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Abstract. Marine heatwaves (MHWs), defined as prolonged
period of extremely warm sea surface temperature (SST),
have been receiving a lot of attention in the past decade
as their frequency and intensity increase in a warming cli-
mate. This paper investigates the extent to which the seasonal
occurrence and duration of MHWs can be predicted with
the European Centre for Medium-Range Weather Forecast
(ECMWF) operational seasonal forecast system. The predic-
tion of the occurrence of MHW events, the number of MHW
days per season, and their intensity and spatial extent are
derived from seasonal SST forecasts and evaluated against
an observation-based SST analysis using both deterministic
and probabilistic metrics over the 1982–2021 period. Fore-
cast scores show useful skill in predicting the occurrence
of MHWs globally for the two seasons following the start-
ing date. The skill is the highest in the El Niño region, the
Caribbean, the wider tropics, the north-eastern extra-tropical
Pacific, and southwest of the extra-tropical basins. The skill
is not as good for other midlatitude eastern basins nor for the
Mediterranean, with the forecast system being able to rep-
resent the low-frequency modulation of MHWs but show-
ing poor skill in predicting the interannual variability of the
MHW characteristics. Linear trend analysis shows an in-
crease in MHW occurrence at a global scale, which the fore-
casts capture well.

1 Introduction

Marine heatwaves (MHWs) are defined as prolonged peri-
ods of anomalously warm sea surface temperature (SST)
that can be characterised by, e.g. their duration, intensity,
and spatial extent (Hobday et al., 2016). Due to their poten-

tial impact on marine ecosystems and the associated marine
economy (Smith et al., 2021), MHW events have received
wide coverage over the past few years. High-resolution op-
erational SST analysis products covering the whole satellite
period, from the early 1980s to near-real time, allow us to
monitor the real-time evolution of such events and inventory
and describe events from the past 4 decades. Darmaraki et
al. (2019), Bonino et al. (2023), Juza et al. (2022), and Dayan
et al. (2023), for example, looked in details at MHWs in the
Mediterranean Sea, describing their duration, intensity, and
frequency but also long-term trends and possible future evo-
lution. Iconic MHW events such as “the Blob” and its succes-
sor (“the Blob 2.0”) in the north-eastern extra-tropical Pacific
have been described and investigated in depth in terms of at-
tribution (Bond et al., 2015; Gentemann et al., 2017; Amaya
et al., 2020; de Boisséson et al., 2022) but also of impacts
on the ecosystems (McCabe et al., 2016; Laurel and Rogers,
2020; Barbeaux et al., 2020; Michaud et al., 2022).

The ability to predict MHWs in advance would allow ac-
tors of the marine industries to make decisions to limit the
impact on ecosystems. For example, the return of “the Blob”
in 2019 and the 2020 outlook led the US federal cod fish-
ery in the Gulf of Alaska to close for the 2020 season as a
precautionary measure as the number of cod in the area was
deemed too low (Earl, 2019). As a response to extreme events
in the Tasman Sea (Oliver et al., 2017) and the Coral Sea
(Kajtar et al., 2021), MHW forecasts on both sub-seasonal
and seasonal timescales have been investigated in Australian
seas (Hobday et al., 2018; Benthuysen et al., 2021). More
recently, Jacox et al. (2022) investigated the predictability
of MHWs on a global scale from an ensemble of six cli-
mate models. Their results showed that forecast skill was
mostly region dependent, with the eastern equatorial Pacific
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region being predictable with the longest lead time. Seasonal
forecasts of SST are routinely conducted by major forecast-
ing centres mainly to predict the evolution of climate modes
such as the El Niño–Southern Oscillation (ENSO). Seasonal
MHW forecasts can be inferred as byproduct of such SST
forecasts, as shown by Jacox et al. (2022).

The present study follows a similar approach using the
SST outputs from the ECMWF ensemble seasonal forecast
system (Johnson et al., 2019) to evaluate its ability to pre-
dict MHW events on a global scale in both a deterministic
and a probabilistic sense. A selection of regions will be in-
vestigated in more detail. The main purpose of this work is to
present a functional way to routinely characterise MHWs in
an operational seasonal forecast system and to evaluate the
forecast skill. Section 2 provides a description of the fore-
casting system, the verification datasets, and the methods for
MHW detection and skill assessment. Section 3 presents the
results regarding the spatial distribution of the skill, regional
aspects, and trends. The paper finishes with a brief summary
and outlook.

