Special Issue for the 54th International Liège Colloquium on Machine Learning and Data Analysis in Oceanography
Special Issue for the 54th International Liège Colloquium on Machine Learning and Data Analysis in Oceanography
Editor(s): Alexander Barth, Julien Brajard, Matjaz Licer, Xiaofeng Li, Ana Ruescas, and Aida Alvera-Azcárate
The 54th International Liège Colloquium has focused on the topic “machine learning and data analysis in oceanography”. Data-driven approaches to understand and predict the ocean dynamics have gained significant traction in recent years thanks to the increased number, coverage and quality of ocean observations; improved numerical ocean modeling; the availability of massively parallel computing devices (like graphical processing units); and the advancement of optimization schemes and machine learning (ML) models able to constrain high-dimensional and non-linear systems. Many potential applications of such statistical or ML models (sometimes in combination with dynamical modeling derived from first principles) have been developed. These applications include identifying patterns and features as well as regions with common dynamics and deriving related quantities from easily observed ones (such as estimation of subsurface dynamics from partial observations or chlorophyll concentration from radiances), infilling missing data in satellite observations and adaptive sampling methods guided by machine learning. The spatial and temporal scales from different observation systems have become more and more diverse, which requires new techniques and approaches to combine them in an optimal way for estimating the state of the ocean. Statistical or ML models can also be used to identify bad or questionable observations and can help in quality control and quality assessment of observational data products. Data-driven techniques also have a high potential to complement classical numerical modeling as they allow new ways to represent subgrid parameterization, surrogate models, optimal ensemble predictions, and new and efficient approaches for stochastic modeling and data assimilation to be proposed. While many recent advancements are within machine learning applications, progress in more traditional data-driven analysis techniques such as optimal interpolation, variational analysis and Kalman Filtering, among others, is also within the scope of this special issue. We welcome all submissions that fit this description.

Download citations of all papers

02 Dec 2024
Ensemble reconstruction of missing satellite data using a denoising diffusion model: application to chlorophyll a concentration in the Black Sea
Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers
Ocean Sci., 20, 1567–1584, https://doi.org/10.5194/os-20-1567-2024,https://doi.org/10.5194/os-20-1567-2024, 2024
Short summary
24 Oct 2024
MAESSTRO: Masked Autoencoders for Sea Surface Temperature Reconstruction under Occlusion
Edwin Goh, Alice Yepremyan, Jinbo Wang, and Brian Wilson
Ocean Sci., 20, 1309–1323, https://doi.org/10.5194/os-20-1309-2024,https://doi.org/10.5194/os-20-1309-2024, 2024
Short summary
19 Sep 2024
Predicting particle catchment areas of deep-ocean sediment traps using machine learning
Théo Picard, Jonathan Gula, Ronan Fablet, Jeremy Collin, and Laurent Mémery
Ocean Sci., 20, 1149–1165, https://doi.org/10.5194/os-20-1149-2024,https://doi.org/10.5194/os-20-1149-2024, 2024
Short summary
28 Aug 2024
Deep learning for the super resolution of Mediterranean sea surface temperature fields
Claudia Fanelli, Daniele Ciani, Andrea Pisano, and Bruno Buongiorno Nardelli
Ocean Sci., 20, 1035–1050, https://doi.org/10.5194/os-20-1035-2024,https://doi.org/10.5194/os-20-1035-2024, 2024
Short summary
07 Aug 2024
Fusion of Lagrangian drifter data and numerical model outputs for improved assessment of turbulent dispersion
Sloane Bertin, Alexei Sentchev, and Elena Alekseenko
