge on temperature, salinity, suspended sediment and chlorophyll a in a Mississippi delta estuary measured using a flow-through system, Estuar., Coast. Shelf Sci., 74, 145–154, https://doi.org/10.1016/j.ecss.2007.04.008, 2007.
Lebreton, L. C. M., Greer, S. D., and Borrero, J. C.: Numerical modelling of floating debris in the world's oceans, Mar. Pollut. Bull., 64, 653–661, https://doi.org/10.1016/j.marpolbul.2011.10.027, 2012.
Li, D., Gan, J., Hui, C., Yu, L., Liu, Z., Lu, Z., Kao, S.-J., and Dai, M.: Spatiotemporal Development and Dissipation of Hypoxia Induced by Variable Wind-Driven Shelf Circulation off the Pearl River Estuary: Observational and Modeling Studies, J. Geophys. Res.-Oceans, 126, e2020JC016700, https://doi.org/10.1029/2020JC016700, 2021.
Li, M.: Exploring water accumulation dynamics in the Pearl River estuary from a Lagrangian perspective, Zenodo [data set], https://doi.org/10.5281/zenodo.12794299, 2024.
Li, T. and Li, T.-J.: Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis, Geo-Mari. Lett., 38, 167–178, https://doi.org/10.1007/s00367-017-0518-2, 2018.
Li, X., Lu, C., Zhang, Y., Zhao, H., Wang, J., Liu, H., and Yin, K.: Low dissolved oxygen in the Pearl River estuary in summer: Long-term spatio-temporal patterns, trends, and regulating factors, Mar. Pollut. Bull., 151, 110814–110814, https://doi.org/10.1016/j.marpolbul.2019.110814, 2020.
Liang, J.-H., Liu, J., Benfield, M., Justic, D., Holstein, D., Liu, B., Hetland, R., Kobashi, D., Dong, C., and Dong, W.: Including the effects of subsurface currents on buoyant particles in Lagrangian particle tracking models: Model development and its application to the study of riverborne plastics over the Louisiana/Texas shelf, Ocean Model., 167, 101879, https://doi.org/10.1016/j.ocemod.2021.101879, 2021.
Lima, A. R. A., Costa, M. F., and Barletta, M.: Distribution patterns of microplastics within the plankton of a tropical estuary, Environ. Res., 132, 146–155, https://doi.org/10.1016/j.envres.2014.03.031, 2014.
Lima, A. R. A., Barletta, M., and Costa, M. F.: Seasonal distribution and interactions between plankton and microplastics in a tropical estuary, Estuar. Coast. Shelf Sci., 165, 213–225, https://doi.org/10.1016/j.ecss.2015.05.018, 2015.
Liu, Z., Zu, T., and Gan, J.: Dynamics of cross-shelf water exchanges off Pearl River Estuary in summer, Prog. Oceanogr., 189, 102465, https://doi.org/10.1016/j.pocean.2020.102465, 2020.
Malli, A., Corella-Puertas, E., Hajjar, C., and Boulay, A.-M.: Transport mechanisms and fate of microplastics in estuarine compartments: A review, Mar. Pollut. Bull., 177, 113553–113553, https://doi.org/10.1016/j.marpolbul.2022.113553, 2022.
Mao, Q., Shi, P., Yin, K., Gan, J., and Qi, Y.: Tides and tidal currents in the Pearl River Estuary, Cont. Shelf Res., 24, 1797–1808, https://doi.org/10.1016/j.csr.2004.06.008, 2004.
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875, https://doi.org/10.1029/RG020i004p00851, 1982.
Mestres, M., Sanchéz-Arcilla, A., Sierra, J. P., Mösso, C., Tagliani, P., Möller, O., and Niencheski, L.: Coastal bays as a sink for pollutants and sediment, Jo. Coast. Res., 39, 1546–1550, 2006.
Miron, P., Beron-Vera, F. J., Olascoaga, M. J., Sheinbaum, J., Pérez-Brunius, P., and Froyland, G.: Lagrangian dynamical geography of the Gulf of Mexico, Sci. Rep.-UK, 7, 7021–7021, https://doi.org/10.1038/s41598-017-07177-w, 2017.
Miron, P., Beron-Vera, F. J., Olascoaga, M. J., Froyland, G., Pérez-Brunius, P., and Sheinbaum, J.: Lagrangian Geography of the Deep Gulf of Mexico, J. Phys. Oceanogr., 49, 269–290, https://doi.org/10.1175/JPO-D-18-0073.1, 2019.
Miron, P., Beron-Vera, F. J., Helfmann, L., and Koltai, P.: Transition paths of marine debris and the stability of the garbage patches, Chaos, 31, 033101–033101, https://doi.org/10.1063/5.0030535, 2021.
North, E. W., Hood, R. R., Chao, S. Y., and Sanford, L. P.: Using a random displacement model to simulate turbulent particle motion in a baroclinic frontal zone: A new implementation scheme and model performance tests, J. Marine Syst., 60, 365–380, https://doi.org/10.1016/j.jmarsys.2005.08.003, 2006.
North, E. W., Adams, E. E., Schlag, Z., Sherwood, C. R., He, R., Hyun, K. H., and Socolofsky, S. A.: Simulating Oil Droplet Dispersal From the Deepwater Horizon Spill With a Lagrangian Approach, in: Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophysical Monograph Series, 217–226, 2011.
Pan, J., Lai, W., and Thomas Devlin, A.: Circulations in the Pearl River Estuary: Observation and Modeling, in: Estuaries and Coastal Zones – Dynamics and Response to Environmental Changes, 145–167, https://doi.org/10.5772/intechopen.91058, 2020.
