Articles | Volume 20, issue 4
https://doi.org/10.5194/os-20-917-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-917-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Continued warming of deep waters in the Fram Strait
Salar Karam
Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Mario Hoppmann
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Laura de Steur
Norwegian Polar Institute, Tromsø, Norway
Related authors
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1091, https://doi.org/10.5194/egusphere-2024-1091, 2024
Short summary
Short summary
We provide the first systematic survey of planktonic foraminifera in the high Arctic Ocean. Our results describe the abundance and species composition under summer sea-ice. They indicate that the polar specialist N. pachyderma is the only species present, with subpolar species absent. The dataset will be a valuable reference for continued monitoring of the state of planktonic foraminifera communities as they respond to the ongoing sea-ice decline and the ‘Atlantification’ of the Arctic Ocean.
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023, https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary
Short summary
Gases dissolved in the ocean water not used by the ecosystem (or "passive tracers") are invaluable to track water over long distances and investigate the processes that modify its properties. Unfortunately, especially so in the ice-covered Arctic Ocean, such gas measurements are sparse. We here present a data set of several passive tracers (anthropogenic gases, noble gases and their isotopes) collected over the full ocean depth, weekly, during the 1-year drift in the Arctic during MOSAiC.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1091, https://doi.org/10.5194/egusphere-2024-1091, 2024
Short summary
Short summary
We provide the first systematic survey of planktonic foraminifera in the high Arctic Ocean. Our results describe the abundance and species composition under summer sea-ice. They indicate that the polar specialist N. pachyderma is the only species present, with subpolar species absent. The dataset will be a valuable reference for continued monitoring of the state of planktonic foraminifera communities as they respond to the ongoing sea-ice decline and the ‘Atlantification’ of the Arctic Ocean.
Julius Lauber, Tore Hattermann, Laura de Steur, Elin Darelius, and Agneta Fransson
EGUsphere, https://doi.org/10.5194/egusphere-2024-904, https://doi.org/10.5194/egusphere-2024-904, 2024
Short summary
Short summary
Recent studies have highlighted the potential vulnerability of the East Antarctic Ice Sheet to atmospheric and oceanic changes. We present new insights from observations from three oceanic moorings below Fimbulisen Ice Shelf from 2009 to 2021. We find that relatively warm water masses reach below the ice shelf both close to the surface and at depth with implications for the basal melting of Fimbulisen.
Lea Poropat, Dani Jones, Simon D. A. Thomas, and Céline Heuzé
Ocean Sci., 20, 201–215, https://doi.org/10.5194/os-20-201-2024, https://doi.org/10.5194/os-20-201-2024, 2024
Short summary
Short summary
In this study we use a machine learning method called a Gaussian mixture model to divide part of the ocean (northwestern European seas and part of the Atlantic Ocean) into regions based on satellite observations of sea level. This helps us study each of these regions separately and learn more about what causes sea level changes there. We find that the ocean is first divided based on bathymetry and then based on other features such as water masses and typical atmospheric conditions.
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023, https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary
Short summary
Gases dissolved in the ocean water not used by the ecosystem (or "passive tracers") are invaluable to track water over long distances and investigate the processes that modify its properties. Unfortunately, especially so in the ice-covered Arctic Ocean, such gas measurements are sparse. We here present a data set of several passive tracers (anthropogenic gases, noble gases and their isotopes) collected over the full ocean depth, weekly, during the 1-year drift in the Arctic during MOSAiC.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Ruibo Lei, Mario Hoppmann, Bin Cheng, Marcel Nicolaus, Fanyi Zhang, Benjamin Rabe, Long Lin, Julia Regnery, and Donald K. Perovich
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-25, https://doi.org/10.5194/tc-2023-25, 2023
Manuscript not accepted for further review
Short summary
Short summary
To characterize the freezing and melting of different types of sea ice, we deployed four IMBs during the MOSAiC second drift. The drifting pattern, together with a large snow accumulation, relatively warm air temperatures, and a rapid increase in oceanic heat close to Fram Strait, determined the seasonal evolution of the ice mass balance. The refreezing of ponded ice and voids within the unconsolidated ridges amplifies the anisotropy of the heat exchange between the ice and the atmosphere/ocean.
Long Lin, Ruibo Lei, Mario Hoppmann, Donald K. Perovich, and Hailun He
The Cryosphere, 16, 4779–4796, https://doi.org/10.5194/tc-16-4779-2022, https://doi.org/10.5194/tc-16-4779-2022, 2022
Short summary
Short summary
Ice mass balance observations indicated that average basal melt onset was comparable in the central Arctic Ocean and approximately 17 d earlier than surface melt in the Beaufort Gyre. The average onset of basal growth lagged behind the surface of the pan-Arctic Ocean for almost 3 months. In the Beaufort Gyre, both drifting-buoy observations and fixed-point observations exhibit a trend towards earlier basal melt onset, which can be ascribed to the earlier warming of the surface ocean.
Mario Hoppmann, Ivan Kuznetsov, Ying-Chih Fang, and Benjamin Rabe
Earth Syst. Sci. Data, 14, 4901–4921, https://doi.org/10.5194/essd-14-4901-2022, https://doi.org/10.5194/essd-14-4901-2022, 2022
Short summary
Short summary
The role of eddies and fronts in the oceans is a hot topic in climate research, but there are still many related knowledge gaps, particularly in the ice-covered Arctic Ocean. Here we present a unique dataset of ocean observations collected by a set of drifting buoys installed on ice floes as part of the 2019/2020 MOSAiC campaign. The buoys recorded temperature and salinity data for 10 months, providing extraordinary insights into the properties and processes of the ocean along their drift.
