Articles | Volume 20, issue 1
https://doi.org/10.5194/os-20-265-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-265-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Predictability of marine heatwaves: assessment based on the ECMWF seasonal forecast system
Eric de Boisséson
CORRESPONDING AUTHOR
European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, United Kingdom
Magdalena Alonso Balmaseda
European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, United Kingdom
Related authors
Yiguo Wang, François Counillon, Lea Svendsen, Ping-Gin Chiu, Noel Keenlyside, Patrick Laloyaux, Mariko Koseki, and Eric de Boisseson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-127, https://doi.org/10.5194/essd-2025-127, 2025
Preprint under review for ESSD
Short summary
Short summary
CoRea1860+ is a new climate dataset that reconstructs past climate conditions from 1860 to today. By using advanced modeling techniques and incorporating sea surface temperature observations, it provides a consistent picture of long-term climate variability. The dataset captures key ocean, sea ice and atmosphere changes, helping scientists understand past climate changes and variability.
Yiguo Wang, François Counillon, Lea Svendsen, Ping-Gin Chiu, Noel Keenlyside, Patrick Laloyaux, Mariko Koseki, and Eric de Boisseson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-127, https://doi.org/10.5194/essd-2025-127, 2025
Preprint under review for ESSD
Short summary
Short summary
CoRea1860+ is a new climate dataset that reconstructs past climate conditions from 1860 to today. By using advanced modeling techniques and incorporating sea surface temperature observations, it provides a consistent picture of long-term climate variability. The dataset captures key ocean, sea ice and atmosphere changes, helping scientists understand past climate changes and variability.
John R. Albers, Matthew Newman, Magdalena A. Balmaseda, William Sweet, Yan Wang, and Tongtong Xu
EGUsphere, https://doi.org/10.5194/egusphere-2025-897, https://doi.org/10.5194/egusphere-2025-897, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Providing early warning of coastal flooding is an emerging priority for the National Oceanic and Atmospheric Administration. We assess whether current operational forecast models can provide the basis for predicting the risks of higher than normal coastal sea level values up to six weeks in advance. For many United States coastal locations, models have sufficient prediction skill to be used as the basis for the development of a high tide flooding prediction system on subseasonal timescales.
Fiona Raphaela Spuler, Marlene Kretschmer, Magdalena Alonso Balmaseda, Yevgeniya Kovalchuk, and Theodore G. Shepherd
EGUsphere, https://doi.org/10.5194/egusphere-2024-4115, https://doi.org/10.5194/egusphere-2024-4115, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Large-scale atmospheric dynamics modulate the occurrence of extreme events and can be leveraged to improve their predictability. In this paper, we introduce a generative machine learning method to identify dynamical drivers of a relevant impact variable in the form of targeted circulation regimes. Applying the method to study extreme precipitation over Morocco, we show that these regimes are more predictive of the impact while maintaining their own predictability and physical consistency.
Xue Feng, Matthew J. Widlansky, Tong Lee, Ou Wang, Magdalena A. Balmaseda, Hao Zuo, Gregory Dusek, William Sweet, and Malte F. Stuecker
EGUsphere, https://doi.org/10.5194/egusphere-2025-98, https://doi.org/10.5194/egusphere-2025-98, 2025
Short summary
Short summary
Forecasting sea level changes months in advance along the Gulf and East Coasts of the United States is challenging. Here, we present a method that uses past ocean states to forecast future sea levels, while assuming no knowledge of how the atmosphere will evolve other than its typical annual cycle near the ocean’s surface. Our findings indicate that this method improves sea level outlooks for many locations along the Gulf and East Coasts, especially south of Cape Hatteras.
Beena Balan-Sarojini, Steffen Tietsche, Michael Mayer, Magdalena Balmaseda, Hao Zuo, Patricia de Rosnay, Tim Stockdale, and Frederic Vitart
The Cryosphere, 15, 325–344, https://doi.org/10.5194/tc-15-325-2021, https://doi.org/10.5194/tc-15-325-2021, 2021
Short summary
Short summary
Our study for the first time shows the impact of measured sea ice thickness (SIT) on seasonal forecasts of all the seasons. We prove that the long-term memory present in the Arctic winter SIT is helpful to improve summer sea ice forecasts. Our findings show that realistic SIT initial conditions to start a forecast are useful in (1) improving seasonal forecasts, (2) understanding errors in the forecast model, and (3) recognizing the need for continuous monitoring of world's ice-covered oceans.