Paris, C. B., Hénaff, M. L., Aman, Z. M., Subramaniam, A., Helgers, J., Wang, D.-P., Kourafalou, V. H., and Srinivasan, A.: Evolution of the Macondo Well Blowout: Simulating the Effects of the Circulation and Synthetic Dispersants on the Subsea Oil Transport, Environ. Sci. Technol., 46, 13293–13302, https://doi.org/10.1021/es303197h, 2012.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model., 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Shen, P., Wei, S., Shi, H., Gao, L., and Zhou, W.-H.: Coastal Flood Risk and Smart Resilience Evaluation under a Changing Climate, Ocean-Land-Atmosphere Research, 2, 0029, https://doi.org/10.34133/olar.0029, 2023.
Song, Y. and Haidvogel, D.: A Semi-implicit Ocean Circulation Model Using a Generalized Topography-Following Coordinate System, J. Computat. Phys., 115, 228–244, https://doi.org/10.1006/jcph.1994.1189, 1994.
Tao, W., Niu, L., Dong, Y., Fu, T., and Lou, Q.: Nutrient Pollution and Its Dynamic Source-Sink Pattern in the Pearl River Estuary (South China), Front. Mar. Sci., 8, 713907, https://doi.org/10.3389/fmars.2021.713907, 2021.
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C., MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli, F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H. A. M., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.: Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., 121, 49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018.
Vermeiren, P., Muñoz, C. C., and Ikejima, K.: Sources and sinks of plastic debris in estuaries: A conceptual model integrating biological, physical and chemical distribution mechanisms, Mar. Pollut. Bull., 113, 7–16, https://doi.org/10.1016/j.marpolbul.2016.10.002, 2016.
Wang, A.-J., Kawser, A., Xu, Y.-H., Ye, X., Rani, S., and Chen, K.-L.: Heavy metal accumulation during the last 30 years in the Karnaphuli River estuary, Chittagong, Bangladesh, SpringerPlus, 5, 2079, https://doi.org/10.1186/s40064-016-3749-1, 2016.
Wang, T., Zhao, S., Zhu, L., McWilliams, J. C., Galgani, L., Amin, R. M., Nakajima, R., Jiang, W., and Chen, M.: Accumulation, transformation and transport of microplastics in estuarine fronts, Nat. Rev. Earth Environ., 3, 795–805, https://doi.org/10.1038/s43017-022-00349-x, 2022.
Wong, L. A., Chen, J. C., Xue, H., Dong, L. X., Su, J. L., and Heinke, G.: A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 1. Simulations and comparison with observations, J. Geophys. Res.-Oceans, 108, 3156, https://doi.org/10.1029/2002JC001451, 2003.
Ye, F., Huang, X., Zhang, D., Tian, L., and Zeng, Y.: Distribution of heavy metals in sediments of the Pearl River Estuary, Southern China: Implications for sources and historical changes, J. Environ. Sci., 24, 579–588, https://doi.org/10.1016/S1001-0742(11)60783-3, 2012.
Zhang, D., Zhang, X., Tian, L., Ye, F., Huang, X., Zeng, Y., and Fan, M.: Seasonal and spatial dynamics of trace elements in water and sediment from Pearl River Estuary, South China, Environ. Earth Sci., 68, 1053–1063, https://doi.org/10.1007/s12665-012-1807-8, 2013.
Zhang, H. and Li, S.: Effects of physical and biochemical processes on the dissolved oxygen budget for the Pearl River Estuary during summer, J. Mar. Syst., 79, 65–88, https://doi.org/10.1016/j.jmarsys.2009.07.002, 2010.
Zhang, L., Yin, K., Wang, L., Chen, F., Zhang, D., and Yang, Y.: The sources and accumulation rate of sedimentary organic matter in the Pearl River Estuary and adjacent coastal area, Southern China, Estuarine, Coast. Shelf Sci., 85, 190–196, https://doi.org/10.1016/j.ecss.2009.07.035, 2009.
Zhong, L. and Li, M.: Tidal energy fluxes and dissipation in the Chesapeake Bay, Cont. Shelf Res., 26, 752–770, https://doi.org/10.1016/j.csr.2006.02.006, 2006.
Zu, T. and Gan, J.: A numerical study of coupled estuary–shelf circulation around the Pearl River Estuary during summer: Responses to variable winds, tides and river discharge, Deep-Sea Res. Pt. II, 117, 53–64, https://doi.org/10.1016/j.dsr2.2013.12.010, 2015.
Zu, T., Gan, J., and Erofeeva, S. Y.: Numerical study of the tide and tidal dynamics in the South China Sea, Deep-Sea Res. Pt. I, 55, 137–154, https://doi.org/10.1016/j.dsr.2007.10.007, 2008.
Zu, T., Wang, D., Gan, J., and Guan, W.: On the role of wind and tide in generating variability of Pearl River plume during summer in a coupled wide estuary and shelf system, J. Mar. Syst., 136, 65–79, https://doi.org/10.1016/j.jmarsys.2014.03.005, 2014.
Short summary
In this study, we explored how water accumulates in a coastal estuary, a key factor affecting the estuary's environmental health and ecosystem. We revealed significant bottom accumulations influenced by plume fronts and velocity convergence, with notable seasonal variability. By analyzing trajectories, we identified subregions with distinct accumulation patterns and examined their interconnections, highlighting the substantial impact of tides and river discharge on these dynamics.
In this study, we explored how water accumulates in a coastal estuary, a key factor affecting...