Martin Mohrmann, Céline Heuzé, and Sebastiaan Swart
The Cryosphere, 15, 4281–4313, https://doi.org/10.5194/tc-15-4281-2021, https://doi.org/10.5194/tc-15-4281-2021, 2021
Short summary
Short summary
Polynyas are large open-water areas within the sea ice. We developed a method to estimate their area, distribution and frequency for the Southern Ocean in climate models and observations. All models have polynyas along the coast but few do so in the open ocean, in contrast to observations. We examine potential atmospheric and oceanic drivers of open-water polynyas and discuss recently implemented schemes that may have improved some models' polynya representation.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Céline Heuzé, Lu Zhou, Martin Mohrmann, and Adriano Lemos
The Cryosphere, 15, 3401–3421, https://doi.org/10.5194/tc-15-3401-2021, https://doi.org/10.5194/tc-15-3401-2021, 2021
Short summary
Short summary
For navigation or science planning, knowing when sea ice will open in advance is a prerequisite. Yet, to date, routine spaceborne microwave observations of sea ice are unable to do so. We present the first method based on spaceborne infrared that can forecast an opening several days ahead. We develop it specifically for the Weddell Polynya, a large hole in the Antarctic winter ice cover that unexpectedly re-opened for the first time in 40 years in 2016, and determine why the polynya opened.
Ruibo Lei, Mario Hoppmann, Bin Cheng, Guangyu Zuo, Dawei Gui, Qiongqiong Cai, H. Jakob Belter, and Wangxiao Yang
The Cryosphere, 15, 1321–1341, https://doi.org/10.5194/tc-15-1321-2021, https://doi.org/10.5194/tc-15-1321-2021, 2021
Short summary
Short summary
Quantification of ice deformation is useful for understanding of the role of ice dynamics in climate change. Using data of 32 buoys, we characterized spatiotemporal variations in ice kinematics and deformation in the Pacific sector of Arctic Ocean for autumn–winter 2018/19. Sea ice in the south and west has stronger mobility than in the east and north, which weakens from autumn to winter. An enhanced Arctic dipole and weakened Beaufort Gyre in winter lead to an obvious turning of ice drifting.
Céline Heuzé
Ocean Sci., 17, 59–90, https://doi.org/10.5194/os-17-59-2021, https://doi.org/10.5194/os-17-59-2021, 2021
Short summary
Short summary
Dense waters sinking by Antarctica and in the North Atlantic control global ocean currents and carbon storage. We need to know how these change with climate change, and thus we need accurate climate models. Here we show that dense water sinking in the latest models is better than in the previous ones, but there is still too much water sinking. This impacts how well models represent the deep ocean density and the deep currents globally. We also suggest ways to improve the models.
Christian Katlein, Lovro Valcic, Simon Lambert-Girard, and Mario Hoppmann
The Cryosphere, 15, 183–198, https://doi.org/10.5194/tc-15-183-2021, https://doi.org/10.5194/tc-15-183-2021, 2021
Short summary
Short summary
To improve autonomous investigations of sea ice optical properties, we designed a chain of multispectral light sensors, providing autonomous in-ice light measurements. Here we describe the system and the data acquired from a first prototype deployment. We show that sideward-looking planar irradiance sensors basically measure scalar irradiance and demonstrate the use of this sensor chain to derive light transmittance and inherent optical properties of sea ice.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Stefanie Arndt, Mario Hoppmann, Holger Schmithüsen, Alexander D. Fraser, and Marcel Nicolaus
The Cryosphere, 14, 2775–2793, https://doi.org/10.5194/tc-14-2775-2020, https://doi.org/10.5194/tc-14-2775-2020, 2020
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Short summary
In October 2019 the research vessel Polarstern was moored to an ice floe in order to travel with it on the 1-year-long MOSAiC journey through the Arctic. Here we provide historical context of the floe's evolution and initial state for upcoming studies. We show that the ice encountered on site was exceptionally thin and was formed on the shallow Siberian shelf. The analyses presented provide the initial state for the analysis and interpretation of upcoming biogeochemical and ecological studies.
Svein Østerhus, Rebecca Woodgate, Héðinn Valdimarsson, Bill Turrell, Laura de Steur, Detlef Quadfasel, Steffen M. Olsen, Martin Moritz, Craig M. Lee, Karin Margretha H. Larsen, Steingrímur Jónsson, Clare Johnson, Kerstin Jochumsen, Bogi Hansen, Beth Curry, Stuart Cunningham, and Barbara Berx
Ocean Sci., 15, 379–399, https://doi.org/10.5194/os-15-379-2019, https://doi.org/10.5194/os-15-379-2019, 2019
Short summary
Short summary
Two decades of observations of the Arctic Mediterranean (AM) exchanges show that the exchanges have been stable in terms of volume transport during a period when many other components of the global climate system have changed. The total AM import is found to be 9.1 Sv and has a seasonal variation in amplitude close to 1 Sv, and maximum import in October. Roughly one-third of the imported water leaves the AM as surface outflow.
Lovisa Waldrop Bergman and Céline Heuzé
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-122, https://doi.org/10.5194/os-2018-122, 2018
Preprint withdrawn
Short summary
Short summary
How to force a model where no suitable observation exists? We here determine using MITgcm the relative influence of the choice of wind, initial hydrography, and sea ice cover on the resulting ocean circulation in Nares Strait, northwest Greenland. The input with the largest effect is the density gradient in the upper layer. We argue that it should be prioritised over high resolution wind for cost-effective simulations of the Arctic straits, crucial for modelling the Arctic freshwater export.
Céline Heuzé
Ocean Sci., 13, 609–622, https://doi.org/10.5194/os-13-609-2017, https://doi.org/10.5194/os-13-609-2017, 2017
Short summary
Short summary
Climate models are the best tool available to estimate the ocean’s response to climate change, notably sea level rise. To trust the models, we need to compare them to the real ocean in key areas. Here we do so in the North Atlantic, where deep waters form, and show that inaccurate location, extent and frequency of the formation impact the representation of the global ocean circulation and how much heat enters the Arctic. We also study the causes of the errors in order to improve future models.
