Articles | Volume 20, issue 1
https://doi.org/10.5194/os-20-201-2024
https://doi.org/10.5194/os-20-201-2024
Research article
 | 
20 Feb 2024
Research article |  | 20 Feb 2024

Unsupervised classification of the northwestern European seas based on satellite altimetry data

Lea Poropat, Dani Jones, Simon D. A. Thomas, and Céline Heuzé

Related authors

Drivers of high frequency extreme sea level around Northern Europe – Synergies between recurrent neural networks and Random Forest
Céline Heuzé, Linn Carlstedt, Lea Poropat, and Heather Reese
EGUsphere, https://doi.org/10.5194/egusphere-2025-700,https://doi.org/10.5194/egusphere-2025-700, 2025
Short summary

Related subject area

Approach: Remote Sensing | Properties and processes: Sea level, tides, tsunamis and surges
Benefits of a second tandem flight phase between two successive satellite altimetry missions for assessing instrumental stability
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig Donlon
Ocean Sci., 21, 343–358, https://doi.org/10.5194/os-21-343-2025,https://doi.org/10.5194/os-21-343-2025, 2025
Short summary
Understanding uncertainties in the satellite altimeter measurement of coastal sea level: insights from a round-robin analysis
Florence Birol, François Bignalet-Cazalet, Mathilde Cancet, Jean-Alexis Daguze, Wassim Fkaier, Ergane Fouchet, Fabien Léger, Claire Maraldi, Fernando Niño, Marie-Isabelle Pujol, and Ngan Tran
Ocean Sci., 21, 133–150, https://doi.org/10.5194/os-21-133-2025,https://doi.org/10.5194/os-21-133-2025, 2025
Short summary
Regional sea level budget over 2004–2022
Marie Bouih, Anne Barnoud, Chunxue Yang, Andrea Storto, Alejandro Blazquez, William Llovel, Robin Fraudeau, and Anny Cazenave
EGUsphere, https://doi.org/10.5194/egusphere-2024-3945,https://doi.org/10.5194/egusphere-2024-3945, 2025
Short summary
M2 Monthly and annual mode 1 and mode 2 internal tide atlases from altimetry data and MIOST: focus on the Indo-Philippine Archipelago and the region off the Amazon shelf
Michel Tchilibou, Simon Barbot, Loren Carrere, Ariane Koch-Larrouy, Gérald Dibarboure, and Clément Ubelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3947,https://doi.org/10.5194/egusphere-2024-3947, 2025
Short summary
Statistical analysis of dynamic behavior of continental shelf wave motions in the northern South China Sea
Junyi Li, Tao He, Quanan Zheng, Ying Xu, and Lingling Xie
Ocean Sci., 19, 1545–1559, https://doi.org/10.5194/os-19-1545-2023,https://doi.org/10.5194/os-19-1545-2023, 2023
Short summary

Cited articles

Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, 2015. a
Barbosa, S., Gouveia, S., and Alonso, A.: Wavelet-based clustering of sea level records, Math. Geosci., 48, 149–162, https://doi.org/10.1007/s11004-015-9623-9, 2016. a
Bilmes, J. A.: A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models, International Computer Science Institute, Berkley, California, International computer science institute, 126 pp., 1998. a, b
Bishop, C. M.: Pattern Recognition and Machine Learning, Springer, New York, ISBN-10: 0-387-31073-8, ISBN-13: 978-0387-31073-2, 2006. a, b, c
Björnsson, H. and Venegas, S.: A Manual for EOF and SVD Analysises of Climatic Data, CCGCR Rep. 97-1, McGill University, Montréal, Canada, 52 pp., 1997. a
Download
Short summary
In this study we use a machine learning method called a Gaussian mixture model to divide part of the ocean (northwestern European seas and part of the Atlantic Ocean) into regions based on satellite observations of sea level. This helps us study each of these regions separately and learn more about what causes sea level changes there. We find that the ocean is first divided based on bathymetry and then based on other features such as water masses and typical atmospheric conditions.
Share