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Abstract. From generating metrics representative of a wide
region to saving costs by reducing the density of an obser-
vational network, the reasons to split the ocean into distinct
regions are many. Traditionally, this has been done some-
what arbitrarily using the bathymetry and potentially some
artificial latitude–longitude boundaries. We use an ensem-
ble of Gaussian mixture models (GMMs, unsupervised clas-
sification) to separate the complex northwestern European
coastal region into classes based on sea level variability ob-
served by satellite altimetry. To reduce the dimensionality
of the data, we perform a principal component analysis on
27 years of observations and use the spatial components as
input for the GMM. The number of classes or mixture com-
ponents is determined by locating the maximum of the sil-
houette score and by testing several models. We use an en-
semble approach to increase the robustness of the classifica-
tion and to allow the separation into more regions than a sin-
gle GMM can achieve. We also vary the number of empirical
orthogonal function (EOF) maps and show that more EOFs
result in a more detailed classification. With three EOFs, the
area is classified into four distinct regions delimited mainly
by bathymetry. Adding more EOFs results in further subdi-
visions that resemble oceanic fronts. To achieve a more de-
tailed separation, we use a model focused on smaller regions,
specifically the Baltic Sea, North Sea, and the Norwegian
Sea.

1 Introduction

Sea level variability in coastal regions is a critical area of
research due to its implications for coastal management,
climate change assessments, and hazard mitigation (Fox-
Kemper et al., 2021). Sea level also reflects ocean currents
(Dangendorf et al., 2021), so understanding the patterns and
classifying the ocean based on sea level data can provide
valuable insights into the dynamic behavior of these regions.
Furthermore, while satellite-based instruments provide us
with observations covering large areas, they only exist for
the last 3 decades at most (Ablain et al., 2015); thus, in order
to study interannual and decadal processes, we have to rely
on tide gauges, which are only available at specific point lo-
cations. Knowing the regions of coherent sea level variability
allows us to estimate how broad of an area our conclusions
based on tide gauges can be applied to.

The traditional ways of studying coherence in sea level
include calculating correlation, a principal component anal-
ysis (PCA), or a combination of the two. For example, Pa-
padopoulos and Tsimplis (2006) extracted empirical orthog-
onal functions (EOFs) to create regional indices that repre-
sent sea levels in large areas of the world oceans and calcu-
lated the correlations with climate indices to study the tele-
connection patterns. Bulczak et al. (2015) used EOFs to de-
compose the observed seasonal sea level variability in the
Nordic seas and compare it with the steric and dynamic forc-
ing. Iglesias et al. (2017) performed a correlation analysis be-
tween the altimetry-observed sea level anomaly in the North
Atlantic and the teleconnection patterns. As most studies do,
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they all separated the ocean into regions only based on geo-
graphical locations, i.e., the coastlines and ocean basins, but
did not attempt to further separate the basins based on the
differences in observed sea level variability. There have also
been a few attempts to apply more complex classification
or clustering methods to sea level; e.g., Scotto et al. (2010)
used agglomerative hierarchical methods to group time se-
ries in the North Atlantic Ocean based on their posterior pre-
dictive distributions for extreme values, and Thompson and
Merrifield (2014) applied it to the whole ocean, while Bar-
bosa et al. (2016) used wavelet-based clustering to find re-
gions with similar sea level records in the Baltic Sea. Self-
organizing maps (SOMs; Kohonen and Mäkisara, 1989; Ko-
honen, 1990) are a type of unsupervised neural network often
used for clustering and pattern analysis in atmosphere and
ocean research. They have, among many other things, been
successfully applied to find the patterns of upper-layer ocean
circulation from altimeter observations on the West Florida
Shelf (Liu and Weisberg, 2005) and in the South China Sea
(Liu et al., 2008), as well as from radar data in the north-
ern Adriatic (Mihanović et al., 2011). Camargo et al. (2023)
applied SOM, as well as a network detection approach (δ-
MAPS), to regionalize the world’s sea level budget. How-
ever, SOMs are primarily feature detection tools, which are
also able to perform classification. Since SOMs are based on
a neural network, it is harder to interpret the results.

Therefore, in this work we use another unsupervised clas-
sification method called the Gaussian mixture model (GMM;
Bilmes, 1998) to determine the regions of coherent sea level
variability. This method has already been used in oceanogra-
phy to classify the ocean based on temperature and salinity
profiles. Maze et al. (2017) applied it to temperature profiles
in the North Atlantic to find the regions with similar verti-
cal thermal structure, and Jones et al. (2019) did a similar
study of the Southern Ocean. Rosso et al. (2020) focused
only on part of the Southern Ocean, the Kerguelen sector,
but included both temperature and salinity observations in
the model. Thomas et al. (2021) then did a similar study of
the whole Southern Ocean. They all used PCA to reduce the
number of levels in the vertical, which reduces the compu-
tational cost of the classification. Here we apply the same
method to satellite-observed sea level using PCA to reduce
the amount of information in the temporal domain. GMM
provides similar output as the self-organizing map, i.e., the
classification of the area and the main pattern for each class,
but since it is based on statistical distributions, it is easier
to interpret the results. Because clustering methods such as
GMM give a class for every data point, the results from it not
only provide insight into the patterns of sea level variability,
but can also be used as a mask to isolate a region and fo-
cus on the dominant processes in it without being affected by
the noise from everything in the neighboring areas. GMM is
also probabilistic, i.e., it provides the probability distribution
across all classes for each data point, which can be helpful
when trying to determine the robustness of the classification,

Figure 1. Our region of interest and its bathymetry, from the Gen-
eral Bathymetric Chart of the Ocean GEBCO (GEBCO Bathymet-
ric Compilation Group, 2022), along with place names referred to in
the paper. Black contours represent the 250 (thin line) and 1000 m
(thick line) isobaths.

giving it an advantage over simpler approaches, such as k-
means clustering (Lloyd, 1982).