Mathew A. Stiller-Reeve, Céline Heuzé, William T. Ball, Rachel H. White, Gabriele Messori, Karin van der Wiel, Iselin Medhaug, Annemarie H. Eckes, Amee O'Callaghan, Mike J. Newland, Sian R. Williams, Matthew Kasoar, Hella Elisa Wittmeier, and Valerie Kumer
Hydrol. Earth Syst. Sci., 20, 2965–2973, https://doi.org/10.5194/hess-20-2965-2016, https://doi.org/10.5194/hess-20-2965-2016, 2016
Short summary
Short summary
Scientific writing must improve and the key to long-term improvement of scientific writing lies with the early-career scientist (ECS). We introduce the ClimateSnack project, which aims to motivate ECSs to start writing groups around the world to improve their skills together. Writing groups offer many benefits but can be a challenge to keep going. Several ClimateSnack writing groups formed, and this paper examines why some of the groups flourished and others dissolved.
C. Heuzé, J. K. Ridley, D. Calvert, D. P. Stevens, and K. J. Heywood
Geosci. Model Dev., 8, 3119–3130, https://doi.org/10.5194/gmd-8-3119-2015, https://doi.org/10.5194/gmd-8-3119-2015, 2015
Short summary
Short summary
Most ocean models, including NEMO, have unrealistic Southern Ocean deep convection. That is, through extensive areas of the Southern Ocean, they exhibit convection from the surface of the ocean to the sea floor. We find this convection to be an issue as it impacts the whole ocean circulation, notably strengthening the Antarctic Circumpolar Current. Using sensitivity experiments, we show that counter-intuitively the vertical mixing needs to be enhanced to reduce this spurious convection.
Related subject area
Approach: In situ Observations | Properties and processes: Overturning circulation, gyres and water masses
Observed change and the extent of coherence in the Gulf Stream system
Anomalous North Pacific subtropical mode water volume and density decrease in a recent stable Kuroshio Extension period from Argo observations
New insights into the eastern subpolar North Atlantic meridional overturning circulation from OVIDE
The Southern Ocean deep mixing band emerges from a competition between winter buoyancy loss and upper stratification strength
Comparing observed and modelled components of the Atlantic Meridional Overturning Circulation at 26° N
Water properties and bottom water patterns in hadal trench environments
Long-term eddy modulation affects the meridional asymmetry of the halocline in the Beaufort Gyre
Technical note: Determining Arctic Ocean halocline and cold halostad depths based on vertical stability
The Iceland–Faroe warm-water flow towards the Arctic estimated from satellite altimetry and in situ observations
Helene Asbjørnsen, Tor Eldevik, Johanne Skrefsrud, Helen L. Johnson, and Alejandra Sanchez-Franks
Ocean Sci., 20, 799–816, https://doi.org/10.5194/os-20-799-2024, https://doi.org/10.5194/os-20-799-2024, 2024
Short summary
Short summary
The Gulf Stream system is essential for northward ocean heat transport. Here, we use observations along the path of the extended Gulf Stream system and an observationally constrained ocean model to investigate variability in the Gulf Stream system since the 1990s. We find regional differences in the variability between the subtropical, subpolar, and Nordic Seas regions, which warrants caution in using observational records at a single latitude to infer large-scale circulation change.
Jing Sheng, Cong Liu, Yanzhen Gu, Peiliang Li, Fangguo Zhai, and Ning Zhou
Ocean Sci., 20, 817–834, https://doi.org/10.5194/os-20-817-2024, https://doi.org/10.5194/os-20-817-2024, 2024
Short summary
Short summary
The homogeneous water column, named mode water, retains atmosphere conditions and biogeochemical elements from the deep winter mixed layer and became weaker and warmer in the North Pacific subtropical ocean in 2018–2021 even though the Kuroshio Extension was stable. Locally anomalous east wind transporting warm water to the north and enhanced near-surface stratification hinder the deepening of the winter mixed layer. This study has broad implications for climate change and biogeochemical cycles.
Herlé Mercier, Damien Desbruyères, Pascale Lherminier, Antón Velo, Lidia Carracedo, Marcos Fontela, and Fiz F. Pérez
Ocean Sci., 20, 779–797, https://doi.org/10.5194/os-20-779-2024, https://doi.org/10.5194/os-20-779-2024, 2024
Short summary
Short summary
We study the Atlantic Meridional Overturning Circulation (AMOC) measured between Greenland and Portugal between 1993–2021. We identify changes in AMOC limb volume and velocity as two major drivers of AMOC variability at subpolar latitudes. Volume variations dominate on the seasonal timescale, while velocity variations are more important on the decadal timescale. This decomposition proves useful for understanding the origin of the differences between AMOC time series from different analyses.
Romain Caneill, Fabien Roquet, and Jonas Nycander
Ocean Sci., 20, 601–619, https://doi.org/10.5194/os-20-601-2024, https://doi.org/10.5194/os-20-601-2024, 2024
Short summary
Short summary
In winter, heat loss increases density at the surface of the Southern Ocean. This increase in density creates a mixed layer deeper than 250 m only in a narrow deep mixing band (DMB) located around 50° S. North of the DMB, the stratification is too strong to be eroded, so mixed layers are shallower. The density of cold water is almost not impacted by temperature changes. Thus, heat loss does not significantly increase the density south of the DMB, so no deep mixed layers are produced.
Harry Bryden, Jordi Beunk, Sybren Drijfhout, Wilco Hazeleger, and Jennifer Mecking
Ocean Sci., 20, 589–599, https://doi.org/10.5194/os-20-589-2024, https://doi.org/10.5194/os-20-589-2024, 2024
Short summary
Short summary
There is widespread interest in whether the Gulf Stream will decline under global warming. We analyse 19 coupled climate model projections of the AMOC over the 21st century. The model consensus is that the AMOC will decline by about 40 % due to reductions in northward Gulf Stream transport and southward deep western boundary current transport. Whilst the wind-driven Gulf Stream decreases by 4 Sv, most of the decrease in the Gulf Stream is due to a reduction of 7 Sv in its thermohaline component.