2 Products and methods

2.1 The seasonal forecasting system

The ECMWF seasonal forecast system 5 (SEAS5; Johnson et
al., 2019) is used to assess the skill in predicting MHWs over
the 1982–2021 period. SEAS5 is a state-of-the-art seasonal
forecast system, with a particular strength in ENSO predic-
tion, and a member of the Copernicus Climate Change Ser-
vice (C3S) multi-model seasonal forecast product. SEAS5 is
based on the ECMWF Earth System model that couples at-
mosphere, land, wave, ocean, and sea ice. The atmospheric,
land, and wave components are embedded in the ECMWF
Integrated Forecast System (IFS) model cycle 43r1. The at-
mosphere in the IFS uses a TCo319 spectral cubic octahe-
dral grid (approximately 36 km horizontal resolution) with a
20 min time step. There are 91 levels in the vertical, with a
model top in the mesosphere at 0.01 hPa or around 80 km.
Initial conditions for the IFS are taken from ERA-Interim
(Dee et al., 2011) prior to 2017 and ECMWF operational
analyses from 2017 onwards. The physical ocean model
component is based on the NEMO3.4 framework (Madec et
al., 2008) at a 1/4° horizontal resolution and 75 vertical lev-
els with level spacing increasing from 1 m at the surface to
200 m in the deep ocean. Ocean initial conditions for hind-
casts over the 1982–2021 period are taken from the Ocean
ReAnalysis System 5 (ORAS5, Zuo et al., 2019). SEAS5
ocean forecast fields are archived at both daily and monthly
frequencies. SEAS5 produces a 51-member ensemble of 7-
month forecasts initialised on the first day of each month.

Here we explore the seasonal skill of SEAS5 in pre-
dicting the occurrence of MHW events on a global scale
for forecasts starting on 1 February, 1 May, 1 August,

and 1 November. For each starting date, the forecast skill
is estimated for the two following seasons corresponding
to forecast range months 2–3–4 and 5–6–7 so that our
study equally covers MHW happening in spring (March–
April–May, MAM), summer (June–July–August, JJA), au-
tumn (September–October–November, SON), and winter
(December–January–February, DJF). The first 25 members
of each forecast date are used for this assessment.

2.2 Verification dataset

The SST forecasts from SEAS5 are evaluated against the
global SST reprocessed product from the European Space
Agency Climate Change Initiative (ESA-CCI) and C3S avail-
able on the Copernicus Marine Service catalogue (referred
to as ESA-CCI SST in the following). ESA-CCI SST pro-
vides daily L4 SST fields at 20 cm depth on a 0.05° horizon-
tal grid resolution, using satellite data from the (Advanced)
Along-Track Scanning Radiometer ((A)ATSRs), the Sea and
Land Surface Temperature Radiometer (SLSTR) and the Ad-
vanced Very High Resolution Radiometer (AVHRR) sensors
(Merchant et al., 2019) and produced by running the Oper-
ational Sea Surface Temperature and Sea Ice Analysis (OS-
TIA) system (Good et al., 2020). Daily SEAS5 SST fore-
cast fields are retrieved on a regular 1× 1° on the Coperni-
cus Data Store (CDS) and compared to ESA-CCI SST fields
interpolated on the same regular grid.

2.3 Marine heatwave detection

MHW events in SST time series from both SEAS5 fore-
casts and ESA-CCI are detected over the 1982–2021 period
loosely following the definition by Hobday et al. (2016).
For both SEAS5 SST and ESA-CCI SST, a daily time
series of the SST 90th percentile is computed over the
common reference period of 1993–2016, the same refer-
ence period used by the C3S multi-model seasonal fore-
cast charts (https://climate.copernicus.eu/charts/packages/
c3s_seasonal/, last access: January 2024). Although the 90th
percentile threshold is estimated from the 1993–2016 cli-
mate, the MHW detection is applied for the whole 1982–
2021 period. A 5 d running mean is applied to the daily ESA-
CCI SST time series to filter out freak anomalies that would
not fit the “extended period” criterion of the MHW defini-
tion. We then count the number of days per season where the
SST exceeds the 90th percentile over the 1982–2021 period.
This is what we refer as the number of MHW days in the
following. The maximum SST anomaly with respect to the
1993–2016 climatology during the MHW days is taken as
the peak temperature of the MHW occurring during a given
season. For SST forecasts, the detection method is similar
to ESA-CCI SSTs. The daily forecast SST 90th percentile
time series is computed from 25 members of the SEAS5 en-
semble over the 1993–2016 reference period. The number of
MHW days and the maximum MHW temperature anoma-
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lies are then estimated for seasons corresponding to months
2–3–4 and 5–6–7 of the SST forecasts following the same
procedure as for the ESA-CCI product. The probability of
forecasting a MHW event in a given season is estimated at
each grid point as the percentage of ensembles in which the
number of MHW days is greater than five.