In Sect. 2, we describe the methods and data used in this
paper. We start with the description of the dataset used and
applied data processing steps (Sect. 2.1), then we continue to
explain how the Gaussian mixture model works (Sect. 2.2),
and finally we detail the ensemble classification procedure
(Sect. 2.3). Section 3 contains the results and the discus-
sion, focusing on the classification and its dependence on the
amount of information contained in the dataset (Sect. 3.1),
showing the results for specific subregions of our area of in-
terest (Sect. 3.2), and then illustrating how the classification
works in the abstract empirical orthogonal function domain
in which it is performed (Sect. 3.3). Finally, we give a sum-
mary of our work and present the conclusions in Sect. 4.

2 Method

To determine the regions of coherent sea level variability we
use a machine learning method called a Gaussian mixture
model (GMM). It is an unsupervised classification (or clus-
tering) model, i.e., a model that seeks to sort data points into
classes due to their similarity without any a priori informa-
tion about the classes. We apply it to the satellite-observed
sea level data in the northwestern European coastal seas and
part of the Atlantic Ocean. To increase the robustness of the
classification, we use an ensemble of GMMs.
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2.1 Data preparation

For the sea level variability information we use gridded re-
processed global ocean sea surface height satellite observa-
tions downloaded from the Copernicus Marine Service (Pu-
jol and Mertz, 2020). This dataset uses a multi-mission map-
ping procedure based on an optimal interpolation technique
derived from Le Traon and Ogor (1998), Ducet et al. (2000),
and Le Traon et al. (2003), which combines the data from
all available satellite missions: Sentinel-3A/B, Jason-3, HY-
2A, Saral[-DP]/AltiKa, Cryosat-2, OSTM/Jason-2, Jason-1,
Topex/Poseidon, Envisat, GFO, and ERS-1/2 (Taburet et al.,
2019). The dataset has global coverage, with 0.25◦ spatial
and monthly temporal resolutions. The full description of the
processing of the altimetry data and all the corrections ap-
plied to them can be found in Pujol et al. (2016) and Taburet
et al. (2019).

As an example for our method, we select the area between
10◦W and 30◦ E and between 50 and 75◦ N (Fig. 1), which
covers the coastal seas of northwestern Europe and a part
of the North Atlantic Ocean. It is an interesting and com-
plex region that comprises many different ocean floor fea-
tures and includes both midlatitudes and polar regions, as
well as continental shelves and deep-ocean regions. It con-
sists of the very shallow enclosed Baltic Sea, the shallow
North Sea and coastal seas between Great Britain and Ire-
land, the Faroe Shelf, the Norwegian continental shelf, and
part of the Barents Sea, all shallower than 1000 m. At the
other extreme in depth, this region of interest also includes
the Norwegian Sea, part of the Greenland Sea, and a section
of the mid-Atlantic ridge in between, all deeper than 2000 m.

We use 27 years of data, from 1995 to 2021, to avoid the
large areas with missing data in the year 1994. In a few win-
ters there are small gaps in the data in the Gulf of Bothnia
and Gulf of Finland in the Baltic Sea due to the extensive sea
ice cover, which prevents sea level retrieval through altimetry
(Pujol et al., 2016; Taburet et al., 2019). We linearly interpo-
late these grid points in time as the first step of data process-
ing in order to use the whole available area. We also remove
the seasonal cycle by subtracting the climatology calculated
from the whole 27-year-long time period in order to focus
on the non-seasonal variability. The dataset still contains the
trend, i.e., the sea level rise signal and its spatial patterns.

Although it is technically possible to use the time series
directly as input for the mixture model, as it is with SOMs
(Liu and Weisberg, 2005), they contain so much noise that
the model is unable to converge to one best distribution of
classes. It also makes the model 1 order of magnitude slower,
from approximately 1 to 13 s for a single GMM, which
makes testing large ensembles much more time-consuming.
Therefore, before applying the unsupervised classification
method, we perform a principal component analysis (PCA)
on the altimetry dataset to reduce its dimensionality. This is
a standard procedure when applying GMM to other datasets
(e.g., Maze et al., 2017; Thomas et al., 2021) but is rather

uncommon when using other clustering techniques on sea
level data, where previous studies typically used the whole
time series (e.g., Liu and Weisberg, 2005; Liu et al., 2008).
We obtain the empirical orthogonal function (EOF) maps,
which contain the spatial component of the dataset, and the
accompanying principal component time series, as described
in Björnsson and Venegas (1997), and use the EOF maps as
input for the machine learning classification model. In this
way the input data are reduced from 324 monthly grids to
only three to nine EOFs, which explain approximately 75 %–
85 % of observed variability, and each grid point that we wish
to classify is explained by three to nine values instead of
by the whole 27-year-long time series. The decision on how
many EOFs are included is based on whether we are trying
to achieve a simpler classification, in which case less infor-
mation is enough, or study the finer details, which requires
higher-degree EOFs. We train all our models on 90 % ran-
domly selected grid points and use the remaining 10 % as a
test set to ensure that the model is not only fitted to the train-
ing set but is also able to generalize to the data points that
were not used for training.