Hao Zuo, Magdalena Alonso Balmaseda, Steffen Tietsche, Kristian Mogensen, and Michael Mayer
Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, https://doi.org/10.5194/os-15-779-2019, 2019
Short summary
Short summary
OCEAN5 is the fifth generation of the ocean and sea-ice analysis system at ECMWF. It was used for production of historical ocean and sea-ice states from 1979 onwards and is also used for generating real-time ocean and sea-ice states responsible for initializing the operational ECMWF weather forecasting system. This is a valuable data set with broad applications. A description of the OCEAN5 system and an assessment of the historical data set have been documented in this reference paper.
Steffen Tietsche, Magdalena Alonso-Balmaseda, Patricia Rosnay, Hao Zuo, Xiangshan Tian-Kunze, and Lars Kaleschke
The Cryosphere, 12, 2051–2072, https://doi.org/10.5194/tc-12-2051-2018, https://doi.org/10.5194/tc-12-2051-2018, 2018
Short summary
Short summary
We compare Arctic sea-ice thickness from L-band microwave satellite observations and an ocean–sea ice reanalysis. There is good agreement for some regions and times but systematic discrepancy in others. Errors in both the reanalysis and observational products contribute to these discrepancies. Thus, we recommend proceeding with caution when using these observations for model validation or data assimilation. At the same time we emphasise their unique value for improving sea-ice forecast models.
Related subject area
Approach: Numerical Models | Properties and processes: Climate and modes of variability
A new vision of the Adriatic Dense Water future under extreme warming
Dynamically downscaled seasonal ocean forecasts for North American east coast ecosystems
On the response of the Equatorial Atmosphere and Ocean to changes in Sea Surface Temperature along the Path of the North Equatorial Counter Current
Ocean wave spectra bias correction through energy conservation for climate change impacts
Exploring variability in climate change projections on the Nemunas River and Curonian Lagoon: coupled SWAT and SHYFEM modeling approach
An assessment of equatorial Atlantic interannual variability in Ocean Model Intercomparison Project (OMIP) simulations
Twenty-first century marine climate projections for the NW European shelf seas based on a perturbed parameter ensemble
AdriE: a high-resolution ocean model ensemble for the Adriatic Sea under severe climate change conditions
The Mediterranean Forecasting System – Part 1: Evolution and performance
Cléa Denamiel, Iva Tojčić, and Petra Pranić
Ocean Sci., 21, 37–62, https://doi.org/10.5194/os-21-37-2025, https://doi.org/10.5194/os-21-37-2025, 2025
Short summary
Short summary
We use a high-resolution atmosphere–ocean model to project Adriatic Dense Water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
Andrew C. Ross, Charles A. Stock, Vimal Koul, Thomas L. Delworth, Feiyu Lu, Andrew Wittenberg, and Michael A. Alexander
Ocean Sci., 20, 1631–1656, https://doi.org/10.5194/os-20-1631-2024, https://doi.org/10.5194/os-20-1631-2024, 2024
Short summary
Short summary
In this paper, we use a high-resolution regional ocean model to downscale seasonal ocean forecasts from the Seamless System for Prediction and EArth System Research (SPEAR) model of the Geophysical Fluid Dynamics Laboratory (GFDL). We find that the downscaled model has significantly higher prediction skill in many cases.
David John Webb
EGUsphere, https://doi.org/10.5194/egusphere-2024-3560, https://doi.org/10.5194/egusphere-2024-3560, 2024
Preprint withdrawn
Short summary
Short summary
A modern climate model is used to test the hypothesis that changes observed during El Niños are, in part, forced by changes in the temperature of the North Equatorial Counter Current. This is a warm current that flows eastwards across the Pacific, a few degrees north of the Equator, close to the Inter-Tropical Convection Zone, a major region of deep atmospheric convection. The tests generate a significant El Niño type response in the ocean, giving confidence that the hypothesis is correct.
