Articles | Volume 20, issue 1
https://doi.org/10.5194/os-20-201-2024
https://doi.org/10.5194/os-20-201-2024
Research article
 | 
20 Feb 2024
Research article |  | 20 Feb 2024

Unsupervised classification of the northwestern European seas based on satellite altimetry data

Lea Poropat, Dani Jones, Simon D. A. Thomas, and Céline Heuzé

Related authors

Continued warming of deep waters in the Fram Strait
Salar Karam, Céline Heuzé, Mario Hoppmann, and Laura de Steur
Ocean Sci., 20, 917–930, https://doi.org/10.5194/os-20-917-2024,https://doi.org/10.5194/os-20-917-2024, 2024
Short summary
The distribution and abundance of planktonic foraminifera under summer sea-ice in the Arctic Ocean
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1091,https://doi.org/10.5194/egusphere-2024-1091, 2024
Short summary
A year of transient tracers (chlorofluorocarbon 12 and sulfur hexafluoride), noble gases (helium and neon), and tritium in the Arctic Ocean from the MOSAiC expedition (2019–2020)
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023,https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary
Unsupervised classification identifies coherent thermohaline structures in the Weddell Gyre region
Dani C. Jones, Maike Sonnewald, Shenjie Zhou, Ute Hausmann, Andrew J. S. Meijers, Isabella Rosso, Lars Boehme, Michael P. Meredith, and Alberto C. Naveira Garabato
Ocean Sci., 19, 857–885, https://doi.org/10.5194/os-19-857-2023,https://doi.org/10.5194/os-19-857-2023, 2023
Short summary
Technical note: Unsupervised classification of ozone profiles in UKESM1
Fouzia Fahrin, Daniel C. Jones, Yan Wu, James Keeble, and Alexander T. Archibald
Atmos. Chem. Phys., 23, 3609–3627, https://doi.org/10.5194/acp-23-3609-2023,https://doi.org/10.5194/acp-23-3609-2023, 2023
Short summary

Related subject area

Approach: Remote Sensing | Properties and processes: Sea level, tides, tsunamis and surges
Statistical analysis of dynamic behavior of continental shelf wave motions in the northern South China Sea
Junyi Li, Tao He, Quanan Zheng, Ying Xu, and Lingling Xie
Ocean Sci., 19, 1545–1559, https://doi.org/10.5194/os-19-1545-2023,https://doi.org/10.5194/os-19-1545-2023, 2023
Short summary
Spatial and temporal variability in mode-1 and mode-2 internal solitary waves from MODIS-Terra sun glint off the Amazon shelf
Carina Regina de Macedo, Ariane Koch-Larrouy, José Carlos Bastos da Silva, Jorge Manuel Magalhães, Carlos Alessandre Domingos Lentini, Trung Kien Tran, Marcelo Caetano Barreto Rosa, and Vincent Vantrepotte
Ocean Sci., 19, 1357–1374, https://doi.org/10.5194/os-19-1357-2023,https://doi.org/10.5194/os-19-1357-2023, 2023
Short summary

Cited articles

Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, 2015. a
Barbosa, S., Gouveia, S., and Alonso, A.: Wavelet-based clustering of sea level records, Math. Geosci., 48, 149–162, https://doi.org/10.1007/s11004-015-9623-9, 2016. a
Bilmes, J. A.: A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models, International Computer Science Institute, Berkley, California, International computer science institute, 126 pp., 1998. a, b
Bishop, C. M.: Pattern Recognition and Machine Learning, Springer, New York, ISBN-10: 0-387-31073-8, ISBN-13: 978-0387-31073-2, 2006. a, b, c
Björnsson, H. and Venegas, S.: A Manual for EOF and SVD Analysises of Climatic Data, CCGCR Rep. 97-1, McGill University, Montréal, Canada, 52 pp., 1997. a
Download
Short summary
In this study we use a machine learning method called a Gaussian mixture model to divide part of the ocean (northwestern European seas and part of the Atlantic Ocean) into regions based on satellite observations of sea level. This helps us study each of these regions separately and learn more about what causes sea level changes there. We find that the ocean is first divided based on bathymetry and then based on other features such as water masses and typical atmospheric conditions.