2.2 Gaussian mixture model

We want to objectively identify patterns appearing in the
EOF maps of the satellite-observed sea level and use them
to define regions of similar sea level variability. A power-
ful method for this task is the Gaussian mixture model, an
unsupervised machine learning classification approach that
provides the probability that a location belongs to each of the
classes. Since it is an unsupervised method, it does not need
any prior information about the classes. It is based solely
on sea level variability, without any geographical informa-
tion, which allows us to determine physically coherent re-
gions even if they are not adjacent. Finally, since this method
provides the probability distribution across all of the classes,
it enables us to distinguish clearly coherent regions from
boundaries.

GMM is based on the assumption that any probability
density function (PDF) can be described with a model of
weighted sums of Gaussian PDFs, which represent the com-
ponents of the mixture model. In our case, the PDF describ-
ing the sea level EOFs can be represented with a weighted
sum of Gaussian PDFs:

p(x)=

K∑
k=1

λkN
(
x;µk,6k

)
, (1)

with K components, where

N
(
x;µk,6k

)
=

1√
(2π)D|6k|

exp
(
−

1
2
(x−µk)

>6−1
k (x−µk)

)
(2)

is the multivariate Gaussian distribution in D dimensions
with mean µk and covariance matrix 6k . The weight-
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ing coefficients λk must satisfy 0≤ λk ≤ 1 and
∑
kλk = 1

(Bishop, 2006). The classification occurs in the abstract D-
dimensional EOF space, where each dimension represents
one of the EOFs and each data point x is a grid cell described
by D EOF values. The aim of the GMM is to fit the PDF
model from Eq. (1) to the observed probability density func-
tion of the EOFs by maximizing the likelihood of the obser-
vations using the expectation maximization method (Demp-
ster et al., 1977; Bishop, 2006), which is referred as model
training. This boils down to finding the best estimates for
the parameters λk , µk , and 6k . After the observed PDF has
been decomposed into a sum of K Gaussian mixture model
densities defined by mean µk and covariance matrix 6k with
λk = p(c = k) being the component a priori density for class
c, we then use Bayes’ theorem:

p(c = k|x)=
p(x|c = k)p(c = k)

p(x)
, (3)

where p(x|c = k) is defined by Eq. (2) and p(x) is given in
Eq. (1), to obtain the a posteriori probability of a location
belonging to class c:

p(c = k|x)=
λkN (x;µk,6k)∑K
j=1λjN (x;µj ,6j )

. (4)

Finally, the location is labeled with class k for which the
posterior probability is the largest. The mean values which
define each class in our case give us information about which
EOFs and consequently (if we are able to identify which pro-
cesses a particular EOF represents) which processes are dom-
inant in that region. A detailed description of Gaussian mix-
ture models can be found in, e.g., Bilmes (1998) and Bishop
(2006), while, e.g., Maze et al. (2017) and Thomas et al.
(2021) provide similar oceanography-oriented explanations.
The computation is performed using the open-source Python
library Scikit-learn (Pedregosa et al., 2011).

In addition to deciding on the amount of information in-
cluded in the data by selecting the number of EOFs D, the
only input parameter to the GMM is the number of mixture
components or classes,K , which needs to be specified before
applying the model. It is not an easy task to determine the ap-
propriate K . Sometimes it is possible to select a number by
relying on the theory behind the processes we are studying;
e.g., when using GMM to find the fronts in the Antarctic Cir-
cumpolar Current like in Thomas et al. (2021), the number
of fronts is known, but that is not always possible. There are
multiple methods to objectively determine the optimal K , of
which we use the silhouette score (Rousseeuw, 1987). The
silhouette score for each sample (grid point) is computed as

Si =
b− a

max(a,b)
, (5)

where a is the mean intra-cluster distance between the sam-
ple i and all other samples from the same cluster, and b is

the mean nearest-cluster distance between sample i and all
samples from the nearest cluster. To determine the best num-
ber of classes, we use the S averaged over all samples. S
ranges between −1 and 1, where higher values correspond
to better-distinguished classes. Other studies, such as Maze
et al. (2017) and Thomas et al. (2021), used the Bayesian in-
formation criterion (BIC) for this purpose. In our case, how-
ever, the K selected based on the BIC is usually too large
(see next subsection), while the silhouette score provides a
better estimate. However, since the silhouette score does not
always work perfectly, we test all the class numbers between
2 and 11 for each number of EOFs and our tests confirm that
the silhouette score in our case indeed recommends the best
option. The summary of the tests is given in Table A1.

2.3 Ensemble classification

The initial class means in the GMM algorithm are deter-
mined by the simpler k-means clustering method, which de-
pends on random initialization. To test whether the model
converges, we do not specify random seed, so the initial pa-
rameters are different every time. Due to the size and com-
plexity of the area and the sea level variability, each time the
model is trained the results can be slightly different. Despite
sometimes resulting in different classifications, the probabil-
ity given by the GMM is almost always very close to 1 inside
the class and lower only along the class borders, making it
hard to assess which classification is better. To mitigate that
and increase the robustness of the results, we use an ensemble
prediction. Since GMM provides the probability for a point
to belong to each of the classes, the most fitting way to do
the ensemble classification is to use soft voting (Cao et al.,
2015). With this method, the ensemble takes into account the
probabilities from each model that a point belongs to each
class, the class with the largest sum of probabilities wins, and
the grid point is finally assigned to that class. We also obtain
the likelihood that a grid point will belong to that class, i.e., a
combination of the number of models that sorted it into that
class and the probability they provided, which tells us how
difficult it was for the model to sort that particular location.