Andrea Lira Loarca and Giovanni Besio
EGUsphere, https://doi.org/10.5194/egusphere-2024-2947, https://doi.org/10.5194/egusphere-2024-2947, 2024
Short summary
Short summary
A new method improves the accuracy of climate models by adjusting wave spectra simulations in the Mediterranean Sea. It corrects biases and accounts for changes in wave patterns due to climate change, such as shifts in direction and frequency. This technique was applied to multiple climate models, assessing future wave conditions for mid and end-of-century scenarios. The results underline the importance of precise corrections to better predict how waves may evolve as the climate changes.
Natalja Čerkasova, Jovita Mėžinė, Rasa Idzelytė, Jūratė Lesutienė, Ali Ertürk, and Georg Umgiesser
Ocean Sci., 20, 1123–1147, https://doi.org/10.5194/os-20-1123-2024, https://doi.org/10.5194/os-20-1123-2024, 2024
Short summary
Short summary
This study advances the understanding of climate projection variability in the Nemunas River, Curonian Lagoon, and southeastern Baltic Sea continuum by analyzing a subset of climate models with a focus on a coupled ocean and drainage basin model. This study investigates the variability and trends in environmental parameters, such as water fluxes, timing, nutrient load, water temperature, ice cover, and saltwater intrusions in Representative Concentration Pathway 4.5 and 8.5 scenarios.
Arthur Prigent and Riccardo Farneti
Ocean Sci., 20, 1067–1086, https://doi.org/10.5194/os-20-1067-2024, https://doi.org/10.5194/os-20-1067-2024, 2024
Short summary
Short summary
We evaluate the eastern equatorial Atlantic's (EEA's) seasonal cycle and interannual variability in the Ocean Model Intercomparison Project Phases 1 and 2 (OMIP1 and OMIP2) for 1985–2004. While both simulate EEA patterns, biases like a diffusive thermocline and insufficient cooling exist during the development of the Atlantic cold tongue. OMIP1 exhibits 51% (33%) larger interannual sea surface temperature (sea surface height) variability than OMIP2, attributed to differences in wind forcing.
Jonathan Tinker, Matthew D. Palmer, Benjamin J. Harrison, Enda O'Dea, David M. H. Sexton, Kuniko Yamazaki, and John W. Rostron
Ocean Sci., 20, 835–885, https://doi.org/10.5194/os-20-835-2024, https://doi.org/10.5194/os-20-835-2024, 2024
Short summary
Short summary
The northwest European shelf (NWS) seas are economically and environmentally important but poorly represented in global climate models (GCMs). We combine use of a shelf sea model with GCM output to provide improved 21st century projections of the NWS. We project a NWS warming of 3.11 °C and freshening of −1.01, and we provide uncertainty estimates. We calculate the climate signal emergence and consider warming levels. We have released our data for the UK's Climate Change Risk Assessment.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranic, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibic, and Maria Letizia Vitelletti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1468, https://doi.org/10.5194/egusphere-2024-1468, 2024
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (viz., use a of multiple simulations) allowing to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a ground for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, and Anna Zacharioudaki
Ocean Sci., 19, 1483–1516, https://doi.org/10.5194/os-19-1483-2023, https://doi.org/10.5194/os-19-1483-2023, 2023
Short summary
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
Cited articles
Amaya, D. J., Miller, A. J., Xie, S. P., and Kosaka, Y.: Physical drivers of the summer 2019 North Pacific marine heatwave, Nat. Commun., 11, 1903, https://doi.org/10.1038/s41467-020-15820-w, 2020.
Ardilouze, C., Batté, L., Bunzel, F., Decremer, D., Déqué, M., Doblas-Reyes, F. J., Douville, H., Fereday, D., Guemas, V., MacLachlan, C., and Müller, W.: Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability, Clim. Dynam., 49, 3959–3974, https://doi.org/10.1007/s00382-017-3555-7, 2017.
Bai, W., Liu, H., Lin, P., Hu, S., and Wang, F.: Indo-Pacific warm pool present warming attribution and future projection constraint, Environ. Res. Lett., 17, 054026, https://doi.org/10.1088/1748-9326/ac5edf, 2022.