2.4 Skill scores

2.4.1 Mean square skill score

To estimate the mean square skill score (MSSS), the follow-
ing two components are needed: (i) the mean square error
(MSE) of the MHW forecasts with respect to MHW as cap-
tured in ESA-CCI and (ii) the standard deviation from the
mean of a given MHW characteristic as captured in ESA-
CCI. The MSSS is estimated for the forecast ensemble mean
at every grid point for the period 1982–2021 as follows:

MSSS= 1−
MSE
SDo

, (1)

where

MSE=
1
N

N∑
i=1

(Fi −Oi)
2, (2)

and

SDo =
1
N

N∑
i=1

(Oi)
2, (3)

where Fi is the forecast ensemble mean anomaly for a given
verification time, Oi is the corresponding verifying observa-
tion anomaly, and N is the total number of verification in-
stances over the 1982–2021 period. MSSS is here estimated
for the number of MHW days.

2.4.2 Multiyear trend and correlation maps and
area-averaged time series

The long-term linear trend of the number of MHW days is
computed for both SEAS5 ensemble mean and ESA-CCI.
Reports of a trend toward more frequent and longer MHWs
over the recent decades (Oliver et al., 2018; Collins et al.,
2019) indicate a distinctive multi-year signal in observation-
based SST analyses such as the ESA-CCI product. Here, the
aim is to assess how well (or not) SEAS5 represents such
multi-year trend. Trend errors will potentially degrade fore-
cast scores and indicate deficiencies in either the model or
the initialisation. Maps of temporal correlation (with 95 %
significance, following DelSole and Tippett, 2016) between
MHW ensemble mean forecast and observations over the
1982–2021 period are also produced for every start date and
their corresponding two verifying seasons. These maps will
give additional insights into the ability of the forecast to rep-
resent the multi-year signal. Area-averaged time series of

MHW characteristics are also used to evaluate the forecast
system performance for individual events in regions of inter-
est and will complete the trend and correlation diagnostics.
MHW characteristics are estimated at grid points where the
number of MHW days is greater than or equal to five. Such
characteristics include the number of MHW days per season,
the maximum amplitude during that period and the spatial
extent. The spatial extent is estimated as the percentage of
grid points in the considered area where the number of MHW
days per season is at least five.

2.4.3 Relative operator characteristic

The relative (or receiver) operating characteristic (ROC,
Swets, 1973; Mason, 1982; Mason and Graham, 1999) is a
way of assessing the skill of a forecasting system by com-
paring the hit (true-positive) rate and the false-alarm (false-
negative) rate that is commonly used for weather forecasting
(Stanski et al., 1989; Buizza and Palmer, 1998). The ROC
is computed here at every grid point using (i) the forecast
probabilities for MHW for a given start date and verifying
season inferred from the SEAS5 SST forecasts (as defined
in Sect. 2.3) and (ii) the MHW occurrence (at least 5 MHW
days) in the ESA-CCI product for the corresponding season.
Both the true- and false-positive rates are estimated for a
comprehensive range of forecasts probabilities based on the
forecast ability to capture MHW events as detected in the
ESA-CCI SST fields over the 1982–2021 period. From there,
ROC curves can be plotted and potentially used to select the
trigger MHW probability threshold for an event that provides
the best trade-off between true-positive rate and false-alarm
rate. The ROC score is computed from the ROC curve as the
normalised area under the curve (AUC, Stanski et al., 1989),
where an AUC close to 0.5 indicates little to no skill, while
an AUC close to 1 indicate high skill. In this study both the
ROC curve and score are computed over a selection of re-
gions of interest but also at every grid point to give insight
into the spatial distribution of seasonal MHW forecast skill.