For most unsupervised classification models, including
GMM, the main problem with using an ensemble is that,
since the classes are not known a priori, they are not num-
bered in any particular way, so class 1 of one ensemble mem-
ber can correspond to class 7 of another. Considering that
there are some differences between model runs, it is also pos-
sible that a class appears in some model runs but not others.
To be able to compare the classes from all ensemble mem-
bers, we match them based on the correlation between the
class means (a D-dimensional vector), which results in a list
of classes that appeared at least once in any of the models of
the ensemble. This list of classes is substantially longer than
the predetermined number of components K , but after vot-
ing, many of the classes get voted out because they only ap-
pear in a few of the models. Please note that matching classes
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based on correlation requires at least three points; using the
ensemble in this manner does not work for only one or two
EOFs.

Another problem that appears when using an ensemble is
that, while GMMs themselves usually do not result in very
small classes, after soft voting, some classes can lose most
of their points to neighboring classes, ending up with only
a few data points. That is avoided by setting up a minimal
class size threshold, excluding those classes that have a num-
ber of points below the threshold, and re-sorting all the grid
points belonging to the excluded classes to the class with
next-highest vote. In such cases, there are usually two classes
with very similar probability sums, so the resulting likeli-
hood is not considerably reduced.

Therefore, there are three parameters pertaining to the en-
semble: the minimal correlation for the class means to be
considered the “same”, the minimal class size, and the num-
ber of ensemble members N . The other parameter that we
need to set is the GMM’s only intrinsic parameter: the num-
ber of classes K . The amount of information included in the
model is set by the number of EOFs D. To determine which
combination works best, we use three criteria: (1) the model
converges, i.e., multiple experiments with the same parame-
ters find the same classes; (2) the ensemble keeps the same
number of classes prescribed to the individual GMM; and
(3) the average likelihood inside the classes is as high as
possible for the desired level of subdivision, while still al-
lowing low likelihoods on class borders. After testing sev-
eral options, we find that the ensemble works best if we
use a minimal correlation for matching classes of 0.98. With
smaller correlation, classes that are not similar enough could
be merged, while with larger correlation, even a slight dif-
ference in geographical distribution of a class in different
ensemble members results in the ensemble seeing them as
different classes, neither of which receives enough votes, so
only the next-best class wins. The minimal class size should
be chosen based on the smallest area we are trying to capture,
so we select a size of 100 grid points, which allows the model
to sort the small basins such as the Gulf of Bothnia or chan-
nels such as the Kattegat into a separate class if necessary. We
use 200 ensemble members for all our experiments. In some
cases with small number of classes, we would have achieved
the same results with less, but since training a single GMM
is fast, using an ensemble with 200 members does not take
too much time and it increases the robustness of the results.
Using more ensemble members usually does not improve the
results, with the exception of 11 EOFs and 11 classes (Ta-
ble A1). The randomly selected 90 % of the grid points used
for training are the same for each ensemble member, leaving
the completely independent 10 % of the data for testing the
ensemble.

In the end, we obtain an ensemble classification with a new
class numberKE that is usually similar to, but not necessarily
exactly the same as, the a priori class number K , along with
a likelihood that a particular point belongs to the selected

Figure 2. Silhouette score for different numbers of classes calcu-
lated for Gaussian mixture models using different numbers of em-
pirical orthogonal functions (differently colored lines). The class for
which a respective model has the highest silhouette score is marked
with a diamond. The silhouette score is computed for 100 models
using the same parameters, and the figure represents their average
values (central lines) and 1 standard deviation (shaded areas). The
models are fitted to a randomly selected 90 % of the grid points
from the region shown in Fig. 1. Thicker lines and larger markers
represent the models presented in this paper.

class. The likelihood would correspond to 1 if all ensemble
members chose that particular class with the probability of 1.
Both fewer models assigning that class and models assigning
it with a lower probability, i.e., the models not being certain
that the grid point belongs there, reduce the likelihood. This
is a big advantage compared to using only individual GMMs
because it makes it easier to see how stable each classifica-
tion is.

3 Results

3.1 Classification depending on the number of
empirical orthogonal functions

After greatly reducing the dimensionality of the data with
principal component analysis, the question arises as to how
much data we should keep. As can be seen in Fig. 2, the op-
timal number of classes based on the silhouette score grows
as we add more information, i.e., more EOF maps (colors),
to the mixture. We can therefore decide on both (1) the num-
ber of EOFs and (2) the number of classes based on how
many details we need to retain for our application. As we
increase the number of dimensions (EOFs), the distance be-
tween any two points becomes more similar and less mean-
ingful, which also lowers the silhouette score for all class
numbers for a given high number of EOFs, so it does not
make sense to compare the silhouette score for different num-
bers of EOFs. Note that according to the silhouette score,
sometimes adding another principal component does not in-
crease the number of classes the model is able to support,
but it could still change which classes the model decides to
include with this newly added information. Testing the mod-
els confirms that the number of classes recommended by the
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Figure 3. Classification using an ensemble of 200 Gaussian mix-
ture models (left) and the respective likelihoods of the model sort-
ing the grid points to that particular class (right). Classification is
performed using three (a), five (b), and nine (c) empirical orthogo-
nal functions and 4, 5, and 10 classes, respectively. Letters indicate
the names used to refer to the regions in the core of the text. Contour
lines represent the 250 and 1000 m isobaths.

silhouette score is correct, as can be seen from Table A1 in
the Appendix. Typically, when using a high number of EOFs
with a smaller number of classes or vice versa, the models ei-
ther do not work at all, i.e., re-running the ensembles results
in a different classification, or work but have lower likeli-
hood than the models we selected. In some cases when the
difference between the number of classes K given to the in-
dividual GMMs and the optimal number of classes is small,
the ensemble is able to find the optimal number of classes on
its own.