Ocean Sci., 20, 965–980, https://doi.org/10.5194/os-20-965-2024,https://doi.org/10.5194/os-20-965-2024, 2024
Short summary
27 May 2024
Combining neural networks and data assimilation to enhance the spatial impact of Argo floats in the Copernicus Mediterranean biogeochemical model
Carolina Amadio, Anna Teruzzi, Gloria Pietropolli, Luca Manzoni, Gianluca Coidessa, and Gianpiero Cossarini
Ocean Sci., 20, 689–710, https://doi.org/10.5194/os-20-689-2024,https://doi.org/10.5194/os-20-689-2024, 2024
Short summary
23 May 2024
Detection and Tracking of Carbon Biomes via Integrated Machine Learning
Sweety Mohanty, Lavinia Patara, Daniyal Kazempour, and Peer Kröger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1369,https://doi.org/10.5194/egusphere-2024-1369, 2024
Preprint under review for OS (discussion: final response, 4 comments)
Short summary
08 May 2024
Convolutional Neural Networks for Sea Surface Data Assimilation in Operational Ocean Models: Test Case in the Gulf of Mexico
Olmo Zavala-Romero, Alexandra Bozec, Eric P. Chassignet, and Jose R. Miranda
EGUsphere, https://doi.org/10.5194/egusphere-2024-1293,https://doi.org/10.5194/egusphere-2024-1293, 2024
Revised manuscript accepted for OS (discussion: final response, 4 comments)
Short summary
08 May 2024
Generation of super-resolution gap-free ocean colour satellite products using DINEOF
Aida Alvera-Azcárate, Dimitry Van der Zande, Alexander Barth, Antoine Dille, Joppe Massant, and Jean-Marie Beckers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1268,https://doi.org/10.5194/egusphere-2024-1268, 2024
Revised manuscript under review for OS (discussion: final response, 4 comments)
Short summary
03 May 2024
Long-term Prediction of the Gulf Stream Meander Using OceanNet: a Principled Neural Operator-based Digital Twin
Michael A. Gray, Ashesh Chattopadhyay, Tianning Wu, Anna Lowe, and Ruoying He
EGUsphere, https://doi.org/10.5194/egusphere-2024-1238,https://doi.org/10.5194/egusphere-2024-1238, 2024
Preprint under review for OS (discussion: final response, 4 comments)
Short summary
02 May 2024
Monitoring the coastal-offshore water interactions in the Levantine Sea using ocean color and deep supervised learning
Georges Baaklini, Julien Brajard, Leila Issa, Gina Fifani, Laurent Mortier, and Roy El Hourany
EGUsphere, https://doi.org/10.5194/egusphere-2024-1168,https://doi.org/10.5194/egusphere-2024-1168, 2024
Revised manuscript accepted for OS (discussion: final response, 4 comments)
Short summary
19 Apr 2024
Estimating ocean currents from the joint reconstruction of absolute dynamic topography and sea surface temperature through deep learning algorithms
Daniele Ciani, Claudia Fanelli, and Bruno Buongiorno Nardelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1164,https://doi.org/10.5194/egusphere-2024-1164, 2024
Revised manuscript accepted for OS (discussion: final response, 4 comments)
Short summary
22 Mar 2024
Machine learning methods to predict sea surface temperature and marine heatwave occurrence: a case study of the Mediterranean Sea
Giulia Bonino, Giuliano Galimberti, Simona Masina, Ronan McAdam, and Emanuela Clementi
Ocean Sci., 20, 417–432, https://doi.org/10.5194/os-20-417-2024,https://doi.org/10.5194/os-20-417-2024, 2024
Short summary
20 Feb 2024
Unsupervised classification of the northwestern European seas based on satellite altimetry data
Lea Poropat, Dani Jones, Simon D. A. Thomas, and Céline Heuzé
Ocean Sci., 20, 201–215, https://doi.org/10.5194/os-20-201-2024,https://doi.org/10.5194/os-20-201-2024, 2024
Short summary
16 Nov 2023
Impact of surface and subsurface-intensified eddies on sea surface temperature and chlorophyll a in the northern Indian Ocean utilizing deep learning
Yingjie Liu and Xiaofeng Li
Ocean Sci., 19, 1579–1593, https://doi.org/10.5194/os-19-1579-2023,https://doi.org/10.5194/os-19-1579-2023, 2023
Short summary
CC BY 4.0