Articles | Volume 20, issue 6
https://doi.org/10.5194/os-20-1513-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-1513-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing storm surge model performance: what error indicators can measure the model's skill?
Rodrigo Campos-Caba
CORRESPONDING AUTHOR
Department of Physics and Astronomy (DIFA), University of Bologna, 40127 Bologna, Italy
Interdepartmental Research Centre for Environmental Sciences (CIRSA), University of Bologna, 48123 Ravenna, Italy
Jacopo Alessandri
Department of Physics and Astronomy (DIFA), University of Bologna, 40127 Bologna, Italy
Interdepartmental Research Centre for Environmental Sciences (CIRSA), University of Bologna, 48123 Ravenna, Italy
Paula Camus
Departamento de Ciencias y Técnicas del Agua y del Medio Ambiente, University of Cantabria, 39005 Santander, Spain
Andrea Mazzino
Department of Civil, Chemical and Environmental Engineering, University of Genoa, 16145 Genoa, Italy
Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genoa, Italy
Francesco Ferrari
Department of Civil, Chemical and Environmental Engineering, University of Genoa, 16145 Genoa, Italy
Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genoa, Italy
Ivan Federico
CMCC Foundation – Euro-Mediterranean Center on Climate Change, 73100 Lecce, Italy
Michalis Vousdoukas
Department of Marine Sciences, University of the Aegean, 81100 Mitilene, Greece
MV Coastal and Climate Research Ltd, 3046 Limassol, Cyprus
Massimo Tondello
HS Marine SrL, 35027 Noventa Padovana, Italy
Lorenzo Mentaschi
Department of Physics and Astronomy (DIFA), University of Bologna, 40127 Bologna, Italy
Interdepartmental Research Centre for Environmental Sciences (CIRSA), University of Bologna, 48123 Ravenna, Italy
CMCC Foundation – Euro-Mediterranean Center on Climate Change, 73100 Lecce, Italy
Related authors
No articles found.
Salvatore Causio, Seimur Shirinov, Ivan Federico, Giovanni De Cillis, Emanuela Clementi, Lorenzo Mentaschi, and Giovanni Coppini
EGUsphere, https://doi.org/10.5194/egusphere-2024-3517, https://doi.org/10.5194/egusphere-2024-3517, 2024
Short summary
Short summary
This study examines how waves and ocean currents interact during severe weather, focusing on Medicane Ianos, one of the strongest storms in the Mediterranean. Using advanced modeling, we created a unique system to simulate these interactions, capturing effects like changes in water levels and wind impact on waves. We validated our approach with ideal tests and real data from the storm.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Joshua Green, Ivan Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
EGUsphere, https://doi.org/10.5194/egusphere-2024-2247, https://doi.org/10.5194/egusphere-2024-2247, 2024
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024, https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Short summary
The shape of the coast, the intensity of waves, the height of the water levels, the presence of people or critical infrastructure, and the land use are important information to assess the vulnerability of the coast to coastal hazards. Here, we provide 80 indicators of this kind at consistent locations along the global ice-free coastline using open-access global datasets. These can be valuable for quick assessments of the vulnerability of the coast and at data-poor locations.
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024, https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary
Short summary
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard changes should be assessed using additional factors describing geomorphological configurations, metocean event types (storms, cyclones, long swells, and tsunamis), and the marine environment (e.g., coral reef state and sea ice extent). The assessment completed here, at regional scale including the coasts of mainland and overseas France, highlights significant differences in hazard changes.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022, https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
Umesh Pranavam Ayyappan Pillai, Nadia Pinardi, Ivan Federico, Salvatore Causio, Francesco Trotta, Silvia Unguendoli, and Andrea Valentini
Nat. Hazards Earth Syst. Sci., 22, 3413–3433, https://doi.org/10.5194/nhess-22-3413-2022, https://doi.org/10.5194/nhess-22-3413-2022, 2022
Short summary
Short summary
The study presents the application of high-resolution coastal modelling for wave hindcasting on the Emilia-Romagna coastal belt. The generated coastal databases which provide an understanding of the prevailing wind-wave characteristics can aid in predicting coastal impacts.
Giorgio Micaletto, Ivano Barletta, Silvia Mocavero, Ivan Federico, Italo Epicoco, Giorgia Verri, Giovanni Coppini, Pasquale Schiano, Giovanni Aloisio, and Nadia Pinardi
Geosci. Model Dev., 15, 6025–6046, https://doi.org/10.5194/gmd-15-6025-2022, https://doi.org/10.5194/gmd-15-6025-2022, 2022
Short summary
Short summary
The full exploitation of supercomputing architectures requires a deep revision of the current climate models. This paper presents the parallelization of the three-dimensional hydrodynamic model SHYFEM (System of HydrodYnamic Finite Element Modules). Optimized numerical libraries were used to partition the model domain and solve the sparse linear system of equations in parallel. The performance assessment demonstrates a good level of scalability with a realistic configuration used as a benchmark.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Emanuele Bevacqua, Michalis I. Vousdoukas, Theodore G. Shepherd, and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, https://doi.org/10.5194/nhess-20-1765-2020, 2020
Short summary
Short summary
Coastal compound flooding (CF), caused by interacting storm surges and high water runoff, is typically studied based on concurring storm surge extremes with either precipitation or river discharge extremes. Globally, these two approaches show similar CF spatial patterns, especially where the CF potential is the highest. Deviations between the two approaches increase with the catchment size. The precipitation-based analysis allows for considering
local-rainfall-driven CF and CF in small rivers.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Sandra Gaytan-Aguilar, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 11, 1515–1529, https://doi.org/10.5194/essd-11-1515-2019, https://doi.org/10.5194/essd-11-1515-2019, 2019
Short summary
Short summary
This dataset provides the spatial distribution of nearshore slopes at a resolution of 1 km along the global coastline. The calculation was based on available global topo-bathymetric datasets and ocean wave reanalysis. The calculated slopes show skill in capturing the spatial variability of the nearshore slopes when compared against local observations. The importance of this variability is presented with a global coastal retreat assessment for an arbitrary sea level rise scenario.