Figure 3 shows the classification obtained using three
(simplest model), five (intermediate), and nine (complex)
EOF maps, which contain 76 %, 80 %, and 84 % of the ob-
served variability, with an ensemble of 200 GMMs. All clas-
sifications are created using the number of classes recom-
mended by the silhouette score: 4, 5, and 10, respectively,
which are indeed the numbers with which the model works
best. Since the ensemble classification is able to modify the
number of classes if the chosen one does not work well by
discarding the classes that are only rarely selected by indi-
vidual models, the fact that the ensemble maintains the se-

lected number of classes is additional proof that the number
is good. It can be seen that even though the model does not
consider the geographical information at all, it properly sorts
all the grid points from both the training set and the test set
into suitable geographically connected areas.

In the simplest model based on only three EOF maps
(Fig. 3a), the GMM splits the area into only four classes: the
Baltic Sea (B), the North Sea (N) (which includes most of the
transition area towards the Baltic called Skagerrak and Katte-
gat), the remaining continental shelf areas (C) (including the
northernmost part of the North Sea and the shallow Barents
Sea), and the deep open ocean (O). The border between the
latter two classes follows the continental shelf border almost
perfectly, which can be seen from the 1000 m isobath. The
border between the Baltic and the North Sea classes is also
related to the geographical properties and is set at the narrow-
est region connecting them, the Danish Straits. Note that de-
spite the fact that these class borders coincide perfectly with
the steep changes in the ocean depth or with the coastlines,
the GMMs do not explicitly include those things; the classifi-
cation is based solely on the differences in sea level variabil-
ity caused by different dominant processes on the continental
shelf and in deep waters, as well as by the coastlines directing
the circulation in the enclosed seas. The steric contribution is
known to be prevalent in the deep ocean, while in coastal
regions complex bathymetry, local circulation, and forcing
from the atmosphere and rivers can be more significant (e.g.,
Passaro et al., 2015).

The only border that does not seem to be directly caused
by bathymetry is between the majority of the North Sea (N)
and the remaining coast (C). That border is also the hard-
est one to classify, which can be seen from the likelihood
(as low as 0.29); it is the only area where a significant num-
ber of models creates a slightly different border between the
classes. It is most likely related to some of the underlying
mechanisms in that region, such as the poleward propaga-
tion of sea level fluctuations along the eastern boundary of
the North Atlantic, as found by Chafik et al. (2023), or the
variations in the Atlantic inflow into the North Sea (Winther
and Johannessen, 2006). North Sea sea level is also highly af-
fected by wind and atmospheric pressure, and which of them
dominates depends on the location (Dangendorf et al., 2014).
The border corresponds well to the border found by Mangini
et al. (2021) between the dominant influence of different jet
clusters which represent large-scale atmospheric circulation
patterns. Despite having one border which is harder to de-
fine for individual GMMs, the ensemble classification is ex-
tremely robust; increasing the number of classes in the indi-
vidual ensembles to five or even six results in the exact same
classification because the ensemble removes the unnecessary
classes. This shows that based on the largest processes con-
tained in the first three EOFs, there are exactly four regions
with distinct sea level patterns in the northwestern European
seas.
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Adding two more EOFs that together contribute 4 % of
variability information (intermediate model, Fig. 3b) does
not change the classification significantly. The class borders
from the simplest classification remain principally the same,
and the new EOFs only allow the separation of the Barents
Sea from the remainder of the coastal class. The border be-
tween the North Sea (N) and the adjacent coastal class (C2)
is also moved slightly northward.

Finally, when using nine EOF maps (the most complex
model, Fig. 3c), we end up with 10 classes in our region. The
class borders due to bathymetry or the processes related to it
remain the same. There is further subdivision of both coastal
and open-ocean areas, and the border of the North Sea (itself
subdivided) is shifted even further northward and now coin-
cides with the 250 m isobath, which in that region marks the
edge of the Norwegian Trench. Models maintaining the ba-
sic classification and further subdividing some of the classes
after adding new information to the model is not a character-
istic of the GMM. The GMM could completely change some
or all the classes if the number of classes is different, so the
fact that this is not happening here must be based on the char-
acteristics of the ocean. The ocean is first coarsely divided
into regions determined by the bathymetry, and then each
of those regions can be further subdivided based on other
aspects of the sea level variability such as finer-resolution
bathymetric features (e.g., the subdivision of class O around
the mid-Atlantic ridge) or water masses (e.g., the Barents Sea
separating from class C).

Virtually the same classification as in Fig. 3c can likewise
be obtained with 8, 10, or 11 EOF maps. With 11 EOFs and a
significantly larger ensemble of 1000 members it is also pos-
sible to achieve a separation into 11 classes (not shown), in
which the Barents Sea (class C1) is further split into northern
and southern. Beyond that, adding even more EOFs does not
result in a finer subdivision; it only introduces so much noise
that multiple ensembles with the same parameters produce
different results. With that in mind, if we would like to obtain
a more detailed subdivision, it is better to do the classifica-
tion for a smaller region. The complexity of sea level patterns
differs significantly from region to region, so narrowing our
focus to a smaller area would allow us to use the principal
components specific to that area, increasing the amount of
information in fewer EOF maps, thus reducing the noise and
allowing a better classification.

