Articles | Volume 20, issue 2
https://doi.org/10.5194/os-20-463-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-463-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tipping of the double-diffusive regime in the southern Adriatic Pit in 2017 in connection with record high-salinity values
Felipe L. L. Amorim
National Institute of Oceanography and Applied Geophysics – OGS, Sgonico, Trieste, 34010, Italy
Julien Le Meur
National Institute of Oceanography and Applied Geophysics – OGS, Sgonico, Trieste, 34010, Italy
Achim Wirth
LEGI, Univ. Grenoble Alpes, CNRS, Grenoble, 38000, France
National Institute of Oceanography and Applied Geophysics – OGS, Sgonico, Trieste, 34010, Italy
Related authors
Felipe de Luca Lopes de Amorim, Areti Balkoni, Vera Sidorenko, and Karen Helen Wiltshire
Ocean Sci., 20, 1247–1265, https://doi.org/10.5194/os-20-1247-2024, https://doi.org/10.5194/os-20-1247-2024, 2024
Short summary
Short summary
We studied the increasing or decreasing of chlorophyll a abundance in the German Bight. Chlorophyll a is the pigment present in algae that allows them to capture energy from the sun and indicates both the growth of the algae and the health of the environment. Most of the German Bight has decreasing chlorophyll a concentration in the analysed period. In addition, about 45 % of the changes happening in chlorophyll a were connected with changes in temperature.
Vera Fofonova, Alexey Androsov, Lasse Sander, Ivan Kuznetsov, Felipe Amorim, H. Christian Hass, and Karen H. Wiltshire
Ocean Sci., 15, 1761–1782, https://doi.org/10.5194/os-15-1761-2019, https://doi.org/10.5194/os-15-1761-2019, 2019
Short summary
Short summary
This study is dedicated to tidally induced dynamics in the Sylt-Rømø Bight with a focus on the non-linear component. The tidal residual circulation and asymmetric tidal cycles largely define the circulation pattern, transport and accumulation of sediment, and the distribution of bedforms. The newly obtained high-quality bathymetric data supported the use of high-resolution grids (up to 2 m in the intertidal zone) and elaboration of the details of tidal energy transformation in the domain.
Achim Wirth
EGUsphere, https://doi.org/10.5194/egusphere-2024-3307, https://doi.org/10.5194/egusphere-2024-3307, 2024
Short summary
Short summary
The hydrostatic approximation is the basis of most simulations of ocean and climate dynamics. It is here evaluated by using a projection method in the 4D Fourier space. The evaluation is analytic.
Felipe de Luca Lopes de Amorim, Areti Balkoni, Vera Sidorenko, and Karen Helen Wiltshire
Ocean Sci., 20, 1247–1265, https://doi.org/10.5194/os-20-1247-2024, https://doi.org/10.5194/os-20-1247-2024, 2024
Short summary
Short summary
We studied the increasing or decreasing of chlorophyll a abundance in the German Bight. Chlorophyll a is the pigment present in algae that allows them to capture energy from the sun and indicates both the growth of the algae and the health of the environment. Most of the German Bight has decreasing chlorophyll a concentration in the analysed period. In addition, about 45 % of the changes happening in chlorophyll a were connected with changes in temperature.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Poulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, and Ingunn Skjelvan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-457, https://doi.org/10.5194/essd-2023-457, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
The ATL2MED experiment was a collaborative project involving European academic institutions and Saildrone Inc. These ASVs embarked on a nine-month mission that ranged from the tropical eastern North Atlantic to the Adriatic Sea, covering a region characterised by a transition zone between temperate and tropical climate belts. Nevertheless, challenges exist, with biofouling being one of the major problems affecting the measurement such as conductivity, dissolved oxygen and chlorophyll-a.