3 Results

3.1 Seasonal forecast skill for marine heatwaves:
spatial distribution

Both correlation and MSSS of the number of MHW days per
season are computed with respect to the reference dataset
from ESA CCI. These scores are deterministic in that they
are inferred from the ensemble mean of the seasonal fore-
casts. The correlation estimates the ability of the seasonal
system to reproduce the time evolution of the ESA CCI data
in terms of number of MHW days. In all seasons, the highest
correlations are found over the Pacific Cold Tongue where El
Niño events occur and in the wider tropics (Fig. 1). Corre-
lations remain relatively high in the eastern tropical Pacific
and in the equatorial Atlantic and Indian oceans in the sec-
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Figure 1. Maps of interannual correlation between the number of MHW days forecasted in season one (months 2–3–4) and two (months 2–
3–4) and the observed number of MHW days for starting dates on 1 February, verifying (a) MAM (March–April–May) and (b) JJA (June–
July–August); 1 May, verifying (c) JJA and (d) SON (September–October–November); 1 August, verifying (e) SON and (f) DJF (December–
January–February); and 1 November, verifying (g) DJF and (h) MAM. Forecasts for the period 1982–2021 are verified against ESA-CCI SST
product. The hatches indicate the area in which the scores are significant. Significance for both MSSS and correlation is estimated following
DelSole and Tippett (2016).

ond season for SON and DJF (Fig. 1e, f), reflecting the ability
of the seasonal system to predict and persist El Niño condi-
tions over autumn and winter. The drop in skill for JJA in
the second season (Fig. 1b) in these areas is likely related
to the spring predictability barrier (Webster and Yang, 1992;
Balmaseda et al., 1995). High and significant correlations are
seen in extra-tropical areas such as the north-eastern Pacific
and the Southern Ocean (particularly over the Pacific sec-
tor in MAM and JJA, Fig. 1a, c) where MHW occurrence

is influenced on longer timescales by climate modes like the
Pacific Decadal Oscillation (PDO), the North Pacific Subpo-
lar Gyre Oscillation (NPGO; Di Lorenzo et al., 2008), and
the Interdecadal Pacific Oscillation (IPO) (Holbrook et al.,
2019).

The MSSS indicates how close to the observed quantity
the forecast gets in terms of number of MHW days. In all sea-
sons, the highest score is again over the Pacific Cold Tongue
where El Niño events occur (Fig. 2). The footprint of ENSO
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Figure 2. Maps of mean square skill score of the number of MHW days for season one (months 2–3–4) and two (months 5–6–7) of the
forecast starting on the following dates: 1 February, verifying (a) MAM (March–April–May) and (b) JJA (June–July–August); 1 May,
verifying (c) JJA and (d) SON (September–October–November); 1 August, verifying (e) SON and (f) DJF (December–January–February);
and 1 November, verifying (g) DJF and (h) MAM. Forecasts for the period 1982–2021 are verified against ESA-CCI SST product. The
hatches indicate the area in which the scores are significant. Significance for both MSSS and correlation are estimated following DelSole and
Tippett (2016).

is partly visible in both the tropical Indian basin and tropical
Atlantic basin, where MHW occurrence and predictability is
also likely to be influenced by climate modes such as the
Indian Ocean Dipole (IOD) and the North Atlantic Oscilla-
tion (NAO), respectively (Holbrook et al., 2019). The north-
eastern extra-tropical Pacific is one of the only midlatitude
regions with significant MSSS values from spring to autumn
(in the first forecast season only, Fig. 2a, c, e). As expected,

MSSS degrades in the second season of the forecast and most
of the skill is concentrated over the Pacific Cold Tongue in
SON and DJF (Fig. 2d, f), strongly suggesting links between
MHW and ENSO predictability. Overall, MSSS and correla-
tion values larger than zero are widespread and mostly signif-
icant (especially correlations), indicating that, even at these
long lead times, the seasonal forecasts are more skilful than
climatology.
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Figure 3. Maps of the area under the curve (AUC) forecasted in season one (months 2–3–4) and two (months 2–3–4) for the following
starting dates: 1 February, verifying (a) MAM and (b) JJA; 1 May, verifying (c) JJA and (d) SON; 1 August, verifying (e) SON and (f) DJF;
and 1 November, verifying (g) DJF and (h) MAM. The AUC is derived from the ROC curves estimated from the probability of predicting at
least 5 d of SST in the 90th percentile during a season. The boxes in (a) indicate the four areas (north-eastern extra-tropical Pacific Ocean,
Caribbean Sea, western Mediterranean Sea, and North Sea) used to produce Figs. 4, 5, and 6.