3.2 Reducing the size of the region

Here, we apply the ensemble GMM to three subregions of
our area of interest: the Baltic Sea, the North Sea, and the
coastal part of the Norwegian Sea (Fig. 4). By using EOF
maps calculated solely for these regions, the model input
contains only the data relevant for them, without the noise
coming from EOFs significant only elsewhere, which allows
the models to find more region-specific patterns and increase
the number of classes they are able to find. We select the

Figure 4. Classification using an ensemble of 200 Gaussian mix-
ture models (left) and the respective likelihoods of the model sort-
ing the grid points to that particular class (right) for the Baltic Sea
performed using four EOFs andK = 5 (a), the North Sea using five
EOFs andK = 6 (b), and part of the Norwegian Sea using six EOFs
andK = 6 (c). Numbers indicate the assigned classes. Contour lines
represent the 250 and 1000 m isobaths. Dark gray classes in (a) and
(c) have not been assigned a number because they are not part of the
region of interest and are therefore not discussed in the text.

models based on the principles presented in Sect. 2.3. We
again calculate the silhouette score for all combinations of
the number of EOFs and class numbers in all three sub-
regions, but there are better class numbers than those rec-
ommended by the silhouette score (three, five, and seven
classes). In the Baltic and the Norwegian Sea models, the
likelihood of the models we present is significantly higher
than the likelihood of the model recommended by the sil-
houette score, while for the North Sea they are equally good,
but the model we present has a higher number of classes, thus
allowing a more detailed subdivision. This demonstrates that
while the silhouette score is a good tool to give an estimate of
the number of mixture components, it does not always give
the best result. One should always try the model with several
options to find the best solution to the specific classification
problem.

The almost completely enclosed Baltic Sea is to a very
large extent controlled by the variability at its entrance on a
long-term scale (e.g., Lehmann et al., 2002), which is why it
is also rather uniform compared to the other areas included
in our whole region of interest and why the models based on
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the EOF maps from the whole area do not usually divide the
Baltic Sea further than the basin scale. This uniformity is also
reflected in the EOFs calculated for the Baltic Sea separately:
the first four explain 94.2 % of the variability. The ensemble
classification model based on them is able to distinguish two
more classes (Fig. 4a) than in the most complex model based
on EOF maps for the whole area of interest (Fig. 3c). The
Baltic (class B in Fig. 3c) is now split into three classes: the
Gulf of Bothnia (class 1), the western Baltic (class 3), and the
remainder of the Baltic Sea (class 2). The Danish Straits, a
series of narrow channels connecting the Baltic Sea with Kat-
tegat, are now sorted together with the western Baltic class
(class 3), while Kattegat and Skagerrak form one class con-
nected to the North Sea (class 4). The likelihood is very close
to 1 virtually everywhere except at some class borders, mean-
ing that the majority of the ensemble members selected the
same classes.

The North Sea has the most complex sea level variability
patterns of the whole considered area. We would need al-
most 40 EOFs to explain the same level of variance as we do
with only four for the Baltic. It is, however, enough to use
only five of them, explaining 79 % of the sea level variabil-
ity, to achieve a more detailed subdivision of the North Sea
(Fig. 4b) than we can with the most complex model based
on EOFs from the whole northwestern European coastal area
(Fig. 3c). Class N1 from Fig. 3c is further split here into
classes 2 and 3, and N2 is split into classes 4 and 5, of which
4 is the southern North Sea and 5 covers Kattegat and the
western Baltic Sea. The region-specific classification model
also finds class 1, which mostly corresponds to class C3 from
Fig. 3c, and it combines parts of classes C2 and C4 included
here into class 6. The larger classes are separated as zones in
the north–south direction, as expected from other works, e.g.,
Dangendorf et al. (2014) and Sterlini et al. (2016), who found
a difference in the sea level variability between the northern
and the southern North Sea. Some of the class borders (1 and
2) are also based on bathymetry, following the Norwegian
Trough. Interestingly, part of the Norwegian coast included
here is sorted into the same class as the western coast of Great
Britain, which suggests that the model most likely sees some
processes relevant for western coasts and the regional atmo-
spheric pressure and wind patterns. The likelihood is close to
1 across the area, with the exception of class borders, which
the ensemble members do not agree on so well. Some class
borders from both the Baltic and the North Sea models match
the classes obtained with the whole-area model to a large ex-
tent, in addition to which the region-specific models are able
to further subdivide their regions. The classes in the overlap-
ping area of the Baltic and the North Sea models, however,
do not match because the EOFs computed for the different
regions do not capture the same processes.

Finally, the classification obtained by considering six EOF
maps calculated for the Norwegian coast (Fig. 4c) is unfor-
tunately unable to achieve a significantly more detailed clas-
sification than the most detailed model for the whole area

(Fig. 3c). Classes 1, 2, and 3 from Fig. 4c generally corre-
spond to classes O1, O2, and C2 from Fig. 3c, although there
are some differences in class borders, particularly the fact
that class 3 covers both class C2 and part of C3 contained
in the area of the Norwegian Sea model. The region-specific
model also splits the Barents Sea opening based on its depth
(classes 4 and 5), similar to the whole-area model with 11
EOFs and 11 classes, which requires a much larger ensemble
(not shown).