Sofia Flora, Laura Ursella, and Achim Wirth
Nonlin. Processes Geophys., 30, 515–525, https://doi.org/10.5194/npg-30-515-2023, https://doi.org/10.5194/npg-30-515-2023, 2023
Short summary
Short summary
An increasing amount of data allows us to move from low-order moments of fluctuating observations to their PDFs. We found the analytical fat-tailed PDF form (a combination of Gaussian and two-exponential convolutions) for 2 years of sea surface current increments in the Gulf of Trieste, using superstatistics and the maximum-entropy principle twice: on short and longer timescales. The data from different wind regimes follow the same analytical PDF, pointing towards a universal behaviour.
Nydia Catalina Reyes Suárez, Valentina Tirelli, Laura Ursella, Matjaž Ličer, Massimo Celio, and Vanessa Cardin
Ocean Sci., 18, 1321–1337, https://doi.org/10.5194/os-18-1321-2022, https://doi.org/10.5194/os-18-1321-2022, 2022
Short summary
Short summary
Explaining the dynamics of jellyfish blooms is a challenge for scientists. Biological and meteo-oceanographic data were combined on different timescales to explain the exceptional bloom of the jellyfish Rhizostoma pulmo in the Gulf of Trieste (Adriatic Sea) in April 2021. The bloom was associated with anomalously warm seasonal sea conditions. Then, a strong bora wind event enhanced upwelling and mixing of the water column, causing jellyfish to rise to the surface and accumulate along the coast.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Achim Wirth and Bertrand Chapron
Nonlin. Processes Geophys., 28, 371–378, https://doi.org/10.5194/npg-28-371-2021, https://doi.org/10.5194/npg-28-371-2021, 2021
Short summary
Short summary
In non-equilibrium statistical mechanics, which describes forced-dissipative systems such as air–sea interaction, there is no universal probability density function (pdf). Some such systems have recently been demonstrated to exhibit a symmetry called a fluctuation theorem (FT), which strongly constrains the shape of the pdf. Using satellite data, the mechanical power input to the ocean by air–sea interaction following or not a FT is questioned. A FT is found to apply over specific ocean regions.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Achim Wirth and Florian Lemarié
Earth Syst. Dynam., 12, 689–708, https://doi.org/10.5194/esd-12-689-2021, https://doi.org/10.5194/esd-12-689-2021, 2021
Short summary
Short summary
We show that modern concepts of non-equilibrium statistical mechanics can be applied to large-scale environmental fluid dynamics, where fluctuations are not thermal but come from turbulence. The work theorems developed by Jarzynski and Crooks are applied to air–sea interaction. Rather than looking at the average values of thermodynamic variables, their probability density functions are considered, which allows us to replace the inequalities of equilibrium statistical mechanics with equalities.
Dagmar Hainbucher, Marta Álvarez, Blanca Astray Uceda, Giancarlo Bachi, Vanessa Cardin, Paolo Celentano, Spyros Chaikalis, Maria del Mar Chaves Montero, Giuseppe Civitarese, Noelia M. Fajar, Francois Fripiat, Lennart Gerke, Alexandra Gogou, Elisa F. Guallart, Birte Gülk, Abed El Rahman Hassoun, Nico Lange, Andrea Rochner, Chiara Santinelli, Tobias Steinhoff, Toste Tanhua, Lidia Urbini, Dimitrios Velaoras, Fabian Wolf, and Andreas Welsch
Earth Syst. Sci. Data, 12, 2747–2763, https://doi.org/10.5194/essd-12-2747-2020, https://doi.org/10.5194/essd-12-2747-2020, 2020
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean Sea (MSM72, March 2018). The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake, and further assess the hydrographical situation after the Eastern and Western Mediterranean Transients. Multidisciplinary measurements were conducted on a predominantly
zonal section throughout the Mediterranean Sea.
Achim Wirth
Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-128, https://doi.org/10.5194/os-2019-128, 2020
Revised manuscript not accepted
Short summary
Short summary
The input of mechanical power to the ocean due to the surface wind-stress is considered using data from satellites observations. Its dependence on the coarse-graining scale of the atmospheric and oceanic velocity in space and time is determined. The power input is found to increase monotonically with shorter coarse-graining in time. Results show that including the dynamics at scales below a few degrees reduces considerably the power input by air-sea interaction.