Balmaseda, M. A., Davey, M. K., and Anderson, D. L. T.: Decadal and Seasonal Dependence of ENSO Prediction Skill, J. Climate, 8, 2705–2715, https://doi.org/10.1175/1520-0442(1995)008<2705:DASDOE>2.0.CO;2, 1995.
Barbeaux, S. J., Holsman, K., and Zador, S.: Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska Pacific cod fishery, Front. Mar. Sci., 7, 703, https://doi.org/10.3389/fmars.2020.00703, 2020.
Benthuysen, J. A., Smith, G. A., Spillman, C. M. and Steinberg, C. R.: Subseasonal prediction of the 2020 Great Barrier Reef and Coral Sea marine heatwave, Environ. Res. Lett., 16, 124050, https://doi.org/10.1088/1748-9326/ac3aa1, 2021.
Berthou, S., Renshaw, R., Smyth, T., Tinker, J., Grist, J., Wihsgott, J., Jones, S., Inall, M., Nolan, G., Arnold, A., and Castillo, J. M.: June 2023 marine heatwave over the Northwest European shelf: origins, weather feedback and future recurrence, Version 1, Research Square [preprint], https://doi.org/10.21203/rs.3.rs-3417023/v1, 23 October 2023.
Bond, N. A., Cronin, M. F., Freeland, H., and Mantua, N.: Causes and impacts of the 2014 warm anomaly in the NE Pacific, Geophys. Res. Lett., 42, 3414–3420, https://doi.org/10.1002/2015GL063306, 2015.
Bonino, G., Masina, S., Galimberti, G., and Moretti, M.: Southern Europe and western Asian marine heatwaves (SEWA-MHWs): a dataset based on macroevents, Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023, 2023.
Buizza, R. and Palmer, T. N.: Impact of Ensemble Size on Ensemble Prediction, Mon. Weather Rev., 126, 2503–2518, https://doi.org/10.1175/1520-0493(1998)126<2503:IOESOE>2.0.CO;2, 1998.
Calì Quaglia, F., Terzago, S., and von Hardenberg, J.: Temperature and precipitation seasonal forecasts over the Mediterranean region: added value compared to simple forecasting methods, Clim. Dynam., 58, 2167–2191, https://doi.org/10.1007/s00382-021-05895-6, 2022.
Cetina-Heredia, P. and Allende-Arandía, M. E.: Caribbean marine heatwaves, marine cold spells, and co-occurrence of bleaching events, J. Geophys. Res.-Oceans, 128, e2023JC020147, https://doi.org/10.1029/2023JC020147, 2023.
Collins, M., Sutherland, M., Bouwer, L., Cheong, S.-M., Frölicher, T., Jacot Des Combes, H., Koll Roxy, M., Losada, I., McInnes, K., Ratter, B., Rivera-Arriaga, E., Susanto, R. D., Swingedouw, D., and Tibig, L.: Extremes, Abrupt Changes and Managing Risk, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 589–655, https://doi.org/10.1017/9781009157964.008, 2019.
Copernicus Climate Change Service: Seasonal forecast daily and subdaily data on single levels, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.181d637e (last access: 22 March 2023), 2018.
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Cabos Narvaez, W. D., Cavicchia, L., Djurdjevic, V., Li, L., Sannino, G., and Sein, D. V.: Future evolution of Marine Heatwaves in the Mediterranean Sea, Clim. Dynam., 53, 1371–1392, https://doi.org/10.1007/s00382-019-04661-z, 2019.
Dayan, H., McAdam, R., Juza, M., Masina, S., and Speich, S.: Marine heat waves in the Mediterranean Sea: An assessment from the surface to the subsurface to meet national needs, Front. Mar. Sci., 10, 1045138, https://doi.org/10.3389/fmars.2023.1045138, 2023.
de Boisséson, E., Balmaseda, M. A., Mayer, M., and Zuo, H.: Section 4.3 of Copernicus Ocean State Report, issue 6, J. Oper. Oceanogr., 15, 1–220, https://doi.org/10.1080/1755876X.2022.2095169, 2022.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
DelSole, T. and Tippett, M. K.: Forecast Comparison Based on Random Walks, Mon. Weather Rev., 144, 615–626, https://doi.org/10.1175/MWR-D-15-0218.1, 2016
Di Lorenzo, E., Schneider, N., Cobb, K. M., Chhak, K., Franks, P. J. S., Miller, A. J., McWilliams, J. C., Bograd, S. J., Arango, H., Curchister, E., Powell, T. M., and Rivere, P.: North Pacific Gyre Oscillation links ocean climate and ecosystem change, Geophys. Res. Lett., 35, L08607, https://doi.org/10.1029/2007GL032838, 2008.