The ROC allows us to evaluate the seasonal forecasts in
terms of ability to detect the presence of a MHW event
within a season. Such a score can help decision-making to
prepare for or mitigate the impact of a likely MHW event
when the forecast probability exceeds a certain threshold.
Maps of AUC provide indications of the area where there
is MHW forecast skill. For forecast ranges of 2–4 months
(season one) values of AUC over 0.5 are found almost every-
where (Fig. 3a, c, e, g). The largest values are found in both
the Niño 3.4 and 4 regions, reflecting once more the ability

of SEAS5 to predict and persist El Niño conditions. Overall,
AUC is high over the tropics and subtropics in all basins. The
north-eastern extra-tropical Pacific, where “the Blob” hap-
pened, shows high skill in all seasons. Skilful MHW predic-
tions are seen in the western tropical Atlantic Ocean mainly
for MAM and JJA (Fig. 3a, c); the tropical Indian Ocean for
MAM, SON, and DJF (Fig. 3a, e, g); and over the Maritime
Continent mainly for JJA (Fig. 3c). The skill decreases over-
all in the forecast range 5–7 months (season 2, Fig. 3b, d, f,
h), with the highest values of AUC in the tropical regions of

Ocean Sci., 20, 265–278, 2024 https://doi.org/10.5194/os-20-265-2024



E. de Boisséson and M. A. Balmaseda: Predictability of marine heatwaves 271

both the Pacific and Indian oceans, the north-eastern extra-
tropical Pacific, and the Pacific sector of the southern extra-
tropics. The ROC score complements and confirms the re-
sults from both MSSS and correlation. The ROC maps indi-
cate the areas where the forecast system can predict observed
MHW events on seasonal timescales. MSSS and correlation
show the accuracy of such predictions in terms of length
and interannual variability of extreme SST events. This set
of skills indicates that even at long lead times the seasonal
forecasts from SEAS5 show useful skill in predicting the oc-
currence of MHW events.

3.2 Seasonal forecast skill for marine heatwaves:
regional aspects

Looking at areas outside of the Niño region brings more nu-
ance. The ROC is estimated for a selection of regions where
MHWs could impact marine sectors such as fisheries or
aquaculture. Figure 4 shows the ROC curve for seasonal fore-
casts starting on 1 February and 1 May and verified for JJA.
The ROC curve shows very high skill in the north-eastern
extra-tropical Pacific (Fig. 4a) and even higher skill in the
Caribbean (Fig. 4b) for JJA. There is, however, a substantial
reduction in the AUC in JJA for the February forecast. The
skill is much lower in the western Mediterranean and rather
poor in the North Sea whatever the forecast range (Fig. 4c, d).
This disparity in skill reflects the known difference in the per-
formance of seasonal forecasting systems between the trop-
ics and extra-tropics (especially over Europe).

Time series of MHW characteristics for these areas com-
plement the ROC curves showing to which extent specific
MHW events are captured by the seasonal forecasts. Fig-
ures 5 and 6 show the number of MHW days, the maximum
amplitude, and the spatial extent (in terms of proportion of
the area affected by a MHW) in JJA over the period 1982–
2021 in the February and May forecasts and the ESA-CCI
product. In the north-eastern extra-tropical Pacific (Fig. 5a,
c, e), the seasonal forecast can capture the major JJA events
of 1997, 2004, 2013–2015 (a.k.a. the “Blob”), and 2019, al-
though the severity of the events was underestimated in 2004.
The range of maximum amplitude of the events is mostly
similar to observations from 1982 to 2010 and then slightly
underestimated from 2010–onwards. The time evolution of
the spatial extent of MHWs is well captured (albeit the large
spread), suggesting the seasonal forecast system can repre-
sent the correct spatial patterns. Both forecast starting dates
show similar ability in predicting JJA MHW characteristics.
The thermal memory of the ocean has been shown to im-
pact the predictability of MHW and improved seasonal skill
in the north-eastern Pacific from 2017 has been linked to an
increase in the ocean stratification preconditioning the ocean
to the occurrence of extremely warm events at the surface
(de Boisséson et al., 2022). The state of the north-eastern
extra-tropical Pacific Ocean is influenced on synoptic to sea-
sonal timescale by local variations in atmospheric conditions

Figure 4. ROC curve for the JJA MHW forecast starting on 1 Febru-
ary (blue) and 1 May (red) in (a) the north-eastern extra-tropical Pa-
cific Ocean, (b) the Caribbean Sea, (c) the western Mediterranean
Sea, and (d) the North Sea. The areas are defined in Fig. 3a.