Vera Fofonova, Alexey Androsov, Lasse Sander, Ivan Kuznetsov, Felipe Amorim, H. Christian Hass, and Karen H. Wiltshire
Ocean Sci., 15, 1761–1782, https://doi.org/10.5194/os-15-1761-2019, https://doi.org/10.5194/os-15-1761-2019, 2019
Short summary
Short summary
This study is dedicated to tidally induced dynamics in the Sylt-Rømø Bight with a focus on the non-linear component. The tidal residual circulation and asymmetric tidal cycles largely define the circulation pattern, transport and accumulation of sediment, and the distribution of bedforms. The newly obtained high-quality bathymetric data supported the use of high-resolution grids (up to 2 m in the intertidal zone) and elaboration of the details of tidal energy transformation in the domain.
Achim Wirth
Nonlin. Processes Geophys., 26, 457–477, https://doi.org/10.5194/npg-26-457-2019, https://doi.org/10.5194/npg-26-457-2019, 2019
Short summary
Short summary
The conspicuous feature of the atmosphere–ocean system is the large difference in the masses of the two media. In this respect there is a strong analogy to Brownian motion, with light and fast molecules colliding with heavy and slow Brownian particles. I apply the tools of non-equilibrium statistical mechanics for studying Brownian motion to air–sea interaction.
Achim Wirth
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-300, https://doi.org/10.5194/gmd-2018-300, 2019
Revised manuscript not accepted
Short summary
Short summary
The dynamics of three local linear models of air-sea-interaction commonly employed in climate or ocean simulations is compared. The models differ by whether or not the ocean velocity is included in the shear calculation applied to the ocean and the atmosphere. Analytic calculations for the models with deterministic and random forcing (white and colored) are presented.The fluctuation-dissipation-relation, the fluctuation-dissipation-theorem and the fluctuation-theorem is discussed.
D. Hainbucher, V. Cardin, G. Siena, U. Hübner, M. Moritz, U. Drübbisch, and F. Basan
Earth Syst. Sci. Data, 7, 231–237, https://doi.org/10.5194/essd-7-231-2015, https://doi.org/10.5194/essd-7-231-2015, 2015
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean in April 2014. Data were taken on a west-east section starting at the Strait of Gibraltar and ending south-east of Crete, as well on sections in the Ionian and Adriatic Sea. The measurements include salinity, temperature, oxygen and currents. We study the mesoscale eddy field and support long-term investigations of the hydrography in the Mediterranean Sea.
C. Q. C. Akuetevi and A. Wirth
Ocean Sci., 11, 471–481, https://doi.org/10.5194/os-11-471-2015, https://doi.org/10.5194/os-11-471-2015, 2015
V. Cardin, G. Civitarese, D. Hainbucher, M. Bensi, and A. Rubino
Ocean Sci., 11, 53–66, https://doi.org/10.5194/os-11-53-2015, https://doi.org/10.5194/os-11-53-2015, 2015
Short summary
Short summary
The results of this study reveal that the thermohaline properties in the study area in 2011 lie between the thermohaline characteristics of the EMT and those of the pre-EMT phase, indicating a possible slow return towards the latter. It highlights the relationship between the hydrological property distribution of the upper layer in the Levantine basin and the alternate circulation regimes in the Ionian, which modulates the salinity distribution in the Eastern Mediterranean Sea.