Jessica Kolbusz, Jan Zika, Charitha Pattiaratchi, and Alan Jamieson
Ocean Sci., 20, 123–140, https://doi.org/10.5194/os-20-123-2024, https://doi.org/10.5194/os-20-123-2024, 2024
Short summary
Short summary
We collected observations of the ocean environment at depths over 6000 m in the Southern Ocean, Indian Ocean, and western Pacific using sensor-equipped landers. We found that trench locations impact the water characteristics over these depths. Moving northward, they generally warmed but differed due to their position along bottom water circulation paths. These insights stress the importance of further research in understanding the environment of these deep regions and their importance.
Jinling Lu, Ling Du, and Shuhao Tao
Ocean Sci., 19, 1773–1789, https://doi.org/10.5194/os-19-1773-2023, https://doi.org/10.5194/os-19-1773-2023, 2023
Short summary
Short summary
With the recent developments in observations and reanalysis data in the Beaufort Gyre, we investigate an improved understanding of eddy activity and asymmetrical halocline variability in the upper ocean. The halocline structures on the southern and northern sides of the central gyre have tended to be identical since 2014. The results suggest that enhanced eddy modulation through eddy fluxes influences oceanic stratification, resulting in reduced meridional asymmetry of the halocline.
Enrico P. Metzner and Marc Salzmann
Ocean Sci., 19, 1453–1464, https://doi.org/10.5194/os-19-1453-2023, https://doi.org/10.5194/os-19-1453-2023, 2023
Short summary
Short summary
The Arctic Ocean cold halocline separates the cold surface mixed layer from the underlying warm Atlantic Water, and thus provides a precondition for sea ice formation. Here, we introduce a new method for detecting the halocline base and compare it to two existing methods. We show that the largest differences between the methods are found in the regions that are most prone to a halocline retreat in a warming climate, and we discuss the advantages and disadvantages of the three methods.
Bogi Hansen, Karin M. H. Larsen, Hjálmar Hátún, Steffen M. Olsen, Andrea M. U. Gierisch, Svein Østerhus, and Sólveig R. Ólafsdóttir
Ocean Sci., 19, 1225–1252, https://doi.org/10.5194/os-19-1225-2023, https://doi.org/10.5194/os-19-1225-2023, 2023
Short summary
Short summary
Based on in situ observations combined with sea level anomaly (SLA) data from satellite altimetry, volume as well as heat (relative to 0 °C) transport of the Iceland–Faroe warm-water inflow towards the Arctic (IF inflow) increased from 1993 to 2021. The reprocessed SLA data released in December 2021 represent observed variations accurately. The IF inflow crosses the Iceland–Faroe Ridge in two branches, with retroflection in between. The associated coupling to overflow reduces predictability.
Cited articles
Abot, L., Provost, C., and Poli, L.: Recent Convection Decline in the Greenland Sea: Insights From the Mercator Ocean System Over 2008–2020, J. Geophys. Res.-Ocean., 128, e2022JC019320, https://doi.org/10.1029/2022JC019320, 2023. a, b
Bashmachnikov, I. L., Fedorov, A. M., Golubkin, P. A., Vesman, A. V., Selyuzhenok, V. V., Gnatiuk, N. V., Bobylev, L. P., Hodges, K. I., and Dukhovskoy, D. S.: Mechanisms of interannual variability of deep convection in the Greenland sea, Deep-Sea Res. Pt. I, 174, 103557, https://doi.org/10.1016/j.dsr.2021.103557, 2021. a, b
Bauch, D., Schlosser, P., and Fairbanks, R. G.: Freshwater balance and the sources of deep and bottom waters in the Arctic Ocean inferred from the distribution of H O, Prog. Oceanogr., 35, 53–80, https://doi.org/10.1016/0079-6611(95)00005-2, 1995. a, b
Bauerfeind, E., Beszczynska-Möller, A., von Appen, W.-J., Soltwedel, T., Sablotny, B., and Lochthofen, N.: Physical oceanography and current meter data from mooring FEVI22 at Hausgarten IV, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.845616, 2015a. a, b, c
Bauerfeind, E., Beszczynska-Möller, A., von Appen, W.-J., Soltwedel, T., Sablotny, B., and Lochthofen, N.: Physical oceanography and current meter data from mooring FEVI24 at Hausgarten IV, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.845618, 2015b. a, b, c
Bauerfeind, E., Beszczynska-Möller, A., von Appen, W.-J., Soltwedel, T., Sablotny, B., and Lochthofen, N.: Physical oceanography and current meter data from mooring FEVI26 at Hausgarten IV, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.845620, 2015c. a, b, c
Bauerfeind, E., Beszczynska-Möller, A., von Appen, W.-J., Soltwedel, T., Sablotny, B., and Lochthofen, N.: Physical oceanography and current meter data from mooring FEVI28 at Hausgarten IV, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.845622, 2015d. a, b, c
Bauerfeind, E., von Appen, W.-J., Soltwedel, T., and Lochthofen, N.: Physical oceanography and current meter data from mooring FEVI30 at Hausgarten IV, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.861858, 2016. a, b, c