(Holbrook et al., 2019) that show relatively low predictability
in SEAS5 (Johnson et al., 2019), hence impacting the accu-
racy of the MHW forecast. Jacox et al. (2022) showed that
the skill of seasonal MHW prediction in the north-eastern
Pacific (close to the North American coast) is relatively im-
proved when ENSO is an active state with respect to a neu-
tral state. This link to ENSO could partly explain the better
performances in 1997 and 2015 (strong El Niño years) with
respect to 2004 (a moderate to neutral ENSO year) for exam-
ple. Aside from these modes of interannual variability, the
time series, the number of MHW days, and spatial extent ap-
pear dominated by low-frequency variability or trends, which
will influence the predictability. We will return to this point
later in the next section.

In the Caribbean (Fig. 5b, d, f), the prediction of both the
number of MHW days and the spatial extent is quite accu-
rate, especially for JJA 1998, 2005, and 2010 in the May
forecast. This forecast looks confident with relatively low
spread. The amplitude of the events is relatively low in both
the forecasts and the observations. The forecasts, however,
do not perform well in 1995, 2011, 2017, and 2020 for events
that cover most of the region. The February forecast is less
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Figure 5. Time series of MHW characteristics for JJA 1982–2021 in both forecasts and observations in both the north-eastern extra-tropical
Pacific (a, c, e) and the Caribbean (b, d, f): (a, b) number of MHW days, (c, d) maximum amplitude of the MHW, and (e, f) spatial extent
expressed as the proportion of the full area seeing a MHW event during the season. The seasonal forecasts starting on 1 February and 1 May
are in blue and red, respectively, with the solid line representing the ensemble mean and the shaded area the ensemble spread. The MHW
characteristics as given in the ESA-CCI product are in black.

skilful in capturing the length of the 1998, 2005, and 2010
MHW events. Cetina-Heredia and Allende-Arandía (2023)
linked the development of MHW in the Caribbean in 1998
and 2010 to predictable El Niño conditions. MHW in the
Caribbean is also heavily influenced by the seasonal fluc-
tuations in the Intertropical Convergence Zone (ITCZ) that
usually come with weaker surface winds and weaker heat
loss from the ocean to the atmosphere over the boreal sum-
mer (Fordyce et al., 2019). The well-predicted 2005 MHW
event coincides with atmospheric conditions including par-
ticularly weak easterlies and anomalous shortwave radiation
(Foltz and McPhaden, 2006) that started in winter and per-
sisted over the summer. MHW occurrence in the Caribbean
have also been linked to modes of variability such as the
NAO (Holbrook et al., 2019) and the East Atlantic Pattern
(EAP) that are less predictable (Dunstone et al., 2023) and
could affect MHW forecast performances.

In both the western Mediterranean Sea and the North
Sea (Fig. 6), the performance is not as good for both start-
ing dates. Although the forecast system tends to capture
the low-frequency modulation of MHW (trend in the west-
ern Mediterranean Sea and decadal modulation in the North
Sea), especially in term of spatial extent (Fig. 6e, f), it does

not appear skilful at predicting the interannual variability,
producing false alarms and missing major events such as the
one following the 2003 European heatwave. The low per-
formance in the western Mediterranean agrees with Jacox et
al. (2022), who show consistently low forecast probabilities
for MHW in the area over the 1991–2020 period. McAdam
et al. (2023) also show poor forecast skill in the Mediter-
ranean (albeit in the eastern basins) at the ocean surface but
argue that predictability can be found at the subsurface. The
low skill in the North Sea is also in agreement with these
two publications. There is little surprise in such lack of skill
given the well-documented difficulties of SEAS5 in these re-
gions (Calì Quaglia et al., 2022) that poorly predicts both
NAO and SSTs in the north-western Atlantic (Johnson et al.,
2019) and shows little skill in capturing some major atmo-
spheric heatwave events that would impact the ocean surface
(Prodhomme et al., 2021).