D. Hainbucher, A. Rubino, V. Cardin, T. Tanhua, K. Schroeder, and M. Bensi
Ocean Sci., 10, 669–682, https://doi.org/10.5194/os-10-669-2014, https://doi.org/10.5194/os-10-669-2014, 2014
M. Gačić, G. Civitarese, V. Kovačević, L. Ursella, M. Bensi, M. Menna, V. Cardin, P.-M. Poulain, S. Cosoli, G. Notarstefano, and C. Pizzi
Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, https://doi.org/10.5194/os-10-513-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
C. Q. C. Akuetevi and A. Wirth
Ocean Sci. Discuss., https://doi.org/10.5194/osd-11-753-2014, https://doi.org/10.5194/osd-11-753-2014, 2014
Revised manuscript not accepted
T. Tanhua, D. Hainbucher, K. Schroeder, V. Cardin, M. Álvarez, and G. Civitarese
Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, https://doi.org/10.5194/os-9-789-2013, 2013
T. Tanhua, D. Hainbucher, V. Cardin, M. Álvarez, G. Civitarese, A. P. McNichol, and R. M. Key
Earth Syst. Sci. Data, 5, 289–294, https://doi.org/10.5194/essd-5-289-2013, https://doi.org/10.5194/essd-5-289-2013, 2013
A. Wirth
Nonlin. Processes Geophys., 20, 25–34, https://doi.org/10.5194/npg-20-25-2013, https://doi.org/10.5194/npg-20-25-2013, 2013
Related subject area
Approach: In situ Observations | Properties and processes: Mesoscale to submesoscale dynamics
An emerging pathway of Atlantic Water to the Barents Sea through the Svalbard Archipelago: drivers and variability
The Polar Front in the northwestern Barents Sea: structure, variability and mixing
Characterization of physical properties of a coastal upwelling filament with evidence of enhanced submesoscale activity and transition from balanced to unbalanced motions in the Benguela upwelling region
Relative dispersion and kinematic properties of the coastal submesoscale circulation in the southeastern Ligurian Sea
Stirring across the Antarctic Circumpolar Current's southern boundary at the prime meridian, Weddell Sea
Evaluating altimetry-derived surface currents on the south Greenland shelf with surface drifters
Kjersti Kalhagen, Ragnheid Skogseth, Till M. Baumann, Eva Falck, and Ilker Fer
Ocean Sci., 20, 981–1001, https://doi.org/10.5194/os-20-981-2024, https://doi.org/10.5194/os-20-981-2024, 2024
Short summary
Short summary
Atlantic water (AW) is a key driver of change in the Barents Sea. We studied an emerging pathway through the Svalbard Archipelago that allows AW to enter the Barents Sea. We found that the Atlantic sector near the study site has warmed over the past 2 decades; that Atlantic-origin waters intermittently enter the Barents Sea through the aforementioned pathway; and that heat transport is driven by tides, wind events, and variations in the upstream current system.
Eivind H. Kolås, Ilker Fer, and Till M. Baumann
Ocean Sci., 20, 895–916, https://doi.org/10.5194/os-20-895-2024, https://doi.org/10.5194/os-20-895-2024, 2024
Short summary
Short summary
In the northwestern Barents Sea, we study the Barents Sea Polar Front formed by Atlantic Water meeting Polar Water. Analyses of ship and glider data from October 2020 to February 2021 show a density front with warm, salty water intruding under cold, fresh water. Short-term variability is linked to tidal currents and mesoscale eddies, influencing front position, density slopes and water mass transformation. Despite seasonal changes in the upper layers, the front remains stable below 100 m depth.
Ryan P. North, Julia Dräger-Dietel, and Alexa Griesel
Ocean Sci., 20, 103–121, https://doi.org/10.5194/os-20-103-2024, https://doi.org/10.5194/os-20-103-2024, 2024
Short summary
Short summary
The Benguela upwelling region off the coast of Namibia supplies cold water from the deep ocean that is transported offshore in finger-like structures called filaments. We investigate one major filament using measurements from a ship that crossed it multiple times and with mutiple buoys that follow the ocean currents. We find that the motions associated with the filament enhance the kinetic energy at small scales and provide a pathway for mixing of water and turbulent dissipation of energy.