Donner, S., Knutson, T. R., and Oppenheimer, M.: Model-based assessment of the role of human-induced climate change in the 2005 Caribbean coral bleaching event, P. Natl. Acad. Sci. USA, 104, 5483–5488, https://doi.org/10.1073/pnas.0610122104, 2007.
Dunstone, N., Smith, D. M., Hardiman, S. C., Hermanson, L., Ineson, S., Kay, G., Li, C., Lockwood, J. F., Scaife, A. A., Thornton, H., and Ting, M.: Skilful predictions of the Summer North Atlantic Oscillation, Commun. Earth Environ., 4, 409, https://doi.org/10.1038/s43247-023-01063-2, 2023.
Earl, E.: Stock decline leads to historic shutdown for Gulf P-cod, Alaska Journal of Commerce, https://www.alaskajournal.com/ (last access: 21 February 2024), 2019.
E.U. Copernicus Marine Service Information (CMEMS): ESA SST CCI and C3S reprocessed sea surface temperature analyses, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00169, last access: 14 March 2023.
Foltz, G. R. and McPhaden, M. J.: Unusually warm sea surface temperatures in the tropical North Atlantic during 2005, Geophys. Res. Lett., 33, L19703, https://doi.org/10.1029/2006GL027394, 2006.
Fordyce, A. J., Ainsworth, T. D., Heron, S. F., and Leggat, W.: Marine heatwave hotspots in coral reef environments: Physical drivers, ecophysiological outcomes and impact upon structural complexity, Front. Mar. Sci., 6, 498, https://doi.org/10.3389/fmars.2019.00498, 2019.
Gasparin, F., Mignot, A., and Perruche, C.: Section 4.3 of Copernicus Ocean State Report, issue 4, J. Oper. Oceanogr., 13, S1–S172, https://doi.org/10.1080/1755876X.2020.1785097, 2020.
Gentemann, C. L., Fewings, M. R., and García-Reyes, M.: Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave, Geophys. Res. Lett., 44, 312–319, https://doi.org/10.1002/2016GL071039, 2017.
Good, S., Fiedler, E., Mao, C., Martin, M. J., Maycock, A., Reid, R., Roberts-Jones, J., Searle, T., Waters, J., While, J., and Worsfold, M.: The Current Configuration of the OSTIA System for Operational Production of Foundation Sea Surface Temperature and Ice Concentration Analyses, Remote Sens., 12, 720, https://doi.org/10.3390/rs12040720, 2020.
Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., and Holbrook, N. J.: A hierarchical approach to defining marine heatwaves, Prog. Oceanogr., 141, 227–238, https://doi.org/10.1016/j.pocean.2015.12.014, 2016.
Hobday, A. J., Spillman, C. M., Eveson, J. P., Hartog, J. R., Zhang, X., and Brodie, S.: A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture, Front. Mar. Sci., 5, 137, https://doi.org/10.3389/fmars.2018.00137, 2018.
Holbrook, N. J., Scannell, H. A., Sen Gupta, A., Benthuysen, J. A., Feng, M., Oliver, E. C., Alexander, L. V., Burrows, M. T., Donat, M. G., Hobday, A. J., and Moore, P. J.: A global assessment of marine heatwaves and their drivers, Nat. Commun., 10, 2624, https://doi.org/10.1038/s41467-019-10206-z, 2019.
Jacox, M. G., Alexander, M. A., Amaya, D., Becker, E., Bograd, S. J., Brodie, S., Hazen, E. L., Pozo Buil, M., and Tommasi, D.: Global seasonal forecasts of marine heatwaves, Nature, 604, 486–490, https://doi.org/10.1038/s41586-022-04573-9, 2022.
Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H., and Monge-Sanz, B. M.: SEAS5: the new ECMWF seasonal forecast system, Geosci. Model Dev., 12, 1087–1117, https://doi.org/10.5194/gmd-12-1087-2019, 2019.
Juza, M., Fernández-Mora, À., and Tintoré, J.: Sub-Regional marine heat waves in the Mediterranean Sea from observations: Long-term surface changes, Sub-surface and coastal responses, Front. Mar. Sci., 9, 785771, https://doi.org/10.3389/fmars.2022.785771, 2022.
Kajtar, J. B., Holbrook, N. J., and Hernaman, V.: A catalogue of marine heatwave metrics and trends for the Australian region, Journal of Southern Hemisphere Earth Systems Science, 71, 284–302, https://doi.org/10.1071/ES21014, 2021.
Laurel, B. J. and Rogers, L. A.: Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave, Can. J. Fish. Aquat. Sci., 77, 644–650, https://doi.org/10.1139/cjfas-2019-0238, 2020.
L'Heureux, M. L., Levine, A. F. Z., Newman, M., Ganter, C., Luo, J.-J., Tippett, M. K., and Stockdale, T. N.: ENSO Prediction, in: El Niño Southern Oscillation in a Changing Climate, edited by: McPhaden, M. J., Santoso, A., and Cai, W., American Geophysical Union, https://doi.org/10.1002/9781119548164.ch10, 2020.
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D., Calvert, D., Clementi, E., Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Paul, J., Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO ocean engine: version 3.6 stable, Note du Pole de modelisation, Institut Pierre-Simon Laplace, No. 27, Zenodo, https://doi.org/10.5281/zenodo.3248739, 2017.
Marullo, S., Serva, F., Iacono, R., Napolitano, E., di Sarra, A., Meloni, D., Monteleone, F., Sferlazzo, D., De Silvestri, L., de Toma, V., and Pisano, A.: Record-breaking persistence of the 2022/23 marine heatwave in the Mediterranean Sea, Environ. Res. Lett., 18, 114041, https://doi.org/10.1088/1748-9326/ad02ae, 2023.
Mason, I.: A model for assessment of weather forecasts, Aust. Meteorol. Mag., 30, 291–303, 1982.
Mason, S. J. and Graham, N. E.: Conditional Probabilities, Relative Operating Characteristics, and Relative Operating Levels, Wea. Forecast., 14, 713–725, https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2, 1999.
Mayer, M., Balmaseda, M. A., Johnson, S., and Vitar, F.: Assessment of seasonal forecasting errors of the ECMWF system in the eastern Indian Ocean, Clim. Dynam., 62, 1391–1406, https://doi.org/10.1007/s00382-023-06985-3, 2024.
McAdam, R., Masina, S., Balmaseda, M., Gualdi, S., Senan, R., and Mayer, M.: Seasonal forecast skill of upper-ocean heat content in coupled high-resolution systems, Clim. Dynam., 58, 3335–3350, https://doi.org/10.1007/s00382-021-06101-3, 2022.
McAdam, R., Masina, S., and Gualdi, S.: Seasonal forecasting of subsurface marine heatwaves, Commun. Earth Environ., 4, 225, https://doi.org/10.1038/s43247-023-00892-5, 2023.
McCabe, R. M., Hickey, B. M., Kudela, R. M., Lefebvre, K. A., Adams, N. G., Bill, B. D., Gulland, F. M. D., Thomson, R. E., Cochlan, W. P., and Trainer, V. L.: An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions, Geophys. Res. Lett., 43, 10366–10376, https://doi.org/10.1002/2016GL070023, 2016.
Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler, E., Good, S. A., Mittaz, J., Rayner, N. A., Berry, D., and Eastwood, S.: Satellite-based time-series of sea-surface temperature since 1981 for climate applications, Sci. Data, 6, 223, https://doi.org/10.1038/s41597-019-0236-x, 2019.
Michaud, K. M., Reed, D. C., and Miller, R. J.: The Blob marine heatwave transforms California kelp forest ecosystems, Commun. Biol., 5, 1143, https://doi.org/10.1038/s42003-022-04107-z, 2022.