Behrendt, A., Sumata, H., Rabe, B., and Schauer, U.: UDASH - Unified Database for Arctic and Subarctic Hydrography, Earth Syst. Sci. Data, 10, 1119–1138, https://doi.org/10.5194/essd-10-1119-2018, 2018. a, b
Beszczynska-Möller, A., Fahrbach, E., Schauer, U., and Hansen, E.: Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010, ICES J. Mar. Sci., 69, 852–863, https://doi.org/10.1093/icesjms/fss056, 2012. a, b, c
Bönisch, G., Blindheim, J., Bullister, J. L., Schlosser, P., and Wallace, D. W.: Long-term trends of temperature, salinity, density, and transient tracers in the central Greenland Sea, J. Geophys. Res.-Ocean., 102, 18553–18571, https://doi.org/10.1029/97JC00740, 1997. a, b
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Locarnini, R. A., Mishonov, A. V., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., Weathers, K., and Zweng, M. M.: World Ocean Database 2018, NOAA [data set], https://www.ncei.noaa.gov/products/world-ocean-database (last access: 11 May 2024), 2018. a, b
Brakstad, A., Våge, K., Håvik, L., and MOORE, G. W.: Water mass transformation in the Greenland sea during the period 1986–2016, J. Phys. Oceanogr., 49, 121–140, https://doi.org/10.1175/JPO-D-17-0273.1, 2019. a, b, c
Brakstad, A., Gebbie, G., Våge, K., Jeansson, E., and Ólafsdóttir, S. R.: Formation and pathways of dense water in the Nordic Seas based on a regional inversion, Prog. Oceanogr., 212, 102981, https://doi.org/10.1016/j.pocean.2023.102981, 2023. a
Budeus, G. and Ronski, S.: An Integral View of the Hydrographic Development in the Greenland Sea Over a Decade, Open Oceanogr. J., 3, 8–39, https://doi.org/10.2174/1874252100903010008, 2009. a
Budeus, G., Schneider, W., and Krause, G.: Winter convective events and bottom water warming in the Greenland Sea, J. Geophys. Res.-Ocean., 103, 18513–18527, https://doi.org/10.1029/98JC01563, 1998. a, b
de Steur, L., Hansen, E., Mauritzen, C., Beszczynska-Möller, A., and Fahrbach, E.: Impact of recirculation on the East Greenland Current in Fram Strait: Results from moored current meter measurements between 1997 and 2009, Deep-Sea Res. Pt. I, 92, 26–40, https://doi.org/10.1016/j.dsr.2014.05.018, 2014. a, b, c
de Steur, L., Karpouzoglou, T., and Kern, Y.: Moored current meter and hydrographic data from the Fram Strait Arctic Outflow Observatory since 2009, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/npolar.2021.c4d80b64, 2021. a, b, c
de Steur, L., Sumata, H., Divine, D. V., Granskog, M. A., and Pavlova, O.: Upper ocean warming and sea ice reduction in the East Greenland Current from 2003 to 2019, Commun. Earth Environ., 4, 1–11, https://doi.org/10.1038/s43247-023-00913-3, 2023. a, b
Desbruyères, D. G., Purkey, S. G., McDonagh, E. L., Johnson, G. C., and King, B. A.: Deep and abyssal ocean warming from 35 years of repeat hydrography, Geophys. Res. Lett., 43, 10356–10365, https://doi.org/10.1002/2016GL070413, 2016. a
Dodd, P. A. and Hansen, E.: Data collected during the KV Svalbard cruise in 2007, Norwegian Meteorological Institute [data set], https://doi.org/10.21343/7jqb-5930, 2011a. a, b
Dodd, P. A. and Hansen, E.: Data collected during the KV Svalbard cruise in 2008, Norwegian Meteorological Institute [data set], https://doi.org/10.21343/btym-vh89, 2011b. a, b
Dodd, P. A., Almgren, P. A., Blæstrerdalen, T., Debyser, M., Guthrie, J., Granskog, M. A., Melbye-Hansen, S., Kern, Y., Nystedt, E., Stedmon, C. A., Steinsdóttir, H., and de Steur, L.: CTD profiles from NPI cruise FS2017 to the Fram Strait including auxiliary sensors, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/npolar.2022.44db5c55, 2022a. a, b
Dodd, P. A., Aloise, A., Cooper, A., Ghani, M., Johansson, A. M., Kalhagen, K., Kern, Y., Pavlov, A. K., Stedmon, C. A., de Steur, L., and Ullgren, J.: CTD profiles from NPI cruise FS2015 to the Fram Strait including auxiliary sensors, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/npolar.2022.52ecdc98, 2022b. a, b
Dodd, P. A., Anhaus, P., Chierici, M., Doncila, A., Fransson, A., Granskog, M. A., Kern, Y., Konik, M., Lambert, E., Smith-Johnsen, S., and Stedmon, C. A.: CTD profiles from NPI cruise FS2016 to the Fram Strait including auxiliary sensors, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/npolar.2022.29c6e2c7, 2022c. a, b
Dodd, P. A., Ask, A., Divine, D., Granskog, M. A., Keck, A., Kern, Y., Petit, T., Karpouzoglou, T., Stedmon, C. A., and de Steur, L.: CTD profiles from NPI cruise FS2020 to the Fram Strait including auxiliary sensors, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/npolar.2022.5df344c6, 2022d. a, b
Dodd, P. A., Buckley, S., Campbell, K., Chierici, M., Divine, D., Eggen, V., Fransson, A., Gonçalves-Araujo, R., Granskog, M. A., Hop, H., Kern, Y., Koenig, Z., Lange, B. A., Lenss, M., Misund, O. A., Muilwijk, M., Nikolopoulos, A., Osanen, J., Raffel, B., Siddarthan, V., Sandven, H., Shereef, A., Stürzinger, V., and De La Torre, P.: CTD profiles from NPI cruise AO-2022 across the Nansen and Amundsen Basins of the Arctic Ocean and core parameters measured from niskin bottle samples, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/npolar.2022.d1e609e2, 2022e. a, b