3.3 Empirical orthogonal functions

To learn more about how the GMM determines the classes,
we can take a look at the empirical orthogonal functions
(EOFs) because GMMs perform the classification based on
them. Apart from assigning classes, GMM also gives the
class means and covariance matrices it fits the data to, which
in our case is a class mean for each EOF used to train it.
Therefore, to see how the models from Fig. 3 determine the
class borders, we can compare the EOF maps (Fig. 5a) with
the maps in which we replace the values of EOFs at each
grid point with mean values from the class assigned to that
point (Fig. 5b, c, and d). This can reveal two things: (1) a
comparison of the class mean EOFs with the original EOFs
indicates how well the model fits the data, and (2) the differ-
ence in class means between two classes can tell us which
EOFs are responsible for that class border. The accompany-
ing principal component time series can be seen in Fig. B1 in
the Appendix.

In the simplest model (Figs. 5d and 3a) the GMMs capture
only the rough patterns of the first three EOF maps, which
mostly represent the sea level rise (EOF1) and the North At-
lantic Oscillation (EOF2 and EOF3). All three EOFs contain
additional processes but those are not as easily identifiable.
The border between the Baltic (class B) and the North Sea
(class N) is visible on most EOF maps (column a), except
the second one, showing that since the Baltic is an enclosed
sea, almost all processes in it differ from those in the neigh-
boring North Sea at least to some extent. The border based on
the continental shelf break can also be seen in most EOFs but
is most visible in EOFs 2 and 3, demonstrating how clearly
the large difference in ocean depth affects sea level. The only
border in the simplest model (column d) that is not based
on bathymetry, i.e., the border between the North Sea and
the rest of the continental shelf just south of 60◦ N, is deter-
mined only by the not very steep gradients in the first three
EOF maps in that location, which is probably why the indi-
vidual GMMs do not completely agree on where to place it,
resulting in lower likelihood around the border.

When we look at the class means from the more complex
models (Fig. 5, columns b and c), they start to resemble the
original EOF maps more closely. Both the coastal area out-
side the North and the Baltic Sea and the open ocean are
rather uniform in the first three EOFs, which is why the sim-
plest model is unable to divide them further. However, adding
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Figure 5. Empirical orthogonal function maps of satellite-observed sea level used as input for the Gaussian mixture model (a) and class means
for the classification into 10 (b), 5 (c), and 4 (d) classes performed using nine, five, and three empirical orthogonal functions, respectively.
Column (b) contains only the first six EOFs of the nine provided by the model, while columns (c) and (d) show the results for all EOFs used
in the classification. Each row represents one of the EOFs and the color scale is the same for each plot, both the original and the three models,
in that row.

the fourth and fifth EOF map introduces a clear border in the
continental shelf between the Barents Sea (C1) and the rest of
the coastal shelf (C2). EOF 4, which has the most prominent
signal in the North Sea, is responsible for shifting the north-
ern border of the North Sea class northwards compared to the
border in the simplest model. We need to add EOF 6, which
is responsible for only 1.1 % of overall variability, to allow
the most complex model to separate the southern part of the
North Sea. This EOF mainly contains variability at periods of
around 3 and 5–6.5 years and has a very strong signal in the
southern North Sea but much weaker or negative everywhere
else. It might in part represent the sea level variability related
to the northern jet cluster found by Mangini et al. (2021),

which dominates in the southern North Sea. The same EOF
is also responsible for the separation of class O1 from the
other deep-ocean classes. The remaining separation of both
deep-ocean and coastal areas is done based on even higher-
level EOFs (not shown). Moreover, we can see that for the
higher-order EOFs, the class means become smoother, indi-
cating that the model learns less and less from each new EOF
added to it, until it reaches the point when adding new EOFs
introduces only noise and prevents the model from finding
reasonable classes.

To achieve useful results, we need to find a balance be-
tween interpretability and accuracy. Simpler models with
fewer EOFs tend to be easier to interpret in that they have
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Figure 6. The classification analysis in the abstract EOF space for
the model for the whole area with three EOFs and four classes
shown in Fig. 3a. Each point represents a three-dimensional vector
of EOFs that describe a single grid point and the three axes are the
three EOFs. Class assignments are indicated using the same colors
as in Fig. 3a.

clearer boundaries between regions, but they fail to capture
the full variability of the data. More complex models capture
more of the variability of the data, but they tend to be harder
to interpret in that they feature more ambiguous boundaries
between regions. The compromise between interpretability
and accuracy is not universal and should be tailored to the ap-
plication at hand. In our case, the balance is struck when the
classification is able to highlight novel ideas about the spatial
coherence of sea level variability in our study region. Unlike
the simplest and even the intermediate model, in which the
class borders mainly coincide with bathymetry and could be
determined without any particular method by selecting depth
ranges or, in the case of the Baltic Sea, based on the coast-
line, the most complex model separates the ocean into re-
gions that are not so obvious. The difference between the
east, west, and south coast in the North Sea is also found by
Dangendorf et al. (2014) and Frederikse and Gerkema (2018)
based on tide gauges, but our work shows that their findings
for the British coast are most likely also valid for most of the
North Sea, while those for the Norwegian coast apply only to
a narrow stretch along the coast. Furthermore, while differ-
ent drivers of sea level variability in the North Sea have been
already studied by many (e.g., Dangendorf et al., 2014; Fred-
erikse and Gerkema, 2018; Hermans et al., 2020), the other
shelf areas and especially the adjoining deep-ocean basins
are less well understood, so our results can help us determine
which regions should be studied separately. Ultimately, unsu-
pervised classification methods can be useful as “hypothesis
generation tools” (Kaiser et al., 2022).