Pierre-Marie Poulain, Luca Centurioni, Carlo Brandini, Stefano Taddei, Maristella Berta, and Milena Menna
Ocean Sci., 19, 1617–1631, https://doi.org/10.5194/os-19-1617-2023, https://doi.org/10.5194/os-19-1617-2023, 2023
Short summary
Short summary
Drifters and a profiling float were deployed in the coastal waters of the southeastern Ligurian Sea to characterize the near-surface circulation at a scale of ~10 km. The drifters were trapped in an offshore-flowing filament and a cyclonic eddy that developed at the southwestern extremity of the filament. Drifter velocities are used to estimate differential kinematic properties and relative dispersion statistics of the surface currents.
Ria Oelerich, Karen J. Heywood, Gillian M. Damerell, Marcel du Plessis, Louise C. Biddle, and Sebastiaan Swart
Ocean Sci., 19, 1465–1482, https://doi.org/10.5194/os-19-1465-2023, https://doi.org/10.5194/os-19-1465-2023, 2023
Short summary
Short summary
At the southern boundary of the Antarctic Circumpolar Current, relatively warm waters encounter the colder waters surrounding Antarctica. Observations from underwater vehicles and altimetry show that medium-sized cold-core eddies influence the southern boundary's barrier properties by strengthening the slopes of constant density lines across it and amplifying its associated jet. As a result, the ability of exchanging properties, such as heat, across the southern boundary is reduced.
Arthur Coquereau and Nicholas P. Foukal
Ocean Sci., 19, 1393–1411, https://doi.org/10.5194/os-19-1393-2023, https://doi.org/10.5194/os-19-1393-2023, 2023
Short summary
Short summary
Understanding meltwater circulation around Greenland is crucial as it could influence climate variability but difficult as data are scarce. Here, we use 34 surface drifters to evaluate satellite-derived surface currents and show that satellite data recover the general structure of the flow and can recreate the pathways of particles around the southern tip of Greenland. This result permits a wide range of work to proceed looking at long-term changes in the circulation of the region since 1993.
Cited articles
Amorim, F. L. L.: fllamorim/Amorim_et_al_2024a: v1 (Amorim_et_al_2024a), Zenodo [code], https://doi.org/10.5281/zenodo.10863275, 2024.
Artegiani, A., Paschini, E., Russo, A., Bregant, D., Raicich, F., and Pinardi, N.: The Adriatic Sea General Circulation, Part I: Air–Sea Interactions and Water Mass Structure, J. Phys. Oceanogr., 27, 1492–1514, https://doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2, 1997.
Bensi, M., Cardin, V., and Rubino, A.: Thermohaline Variability and Mesoscale Dynamics Observed at the Deep-Ocean Observatory E2M3A in the Southern Adriatic Sea, in: The Mediterranean Sea, edited by: Borzelli, G. L. E., Gačić, M., Lionello, P., Malanotte-Rizzoli, P., John Wiley & Sons, Inc., https://doi.org/10.1002/9781118847572.ch9, 2014.
Buljan, M. and Zore-Armanda, M.: Oceanographical properties of the Adriatic Sea, Oceanogr. Mar. Biol. Ann. Rev., 14, 11–98, 1976.
Bryden, H. L., Schroeder, K., Sparnocchia, S., Borghini, M., and Vetrano, A.: Thermohaline staircases in the western Mediterranean Sea, J. Mar. Res., 72, 1–18, https://doi.org/10.1357/002224014812655198, 2014.
Cardin, V. and Gačić, M.: Long-term heat flux variability and winter convection in the Adriatic Sea, J. Geophys. Res.-Oceans, 108, 8103, https://doi.org/10.1029/2002jc001645, 2003.
Cardin, V., Bensi, M., and Pacciaroni, M.: Variability of water mass properties in the last two decades in the South Adriatic Sea with emphasis on the period 2006–2009, Cont. Shelf Res., 31, 951–965, https://doi.org/10.1016/j.csr.2011.03.002, 2011.