3.3 Observed and predicted trends for marine
heatwaves

The number of MHW days has been increasing since the first
decades of the 20th century (Oliver et al., 2018) and is ex-
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Figure 6. The same as Fig. 5 for the western Mediterranean Sea (a, c, e) and the North Sea (b, d, f).

pected to increase further in the context of global warming
(Oliver et al., 2019). Global warming has already been iden-
tified as a factor contributing to MHW occurrence, leading
to severe coral bleaching in the Caribbean (Donner et al.,
2007). The trend in MHW days in the seasonal forecast is
evaluated against observations as another assessment metric
for the forecast system. Figure 7a and b display the trends in
JJA for both the ensemble mean forecast starting on 1 May
and the ESA-CCI product over the 1982–2021 period. The
number of MHW days in the ESA-CCI product increases in
most ocean regions, the Pacific Cold Tongue and parts of the
Southern Ocean being the exceptions. The forecast is able to
capture most of the observed features, with hot spots over the
Pacific Warm Pool, in the tropical Indian Ocean, and in the
southwestern Pacific off New Zealand. The forecasted trends
are, however, often weaker than the observed ones, especially
in the tropics, the north-eastern extra-tropical Pacific and the
north-western subtropical Atlantic. Conclusions are similar
for trends in MAM, SON, and DJF for forecasts starting on
1 February, 1 August, and 1 November (not shown).

Figure 7c and d display the trends in mean SST in JJA
for both forecast and observation. The forecast trends mostly
capture the observed ones in the tropics but are underes-
timated (overestimated) in the northern (southern) extra-
tropics. Both forecast and observations show different spatial
patterns in the trends of seasonal means of SST and num-

ber of MHW days. In the tropical Indian Ocean, northern
subtropical eastern Pacific, and Caribbean and north-western
subtropical Atlantic, the trends in number of MHW days ap-
pear more intense than the trends in seasonal mean SST. The
colder high-latitude regions bordering the Arctic, by contrast,
show more pronounced trends in seasonal SST means than
in number of MHW days. These results illustrate the non-
linear nature of the climate change (e.g. in that over warm
convective areas it is difficult to increase the mean SST but
still possible to increase the occurrence of MHW events) and
highlights the importance of dedicated diagnostics to detect
changes in extremes.

4 Discussion and conclusions

Global daily seasonal SST forecasts are or can be rou-
tinely output by operational forecasting centres. Predicted
MHW characteristics can be derived from such forecasts
and could eventually be delivered to stakeholders from the
marine economy and management communities. This study
evaluates the skill of the ECMWF SEAS5 system in predict-
ing the occurrence of MHWs on seasonal timescales. This
work comes after a series of recent publications on seasonal
MHW predictions (Spillman et al., 2021; Jacox et al., 2022;
McAdam et al., 2023) that are based on different seasonal
prediction systems. In these studies, methods are different,
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Figure 7. Maps of the trend in number of MHW days (in number of days per year) over the 1982–2021 period in JJA for the ensemble mean
seasonal forecast and the ESA-CCI SST analysis, respectively. (c, d) Maps of the trend in mean SST (in K yr−1) over the 1982–2021 period
in JJA for the ensemble mean seasonal forecast and the ESA-CCI SST analysis, respectively. The hatches indicate the areas in which the
trends are significant. Significance is estimated following DelSole and Tippett (2016).

with Jacox et al. (2022) using monthly forecast time series,
while McAdam et al. (2023) focus more on forecasts of the
ocean subsurface. Both Spillman et al. (2021) and Jacox et
al. (2022) also investigate the predictability of more sophisti-
cated aspects such as the onset of MHW events. In all of these
studies, the MHW detection is based on the widely accepted
definition from Hobday et al. (2016). Here, we proposed a
slightly simpler definition to make it easily applicable to a
wide range of forecasting systems and allow flexibility ac-
cording to the use one wants to make of a seasonal MHW
forecast. In forecasts from the SEAS5 system, we counted
the number of days per season in which the SST is in the
90th percentile. Focusing on a specific area, this method can
provide seasonal forecasts of the number of MHW days, the
maximum amplitude of the MHWs over a season, and the
proportion of the area affected by MHWs. Skill evaluation
in this study is mostly based on the number of MHW days.
Both deterministic (MSSS, correlation, and trend) and proba-
bilistic (ROC) methods complement each other by assessing
different aspects of the forecast skill.