Since the simplest model for the whole area (Fig. 3a) is
based on only three EOFs, it can be directly depicted in the
abstract EOF space to see how the classes are distributed
(Fig. 6). We can see that in the abstract space the model has
a generally clear separation between the classes and our con-
clusions about which EOF is responsible for which class bor-
der from the beginning of this subsection are confirmed. The
Baltic class (B), being very uniform in regards to sea level
variability, has a narrow range in the EOF space. The North
Sea class (N) is also quite uniform in the second and third
EOF but has a wide range in the first one because there is a
large spatial gradient in the sea level trend there. The coastal
class (C) is the most widespread, covering different levels of
variability in the first three EOFs along the whole coastline.
Finally, the open-ocean class (O) covers the largest area in
space, but since it has less variability than the coastal class in
the first three EOFs, it is less widespread in the EOF space.
Even though the border between classes C and O is very com-
pact in the EOF space, it is also apparently easily seen by the
model and, when transferred to a map, almost perfectly fol-
lows the continental shelf break. This shows that, while some
changes in variability might be small at the shelf break, they
are very clearly defined.

4 Summary and conclusions

Gaussian mixture modeling, an unsupervised classification
approach based on the assumption that all probability den-
sity functions can be described as a weighted sum of Gaus-
sian PDFs, can be used to find regions of coherent sea level
variability based on satellite altimetry data. Here, we focus
on the northwestern European coastal shelf area and a small
adjacent part of the Atlantic Ocean, but the method is appli-
cable in any region. While it is technically possible to use
the time series of the sea level data directly as input for the
GMM, that approach makes the fitting extremely slow and
introduces too much noise for the model to converge towards
a single classification solution. Using the empirical orthogo-
nal function maps, the spatial part obtained with a principal
component analysis as input allows us to include most of the
observed variability but with greatly reduced dimensionality
and noise level.

After reducing the dimensionality, the GMM is able to sep-
arate our region of interest into a relatively small number of
classes. However, if we want to use more than six mixture
components (classes), the models start to diverge, with re-
sults varying slightly between individual model runs. Since
the models generally find the same patterns despite some
differences between them, we show here that we can use
an ensemble approach to find the most common classifica-
tion by applying soft voting, i.e., selecting the class which
most models chose with a high probability. The ensemble
also gives a likelihood of a model assigning this particular
class for each grid point, which tells us how robust the clas-
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sification is and how difficult it was for the models to classify
each area. By comparing the class means with the EOF maps
used as input for the GMM ensemble, we showed that we can
usually see which class border is based on which EOF, mak-
ing the model explainable to some extent and thus directly
useful for scientific analysis.

The simplest classification of our entire region of inter-
est, i.e., the classification based on only three EOF maps,
mostly follows the bathymetry and the coastlines. After in-
cluding more EOF maps, this basic separation remains the
same, but the models are able to also find class borders that
are based on ocean dynamics. The largest number of classes
with which we can achieve robust results for our region is
10, and we need to use between 8 and 11 EOF maps as input.
This model finds two classes along the Norwegian coast, two
in the North Sea, and only one for the whole Baltic Sea. Since
the complexity of these three regions varies significantly, we
show that we can achieve a much more detailed classification
if we focus on each region separately.

We find that the western Baltic has significantly different
variability from the rest of the Baltic Sea and should be con-
sidered separately and show how to separate the North Sea
from the rest of the continental shelf. We confirm previous
findings that the North Sea has differences between the east-
ern, southern, and western coast because of the different at-
mospheric drivers along those coasts but also show that the
sea level observed on the British coast is representative for
the whole North Sea, while that observed on the eastern coast
is more localized. We find that the sea level in the Barents Sea
considerably differs from that along the rest of the continen-
tal shelf break but only after including higher-order EOFs.
We can use these results to further study these regions and
determine what is the cause of different sea level changes.

This classification method is not based on any arbitrary
threshold or even on the geographical information such as
longitude and latitude, so it is applicable to other ocean re-
gions. It could also be used to find patterns of sea level
variability on different temporal scales, both shorter, such
as mesoscale eddies or storm surges, and longer, such as
decadal changes or trends. It is not limited to altimetry obser-
vations; it could also easily be applied to in situ observations
or to model data to study past and future sea level variabil-
ity that is changing in response to climate change. It can be
used on its own to gain more insight into the patterns of sea
level variability or just as a step in data processing to create
a mask for separating the ocean into regions, which can then
be further examined with other methods. Finally, the method
is not limited to sea level, and it could be used for any other
variable.
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Appendix A

Table A1. Average likelihood over the whole region from Fig. 1 for all the combinations of the number of empirical orthogonal functions
(EOFs) and class numbers that produce stable results with an ensemble of 200 Gaussian mixture models. X marks the combinations for which
the ensemble is unable to converge to the same classification result when testing it multiple times. The number of classes recommended by
the silhouette score for each number of EOFs is indicted by bold numbers.

No. of Number of classes

EOFs 2 3 4 5 6 7 8 9 10 11

3 0.78 0.98 0.981 X X X X X X X
4 0.44 0.98 0.98 0.97 X X X X X X
5 0.39 0.63 0.92 0.981 X 0.89 X X X X
6 X 0.72 0.90 X X 0.94 0.89 X 0.89 X
7 X 0.63 0.68 X X X X 0.93 X X
8 0.35 0.54 0.77 0.84 X X X X 0.94 X
9 X X X 0.66 X X X X 0.951 X
10 0.31 X X 0.70 X X 0.70 X 0.96 X
11 0.36 X X X X X X X 0.94 0.962

1 Models shown in Fig. 3 and discussed in the paper. 2 This ensemble required 1000 members to converge.

Appendix B

Figure B1. The first six principal component time series (left) and the accompanying spectra (right). They match the empirical orthogonal
function maps shown in Fig. 5a.
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