Dodd, P. A., Chierici, M., Debyser, M., Fransson, A., Granskog, M. A., Hamar, A. L., Kern, Y., Rhode-Kiær, C. M., Lautkötter, C., Stedmon, C. A., de Steur, L., and Wefing, A. M.: CTD profiles from NPI cruise FS2018 to the Fram Strait including auxiliary sensors, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/npolar.2022.2c646c2e, 2022f. a, b
Dodd, P. A., Debyser, M., Desmet, F., Gonçalves-Araujo, R., Granskog, M. A., Karpouzoglou, T., Kern, Y., Saes, M. J. M., Stedmon, C. A., de Steur, L., and Wefing, A. M.: CTD profiles from NPI cruise FS2019 to the Fram Strait including auxiliary sensors, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/npolar.2022.5066a075, 2022g. a, b
Dodd, P. A., Divine, D., Granskog, M. A., Johansson, A. M., Kern, Y., Pavlov, A. K., Peralta-Ferriz, C., Stedmon, C. A., and de Steur, L.: CTD profiles from NPI cruise FS2014 to the Fram Strait including auxiliary sensors, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/npolar.2022.493ea7ad, 2022h. a, b
Dodd, P. A., Gonçalves-Araujo, R., Granskog, M. A., Jensen, A. D. B., Kern, Y., Lin, G., Hagen, S. Z., Haraguchi, L., Stedmon, C. A., and de Steur, L.: CTD profiles from NPI cruise FS2021 to the Fram Strait including auxiliary sensors, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/npolar.2022.17b6bec5, 2022i. a, b
Fasullo, J. T. and Gent, P. R.: On the Relationship between Regional Ocean Heat Content and Sea Surface Height, J. Clim. 30, 9195–9211, https://doi.org/10.1175/JCLI-D-16-0920.1, 2017. a
Heuzé, C., Karam, S., Muchowski, J., Padilla, A., Stranne, C., Gerke, L., Tanhua, T., Ulfsbo, A., Laber, C., and Stedmon, C. A.: Physical Oceanography during ODEN expedition SO21 for the Synoptic Arctic Survey, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.951266, 2022. a, b
Hopkins, J., Brennan, D., Abell, R., Sanders, R. W., and Mountifield, D.: CTD data from NERC Changing Arctic Ocean Cruise JR17005 on the RRS James Clark Ross, May–June 2018 (version 2), British Oceanographic Data Centre, National Oceanography Centre [data set], https://doi.org/10.5285/84988765-5fc2-5bba-e053-6c86abc05d53, 2019. a, b
Hoppmann, M., von Appen, W.-J., Bienhold, C., Frommhold, L., Hagemann, J., Hargesheimer, T., Iversen, M. H., Knüppel, N., Konrad, C., Lochthofen, N., Ludszuweit, J., McPherson, R., Monsees, M., Nicolaus, A., Nöthig, E.-M., Wietz, M., Metfies, K., and Soltwedel, T.: Raw physical oceanography and ocean current data from mooring HG-IV-FEVI-40 in the Fram Strait, August 2019–June 2021, PANGAEA, https://doi.org/10.1594/PANGAEA.946514, in: Hoppmann, Mario: Collection of raw data from oceanographic moorings in the Fram Strait, Greenland Sea, and central Arctic Ocean, 2018–2025, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.959812, 2022. a, b, c
Hoppmann, M., von Appen, W.-J., Allerholt, J., Bienhold, C., Frommhold, L., Graupner, R., Iversen, M. H., Knüppel, N., Konrad, C., Lochthofen, N., Ludszuweit, J., Monsees, M., McPherson, R., Metfies, K., Nicolaus, A., Nöthig, E.-M., Reifenberg, S. F., Wietz, M., Soltwedel, T., and Kanzow, T.: Raw physical oceanography and ocean current velocity data from mooring HG-IV-FEVI-42 in the Fram Strait, June 2021–July 2022, PANGAEA, https://doi.org/10.1594/PANGAEA.964045, in: Hoppmann, Mario: Collection of raw data from oceanographic moorings in the Fram Strait, Greenland Sea, and central Arctic Ocean, 2018–2025, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.959812, 2023a. a, b, c
Hoppmann, M., von Appen, W.-J., Monsees, M., Lochthofen, N., Bäger, J., Behrendt, A., Bienhold, C., Frommhold, L., Hagemann, J., Hargesheimer, T., Iversen, M. H., Konrad, C., Kuhlmey, D., Ludszuweit, J., Nöthig, E.-M., Schaffer, J., Stiens, R., Vernaleken, J., Wietz, M., and Metfies, K.: Raw physical oceanography, ocean current velocity and particle export data from mooring HG-IV-FEVI-38 in the Fram Strait, July 2018–August 2019, PANGAEA, https://doi.org/10.1594/PANGAEA.942180, in: Hoppmann, Mario: Collection of raw data from oceanographic moorings in the Fram Strait, Greenland Sea, and central Arctic Ocean, 2018–2025, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.959812, 2023b. a, b, c
Isachsen, P. E., LaCasce, J. H., Mauritzen, C., and Häkkinen, S.: Wind-Driven Variability of the Large-Scale Recirculating Flow in the Nordic Seas and Arctic Ocean, J. Phys. Oceanogr., 33, 2534–2550, https://doi.org/10.1175/1520-0485(2003)033<2534:WVOTLR>2.0.CO;2, 2003. a