Cardin, V., Bensi, M., Ursella, L., and Siena, G.: E2m3a-2013-2015-Time-Series South adriatic, OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Division of Oceanography [data set], https://doi.org/10.6092/F8E6D18E-F877-4AA5-A983-A03B06CCB987, 2015.
Cardin, V., Bensi, M., Ursella, L., and Siena, G.: E2m3a-2015-2017-Time Series-South Adriatic, OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Division of Oceanography [data set], https://doi.org/10.6092/238B5903-A173-4FC3-AC5F-5FEDF1064A39, 2018.
Cardin, V., Wirth, A., Khosravi, M., and Gačić, M.: South Adriatic Recipes: Estimating the Vertical Mixing in the Deep Pit, Front. Mar. Sci., 7, 565982, https://doi.org/10.3389/fmars.2020.565982, 2020a.
Cardin, V., Siena, G., Brunetti, F., and Kuchler, S.: E2M3A-2017-2019-CTD-time-series SouthAdriatic, OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Division of Oceanography [data set], https://doi.org/10.6092/d0d50095-bd30-4ff7-8d0a-a12121e72f78, 2020b.
Carniel, S., Sclavo, M., Kantha, L., and Prandke, H.: Double-diffusive layers in the Adriatic Sea, Geophys. Res. Lett., 35, 1–6, https://doi.org/10.1029/2007GL032389, 2008.
Chiggiato, J., Bergamasco, A., Borghini, M., Falcieri, F. M., Falco, P., Langone, L., Miserocchi, S., Russo, A., and Schroeder, K.: Dense-water bottom currents in the Southern Adriatic Sea in spring 2012, Mar. Geol., 375, 134–145, https://doi.org/10.1016/j.margeo.2015.09.005, 2016.
Civitarese, G., Gačić, M., Batistić, M., Bensi, M., Cardin, V., Dulčić, J., Garić, R., and Menna, M.: The BiOS mechanism: History, theory, implications, Prog. Oceanogr., 216, 103056, https://doi.org/10.1016/j.pocean.2023.103056, 2023.
CMEMS: European Seas Gridded L 4 Sea Surface Heights And Derived Variables Reprocessed 1993 Ongoing, E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00141, 2022a.
CMEMS: Mediterranean Sea Physics Reanalysis, Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS) [data set], https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1, 2022b.
Cristini, L., Lampitt, R. S., Cardin, V., Delory, E., Haugan, P., O'Neill, N., Petihakis, G., and Ruhl, H. A.: Cost and value of multidisciplinary fixed-point ocean observatories, Mar. Pol., 71, 138–146, https://doi.org/10.1016/j.marpol.2016.05.029, 2016.
Durante, S., Schroeder, K., Mazzei, L., Pierini, S., Borghini, M., and Sparnocchia, S.: Permanent Thermohaline Staircases in the Tyrrhenian Sea, Geophys. Res. Lett., 46, 1562–1570, https://doi.org/10.1029/2018GL081747, 2019.
Durante, S., Oliveri, P., Nair, R., and Sparnocchia, S.: Mixing in the Tyrrhenian Interior Due to Thermohaline Staircases, Front. Mar. Sci., 8, 672437, https://doi.org/10.3389/fmars.2021.672437, 2021.
Gačić, M., Eusebi Borzelli, G. L., Civitarese, G., Cardin, V., and Yari, S.: Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL043216, 2010.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy. Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47 (last access: 4 February 2024), 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90–95, 2007.
Kokkini, Z., Mauri, E., Gerin, R., Poulain, P. M., Simoncelli, S., and Notarstefano, G.: On the salinity structure in the South Adriatic as derived from float and glider observations in 2013–2016, Deep-Sea Res. Pt. II, 171, 104625, https://doi.org/10.1016/j.dsr2.2019.07.013, 2020.