Results presented here suggest that MHW prediction skill
is very much area dependent in the current state of the SEAS5
system, confirming conclusions from previous studies (Spill-
man et al., 2021; Jacox et al., 2022). The largest skill is found

in the tropics with a clear footprint of El Niño in the eastern
Pacific, highly predictable at interannual timescales (Figs. 1
and 3) for both season 1 and 2 of the forecast and consistent
with the predictability of ocean and atmospheric conditions
linked to ENSO (L’Heureux et al., 2020). The signature of
the PDO is apparent over the north-eastern Pacific, with high
predictability skill in the first season consistent with both Ja-
cox et al. (2022) and McAdam et al. (2023). This is consistent
with processes highly conditioned by the ocean mixed layer
but affected by the more unpredictable variability of local at-
mospheric circulation (Gasparin et al., 2020; de Boisséson et
al., 2022). MHW occurrence in warm pool areas such as the
western Pacific Ocean, the Indian Ocean, and the Caribbean
Sea (Figs. 4b and 5b, d, f) is well predicted by SEAS5.
These areas are affected by long-term trends (Bai et al., 2022;
Donner et al., 2007) that slowly and consistently warm and
deepen the warm pool and favour the onset of MHW. Cli-
mate modes such as the IOD and ENSO also impact the pre-
dictability of MHW in such regions, with location-dependent
skill (Mayer et al., 2024). The MHWs in the North Atlantic
and the northern European seas are influenced by the NAO
and the Arctic Oscillation (Holbrook et al., 2019; She et al.,
2020) that have limited and fast-decaying season-dependent
skill (Scaife et al., 2014; Dunstone et al., 2023). The low skill
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in capturing major events in the Mediterranean showed in
this study agrees with both Jacox et al. (2022) and McAdam
et al. (2023) and is probably due to the impact of unresolved
atmospheric variability (Ardilouze et al., 2017; Patterson et
al., 2022). This is an area that would require further investi-
gation with higher-resolution models. That said, even at long
lead times, the low-frequency modulation of MHW charac-
teristics is captured, and some level of skill in detecting the
occurrence of MHW is found (Figs. 3 and 6).

Biases, limited representation of teleconnections and cli-
mate modes, atmospheric noise and model resolution all
limit the predictability of MHW, in particular in the north-
ern Extra-tropics. With record global atmospheric tempera-
tures being reached in both 2022 and 2023, the current El
Niño expected to lead to another hot year, and the recent in-
tense and long-lasting MHW events already reported in var-
ious basins (Marullo et al., 2023; Oh et al., 2023; Berthou
et al., 2023), accurate seasonal predictions could rapidly
become very valuable for decision-making to alleviate the
socio-economic impacts of such extreme events (Smith et al.,
2021). Extracting more MHW prediction skill from seasonal
predictions could be achieved using a multi-model ensemble
(Jacox et al., 2022). The MHW forecast produced for SEAS5
could be, for example, generalised to the multi-model ensem-
ble from the Copernicus Climate Change service (C3S), and
seasonal predictions of MHW parameters could be a prod-
uct released on a regular basis to be used as additional in-
formation by potential stakeholders. Given the nature of this
study, the detection method is very general, and more pre-
diction skill could be found devising targeted MHW indi-
cators and thresholds according to a specific location, activ-
ity, or ecosystem. While MHW events are mostly detected
at the surface, impacts on ecosystems and populations hap-
pen in the subsurface. Seasonal forecasts of ocean variables
other than SST have so far received little attention, but re-
cent work hints that forecast skill for the ocean heat content
in the upper 300 m is comparable to the skill for SST in the
tropics and even exceeds it in the extra-tropics (McAdam et
al., 2022). The recent study by McAdam et al. (2023) actu-
ally showed that forecasting skill for MHW can be found in
the 0–40 m layer depending on the region of interest and the
type of MHW event. Further analysing the seasonal forecast
of relevant ocean variables might be another avenue toward
providing useful skill for predicting extreme marine events
such as MHW.
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