Jakobsson, M., Mayer, L. A., Bringensparr, C., Castro, C. F., Mohammad, R., Johnson, P., Ketter, T., Accettella, D., Amblas, D., An, L., Arndt, J. E., Canals, M., Casamor, J. L., Chauché, N., Coakley, B., Danielson, S., Demarte, M., Dickson, M. L., Dorschel, B., Dowdeswell, J. A., Dreutter, S., Fremand, A. C., Gallant, D., Hall, J. K., Hehemann, L., Hodnesdal, H., Hong, J., Ivaldi, R., Kane, E., Klaucke, I., Krawczyk, D. W., Kristoffersen, Y., Kuipers, B. R., Millan, R., Masetti, G., Morlighem, M., Noormets, R., Prescott, M. M., Rebesco, M., Rignot, E., Semiletov, I., Tate, A. J., Travaglini, P., Velicogna, I., Weatherall, P., Weinrebe, W., Willis, J. K., Wood, M., Zarayskaya, Y., Zhang, T., Zimmermann, M., and Zinglersen, K. B.: The International Bathymetric Chart of the Arctic Ocean Version 4.0, Sci. Data, 7, 1–14, https://doi.org/10.1038/s41597-020-0520-9, 2020. a, b, c
Jeansson, E., Olsen, A., and Jutterström, S.: Arctic Intermediate Water in the Nordic Seas, 1991–2009, Deep-Sea Res. Pt. I, 128, 82–97, https://doi.org/10.1016/j.dsr.2017.08.013, 2017. a, b
Karpouzoglou, T., de Steur, L., Smedsrud, L. H., and Sumata, H.: Observed Changes in the Arctic Freshwater Outflow in Fram Strait, J. Geophys. Res.-Ocean., 127, e2021JC018122, https://doi.org/10.1029/2021JC018122, 2022. a, b
Langehaug, H. R. and Falck, E.: Changes in the properties and distribution of the intermediate and deep waters in the Fram Strait, Prog. Oceanogr., 96, 57–76, https://doi.org/10.1016/j.pocean.2011.10.002, 2012. a, b, c
Latarius, K. and Quadfasel, D.: Seasonal to inter-annual variability of temperature and salinity in the Greenland Sea Gyre: Heat and freshwater budgets, Tellus A, 62, 497–515, https://doi.org/10.1111/j.1600-0870.2010.00453.x, 2010. a
Lauvset, S. K., Brakstad, A., Våge, K., Olsen, A., Jeansson, E., and Mork, K. A.: Continued warming, salinification and oxygenation of the Greenland Sea gyre, Tellus A, 70, 1–9, https://doi.org/10.1080/16000870.2018.1476434, 2018. a, b, c, d
Marnela, M., Rudels, B., Goszczko, I., Beszczynska-Möller, A., and Schauer, U.: Fram Strait and Greenland Sea transports, water masses, and water mass transformations 1999–2010 (and beyond), J. Geophys. Res.-Ocean., 121, 2314–2346, https://doi.org/10.1002/2015JC011312, 2016. a, b
McDougall, T. and Barker, P.: Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, Trevor J. McDougall, SCOR/IAPSO WG127, ISBN 9780646556215, 2011. a
Norwegian Polar Institute: Physical oceanography data (1981 to 2015), Norwegian Polar Data Centre [data set], https://doi.org/10.21334/npolar.2014.e3d4f892, 2010. a, b
Østerhus, S. and Gammelsrød, T.: The abyss of the nordic seas is warming, J. Clim., 12, 3297–3304, https://doi.org/10.1175/1520-0442(1999)012<3297:TAOTNS>2.0.CO;2, 1999. a, b
Pellichero, V., Lique, C., Kolodziejczyk, N., and Balem, K.: Structure and Variability of the Jan Mayen Current in the Greenland Sea Gyre From a Yearlong Mooring Array, J. Geophys. Res.-Ocean., 128, e2022JC019616, https://doi.org/10.1029/2022JC019616, 2023. a
Rabe, B., Heuzé, C., Regnery, J., Aksenov, Y., Allerholt, J., Athanase, M., Bai, Y., Basque, C., Bauch, D., Baumann, T. M., Chen, D., Cole, S. T., Craw, L., Davies, A., Damm, E., Dethloff, K., Divine, D. V., Doglioni, F., Ebert, F., Fang, Y. C., Fer, I., Fong, A. A., Gradinger, R., Granskog, M. A., Graupner, R., Haas, C., He, H., He, Y., Hoppmann, M., Janout, M., Kadko, D., Kanzow, T., Karam, S., Kawaguchi, Y., Koenig, Z., Kong, B., Krishfield, R. A., Krumpen, T., Kuhlmey, D., Kuznetsov, I., Lan, M., Laukert, G., Lei, R., Li, T., Torres-Valdés, S., Lin, L., Lin, L., Liu, H., Liu, N., Loose, B., Ma, X., McKay, R., Mallet, M., Mallett, R. D., Maslowski, W., Mertens, C., Mohrholz, V., Muilwijk, M., Nicolaus, M., O'Brien, J. K., Perovich, D., Ren, J., Rex, M., Ribeiro, N., Rinke, A., Schaffer, J., Schuffenhauer, I., Schulz, K., Shupe, M. D., Shaw, W., Sokolov, V., Sommerfeld, A., Spreen, G., Stanton, T., Stephens, M., Su, J., Sukhikh, N., Sundfjord, A., Thomisch, K., Tippenhauer, S., Toole, J. M., Vredenborg, M., Walter, M., Wang, H., Wang, L., Wang, Y., Wendisch, M., Zhao, J., Zhou, M., and Zhu, J.: Overview of the MOSAiC expedition: Physical oceanography, Elementa, 10, 00062, https://doi.org/10.1525/elementa.2021.00062, 2022. a
Rodionov, S. and Overland, J. E.: Application of a sequential regime shift detection method to the Bering Sea ecosystem, ICES J. Mar. Sci., 62, 328–332, https://doi.org/10.1016/j.icesjms.2005.01.013, 2005. a
Rodionov, S. N.: A sequential algorithm for testing climate regime shifts, Geophys. Res. Lett., 31, L09204, https://doi.org/10.1029/2004GL019448, 2004. a, b
Rudels, B.: The θ-S relations in the northern seas: Implications for the deep circulation, Polar Res., 4, 133–159, https://doi.org/10.3402/polar.v4i2.6928, 1986. a
Rudels, B.: Arctic Ocean circulation and variability – Advection and external forcing encounter constraints and local processes, Ocean Sci., 8, 261–286, https://doi.org/10.5194/os-8-261-2012, 2012. a
Rudels, B., Fahrbach, E., Meincke, J., Budéus, G., and Eriksson, P.: The East Greenland Current and its contribution to the Denmark Strait overflow, ICES J. Mar. Sci., 59, 1133–1154, https://doi.org/10.1006/jmsc.2002.1284, 2002. a