Leaman, K.: The formation of Western Mediterranean deep water, in: The Seasonal and Interannual Variability of the Western Mediterranean Sea, Coastal and Estuarine Studies, Vol. 46, edited by: La Violette, P. E., American Geophysical Union, Washington, DC, 227–248, 1994.
Leaman, K. D. and Schott, F. A.: Hydrographic Structure of the Convection Regime in the Gulf of Lions: Winter 1987, J. Phys. Oceanogr., 21, 575–598, 1991.
Lee, C., Chang, K., Lee, J. H., and Richards, K. J.: Vertical mixing due to double diffusion in the tropical western Pacific, Geophys. Res. Lett., 41, 7964–7970, https://doi.org/10.1002/2014GL061698, 2014.
Le Meur, J., Wirth, A., Paladini de Mendoza, F., Miserocchi, S., and Cardin, V.: Intermittent supply of dense water to the deep South Adriatic Pit: an observational study, in preparation, 2024.
Lipizer, M., Partescano, E., Rabitti, A., Giorgetti, A., and Crise, A.: Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea, Ocean Sci., 10, 771–797, https://doi.org/10.5194/os-10-771-2014, 2014.
Marshall, J. and Schott, F.: Open-ocean convection: Observations, theory, and models, Rev. Geophys., 37, 1–64, https://doi.org/10.1029/98RG02739, 1999.
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and TS26 the Gibbs Seawater (GSW) Oceanographic Toolbox, 28 pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5, 2011.
McDougall, T. J. and Barker, P. M.: Comment on “Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans” by B. King et al., J. Geophys. Res.-Oceans, 119, 9026–9032, https://doi.org/10.1002/2014JC010066, 2014.
McDougall, T. J., Thorpe, S. A., and Gibson, C. H.: Small-scale turbulence and mixing in the ocean: A glossary, in: Small-scale turbulence and mixing in the ocean, edited by: Nihoul, J. C. J. and Jamart, B. M., Elsevier, 3–9, 1988.
McKinney, W.: Data Structures for Statistical Computing in Python, Proceedings of the 9th Python in Science Conference, 445, 56–61, https://doi.org/10.25080/Majora-92bf1922-00a, 2010.
Meccia, V. L., Simoncelli, S., and Spannocchia, S.: Decadal variability of the Turner Angle in the Mediterranean Sea and its implications for double diffusion, Deep-Sea Res. Pt. I, 114, 64–77, https://doi.org/10.1016/j.dsr.2016.04.001, 2016.
Menna, M., Gerin, R., Notarstefano, G., Mauri, E., Bussani, A., Pacciaroni, M., and Poulain, P.-M.: On the Circulation and Thermohaline Properties of the Eastern Mediterranean Sea, Front. Mar. Sci., 8, 671469, https://doi.org/10.3389/fmars.2021.671469, 2021.
Mertens, C. and Schott, F.: Interannual Variability of Deep-Water Formation in the Northwestern Mediterranean, J. Phys. Oceanogr., 28, 1410–1424, https://doi.org/10.1175/1520-0485(1998)028<1410:IVODWF>2.0.CO;2, 1998.
Mihanović, H., Vilibić, I., Šepić, J., Matić, F., Ljubešić, Z., Mauri, E., Gerin, R., Notarstefano, G., and Poulain, P.-M.: Observation, Preconditioning and Recurrence of Exceptionally High Salinities in the Adriatic Sea, Front. Mar. Sci., 8, 672210, https://doi.org/10.3389/fmars.2021.672210, 2021.
Radko, T.: Double-diffusive convection, Cambridge University Press, https://doi.org/10.1017/CBO9781139034173, 2013.
Ruddick, B.: A practical indicator of the stability of the water column to double-diffusive activity, Deep-Sea Res., 30, 1105–1107, https://doi.org/10.1016/0198-0149(83)90063-8, 1983.
Schmitt, R. W.: Form of the Temperature-Salinity Relationship in the Central Water: Evidence for Double-Diffusive Mixing, J. Phys. Oceanogr., 11, 1015–1026, 1981.