Oh, H., Kim, G. U., Chu, J. E., Lee, K., and Jeong, J. Y.: The record-breaking 2022 long-lasting marine heatwaves in the East China Sea, Environ. Res. Lett., 18, 064015, https://doi.org/10.1088/1748-9326/acd267, 2023.
Oliver, E. C. J., Benthuysen, J. A., Bindoff, N. L., Hobday, A. J., Holbrook, N. J., Mundy, C. N., and Perkins-Kirkpatrick, S. E.: The unprecedented 2015/16 Tasman Sea marine heatwave, Nat. Commun., 8, 16101, https://doi.org/10.1038/ncomms16101, 2017.
Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., Benthuysen, J. A., Feng, M., Sen Gupta, A., Hobday, A. J., and Holbrook, N. J.: Longer and more frequent marine heatwaves over the past century, Nat. Commun., 9, 1324, https://doi.org/10.1038/s41467-018-03732-9, 2018.
Oliver, E. C. J., Burrows, M. T., Donat, M. G., Sen Gupta, A., Alexander, L. V., Perkins-Kirkpatrick, S. E., Benthuysen, J. A., Hobday, A. J., Holbrook, N. J., Moore, P. J., and Thomsen, M. S.: Projected marine heatwaves in the 21st century and the potential for ecological impact, Front. Mar. Sci., 6, 734, https://doi.org/10.3389/fmars.2019.00734, 2019.
Patterson, M., Weisheimer, A., Befort, D. J., and O'Reilly, C. H.: The strong role of external forcing in seasonal forecasts of European summer temperature, Environ. Res. Lett., 17, 104033, https://doi.org/10.1088/1748-9326/ac9243, 2022.
Prodhomme, C., Materia, S., Ardilouze, C., White, R. H., Batté, L., Guemas, V., Fragkoulidis, G., and García-Serrano, J.: Seasonal prediction of European summer heatwaves, Clim. Dynam., 58, 2149–2166, https://doi.org/10.1007/s00382-021-05828-3, 2021.
Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T., Dunstone, N., Eade, R., Fereday, D., Folland, C. K., Gordon, M., and Hermanson, L.: Skillful long-range prediction of European and North American winters, Geophys. Res. Lett., 41, 2514–2519, https://doi.org/10.1002/2014GL059637, 2014.
She, J., Su, J., and Zinck, A. S.: Section 4.4 of Copernicus Ocean State Report, issue 4, J. Oper. Oceanogr., 13, S1–S172, https://doi.org/10.1080/1755876X.2020.1785097, 2020.
Smith, K. E., Burrows, M. T., Hobday, A. J., Sen Gupta, A., Moore, P. J., Thomsen, M., Wernberg, T., and Smale, D. A.: Socioeconomic impacts of marine heatwaves: Global issues and opportunities, Science, 374, eabj3593, https://doi.org/10.1126/science.abj3593, 2021.
Spillman, C. M., Smith, G. A., Hobday, A. J., and Hartog, J. R.: Onset and decline rates of marine heatwaves: Global trends, seasonal forecasts and marine management, Front. Clim., 3, 801217, https://doi.org/10.3389/fclim.2021.801217, 2021.
Stanski, H. R., Wilson, L. J., and Burrows, W. R.: Survey of common verification methods in meteorology, WMO World Weather Watch Tech. Rep. 8, WMO TD 358, 114 pp., https://library.wmo.int/idurl/4/39578 (last access: 19 February 2024), 1989.
Swets, J. A.: The Relative Operating Characteristic in Psychology, Science, 182, 990–1000, https://doi.org/10.1126/science.182.4116.990, 1973.
Webster, P. J. and Yang, S.: Monsoon and Enso: Selectively Interactive Systems, Q. J. Roy. Meteor. Soc., 118, 877–926, https://doi.org/10.1002/qj.49711850705, 1992.
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019.
Short summary
Marine heatwaves are long periods of extremely warm ocean surface temperatures. Predicting such events a few months in advance would help decision-making to mitigate their impacts on marine ecosystems. This work investigates how well operational seasonal forecasts can predict marine heatwaves. Results show that such events can be predicted a few months in advance in the tropics but that extending the predictability skill to other regions will require additional work on the forecast models.
Marine heatwaves are long periods of extremely warm ocean surface temperatures. Predicting such...