Rudels, B., Björk, G., Nilsson, J., Winsor, P., Lake, I., and Nohr, C.: The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: Results from the Arctic Ocean-02 Oden expedition, J. Mar. Syst., 55, 1–30, https://doi.org/10.1016/j.jmarsys.2004.06.008, 2005. a
Salter, I., Bauerfeind, E., Nöthig, E.-M., von Appen, W.-J., Lochthofen, N., and Soltwedel, T.: Physical oceanography and current meter data from mooring FEVI32 at Hausgarten IV, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.870848, 2017. a, b, c
Schauer, U., Fahrbach, E., Osterhus, S., and Rohardt, G.: Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements, J. Geophys. Res. Pt. C, 109, C06026, https://doi.org/10.1029/2003JC001823, 2004. a, b
Snoeijs-Leijonmalm, P.: Expedition Report SWEDARCTIC: Synoptic Arctic Survey 2021 with icebreaker Oden, Swedish Polar Research Secretariat, 1st Edn., ISBN 978-91-519-3672-7, 2022. a
Somavilla, R.: Draining and Upwelling of Greenland Sea Deep Waters, J. Geophys. Res.-Ocean., 124, 2842–2860, https://doi.org/10.1029/2018JC014249, 2019. a, b, c
Swift, J. H. and Koltermann, K. P.: The origin of Norwegian Sea Deep Water, J. Geophys. Res.-Ocean., 93, 3563–3569, https://doi.org/10.1029/JC093iC04p03563, 1988. a
Tanhua, T., Olsson, K. A., and Jeansson, E.: Formation of Denmark Strait overflow water and its hydro-chemical composition, J. Mar. Syst., 57, 264–288, https://doi.org/10.1016/j.jmarsys.2005.05.003, 2005. a
Tippenhauer, S., Vredenborg, M., Heuzé, C., Ulfsbo, A., Rabe, B., Granskog, M. A., Allerholt, J., Balmonte, J. P., Campbell, R. G., Castellani, G., Chamberlain, E., Creamean, J., D'Angelo, A., Dietrich, U., Droste, E. S., Eggers, L., Fang, Y.-C., Fong, A. A., Gardner, J., Graupner, R., Grosse, J., He, H., Hildebrandt, N., Hoppe, C. J. M., Hoppmann, M., Kanzow, T., Karam, S., Koenig, Z., Kong, B., Kuhlmey, D., Kuznetsov, I., Lan, M., Liu, H., Mallet, M., Mohrholz, V., Muilwijk, M., Müller, O., Olsen, L. M., Rember, R., Ren, J., Sakinan, S., Schaffer, J., Schmidt, K., Schuffenhauer, I., Schulz, K., Shoemaker, K., Spahic, S., Sukhikh, N., Svenson, A., Torres-Valdés, S., Torstensson, A., Wischnewski, L., and Zhuang, Y.: Physical oceanography based on ship CTD during POLARSTERN cruise PS122, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.959963, 2023. a, b
Tsubouchi, T., Våge, K., Hansen, B., Larsen, K. M. H., Østerhus, S., Johnson, C., Jónsson, S., and Valdimarsson, H.: Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016, Nat. Clim. Change, 11, 21–26, https://doi.org/10.1038/s41558-020-00941-3, 2021. a
von Appen, W.-J.: Raw data including physical oceanography from mooring HG-IV-FEVI-34 recovered during POLARSTERN cruise PS107, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.904538, 2019a. a, b, c
von Appen, W.-J.: Raw data including physical oceanography from mooring HG-IV-FEVI-36 recovered during POLARSTERN cruise PS114, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.904539, 2019b. a, b, c
von Appen, W. J., Schauer, U., Hattermann, T., and Beszczynska-Möller, A.: Seasonal cycle of mesoscale instability of the West Spitsbergen Current, J. Phys. Oceanogr., 46, 1231–1254, https://doi.org/10.1175/JPO-D-15-0184.1, 2016. a, b, c
Wang, X., Zhao, J., Hattermann, T., Lin, L., and Chen, P.: Transports and Accumulations of Greenland Sea Intermediate Waters in the Norwegian Sea, J. Geophys. Res.-Ocean., 126, e2020JC016582, https://doi.org/10.1029/2020JC016582, 2021. a
Wessel, P. and Smith, W. H.: A global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res.-Sol. Ea., 101, 8741–8743, https://doi.org/10.1029/96jb00104, 1996. a, b
Wong, A. P., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V., Buck, J. J., Merceur, F., Carval, T., Maze, G., Cabanes, C., André, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbéoch, M., Ignaszewski, M., Baringer, M. O., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J., Cancouët, R., Coatanoan, C., Dobbler, D., Juan, A. G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourlès, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P. Y., Rannou, J. P., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P. M., Vélez-Belchí, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K. R., Jo, H. J., Kim, S. D., and Park, H. M.: Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats, Front. Mar. Sci., 7, 700, https://doi.org/10.3389/fmars.2020.00700, 2020. a, b
Short summary
A long-term mooring array in the Fram Strait allows for an evaluation of decadal trends in temperature in this major oceanic gateway into the Arctic. Since the 1980s, the deep waters of the Greenland Sea and the Eurasian Basin of the Arctic have warmed rapidly at a rate of 0.11°C and 0.05°C per decade, respectively, at a depth of 2500 m. We show that the temperatures of the two basins converged around 2017 and that the deep waters of the Greenland Sea are now a heat source for the Arctic Ocean.
A long-term mooring array in the Fram Strait allows for an evaluation of decadal trends in...