Schmitt, R. W.: Mixing in a Thermohaline Staircase, edited by: Nihoul, J. C. J. and Jamart, B. M., Elsevier Oceanography Series, Elsevier, Vol. 46, 435–452, https://doi.org/10.1016/S0422-9894(08)70563-4, 1988
Schmitt, R. W.: Double Diffusion in Oceanography, Annu. Rev. Fluid Mech., 26, 255–285, https://doi.org/10.1146/annurev.fl.26.010194.001351, 1994.
Schmitt, R. W.: Observational and laboratory insights into salt finger convection, Prog. Oceanogr., 56, 419–433, https://doi.org/10.1016/S0079-6611(03)00033-8, 2003.
Stern, M. E.: The “Salt-Fountain” and Thermohaline Convection, Tellus, 12, 172–175, https://doi.org/10.3402/tellusa.v12i2.9378, 1960.
Taillandier, V., Prieur, L., D'Ortenzio, F., Ribera d'Alcalà, M., and Pulido-Villena, E.: Profiling float observation of thermohaline staircases in the western Mediterranean Sea and impact on nutrient fluxes, Biogeosciences, 17, 3343–3366, https://doi.org/10.5194/bg-17-3343-2020, 2020.
Tait, R. I. and Howe, M. R.: Some observations of thermo-haline stratification in the deep ocean, Deep-Sea Res., 15, 275–280, https://doi.org/10.1016/0011-7471(68)90005-3, 1968.
Tokos, K. S. and Rossby, T.: Kinematics and Dynamics of a Mediterranean Salt Lens, J. Phys. Oceanogr., 21, 879–892, https://doi.org/10.1175/1520-0485(1991)021<0879:KADOAM>2.0.CO;2, 1991.
van der Boog, C. G., Dijkstra, H. A., Pietrzak, J. D., and Katsman, C. A.: Spatial Variations of Antarctic Intermediate Water in the Caribbean Sea Due To Vertical Mixing Along Its Path, Geophys. Res. Lett., 49, e2021GL095977, https://doi.org/10.1029/2021GL095977, 2022.
Vilibić, I. and Orlić, M.: Least-squares tracer analysis of water masses in the South Adriatic (1967–1990), Deep-Sea Res. Pt. I, 48, 2297–2330, https://doi.org/10.1016/S0967-0637(01)00014-0, 2001.
Vilibić, I. and Orlić, M.: Adriatic water masses, their rates of formation and transport through the Otranto Strait, Deep-Sea Res. Pt. I, 49, 1321–1340, https://doi.org/10.1016/S0967-0637(02)00028-6, 2002.
Vilibić, I. and Supić, N.: Dense water generation on a shelf: the case of the Adriatic Sea, Ocean Dynam., 55, 403–415, https://doi.org/10.1007/s10236-005-0030-5, 2005.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore, VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Meth., 17, 261–272, 2020.
You, Y.: A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure, Deep-Sea Res. Pt. I, 49, 2075–2093, https://doi.org/10.1016/S0967-0637(02)00099-7, 2002.
Zhang, J. and Schmitt, R. W.: The Impact of Salt Fingering on the Thermohaline Circulation under Mixed Boundary Conditions, J. Phys. Ocean., 30, 1223–1231, https://doi.org/10.1175/1520-0485(2000)030<1223:TIOSFO>2.0.CO;2, 2000.
Short summary
Analysis of a high-frequency time series of thermohaline data measured at the EMSO-E2M3A regional facility in the southern Adriatic Pit (SAP) reveals a significant change in the double-diffusive regime in 2017 associated with the intrusion of extremely salty waters into the area, suggesting salt fingering as the dominant regime. The strong heat loss at the surface during this winter allowed deep convection to transport this high-salinity water from the intermediate to deep layers of the pit.
Analysis of a high-frequency time series of thermohaline data measured at the EMSO-E2M3A...