Michalis I. Vousdoukas, Dimitrios Bouziotas, Alessio Giardino, Laurens M. Bouwer, Lorenzo Mentaschi, Evangelos Voukouvalas, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 18, 2127–2142, https://doi.org/10.5194/nhess-18-2127-2018, https://doi.org/10.5194/nhess-18-2127-2018, 2018
Short summary
Short summary
We examine sources of epistemic uncertainty in coastal flood risk models. We find that uncertainty from sea level estimations can be higher than that related to greenhouse gas emissions or climate prediction errors. Of comparable importance is information on coastal protection levels and the topography. In the absence of large datasets with sufficient resolution and accuracy, the last two factors are the main bottlenecks in terms of estimating coastal flood risks at large scales.
Dominik Paprotny, Michalis I. Vousdoukas, Oswaldo Morales-Nápoles, Sebastiaan N. Jonkman, and Luc Feyen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-132, https://doi.org/10.5194/hess-2018-132, 2018
Preprint withdrawn
Giovanni Coppini, Palmalisa Marra, Rita Lecci, Nadia Pinardi, Sergio Cretì, Mario Scalas, Luca Tedesco, Alessandro D'Anca, Leopoldo Fazioli, Antonio Olita, Giuseppe Turrisi, Cosimo Palazzo, Giovanni Aloisio, Sandro Fiore, Antonio Bonaduce, Yogesh Vittal Kumkar, Stefania Angela Ciliberti, Ivan Federico, Gianandrea Mannarini, Paola Agostini, Roberto Bonarelli, Sara Martinelli, Giorgia Verri, Letizia Lusito, Davide Rollo, Arturo Cavallo, Antonio Tumolo, Tony Monacizzo, Marco Spagnulo, Rorberto Sorgente, Andrea Cucco, Giovanni Quattrocchi, Marina Tonani, Massimiliano Drudi, Paola Nassisi, Laura Conte, Laura Panzera, Antonio Navarra, and Giancarlo Negro
Nat. Hazards Earth Syst. Sci., 17, 533–547, https://doi.org/10.5194/nhess-17-533-2017, https://doi.org/10.5194/nhess-17-533-2017, 2017
Short summary
Short summary
SeaConditions aims to support the users by providing the environmental information in due time and with adequate accuracy in the marine and coastal environments, enforcing users' sea situational awareness. SeaConditions consists of a web and mobile application for the provision of meteorological and oceanographic observation and forecasting products. The iOS/Android apps were downloaded by more than 105 000 users and more than 100 000 users have visited the web version (www.sea-conditions.com).
Isavela N. Monioudi, Adonis F. Velegrakis, Antonis E. Chatzipavlis, Anastasios Rigos, Theophanis Karambas, Michalis I. Vousdoukas, Thomas Hasiotis, Nikoletta Koukourouvli, Pascal Peduzzi, Eva Manoutsoglou, Serafim E. Poulos, and Michael B. Collins
Nat. Hazards Earth Syst. Sci., 17, 449–466, https://doi.org/10.5194/nhess-17-449-2017, https://doi.org/10.5194/nhess-17-449-2017, 2017
Short summary
Short summary
This work constitutes the first comprehensive attempt to record the spatial characteristics of the Aegean island beaches (Greece) and assess the long-term and episodic sea level rise (SLR) impacts under different scenarios. Results suggest that Aegean beaches may be particularly vulnerable to SLRs, where severe impacts which could be devastating are projected by 2100. Appropriate coastal "setback zone" policies should be adopted, as they form a significant environmental and economic resource.
Ivan Federico, Nadia Pinardi, Giovanni Coppini, Paolo Oddo, Rita Lecci, and Michele Mossa
Nat. Hazards Earth Syst. Sci., 17, 45–59, https://doi.org/10.5194/nhess-17-45-2017, https://doi.org/10.5194/nhess-17-45-2017, 2017
Short summary
Short summary
SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, which provides short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields for the nested system.
Nadia Pinardi, Vladyslav Lyubartsev, Nicola Cardellicchio, Claudio Caporale, Stefania Ciliberti, Giovanni Coppini, Francesca De Pascalis, Lorenzo Dialti, Ivan Federico, Marco Filippone, Alessandro Grandi, Matteo Guideri, Rita Lecci, Lamberto Lamberti, Giuliano Lorenzetti, Paolo Lusiani, Cosimo Damiano Macripo, Francesco Maicu, Michele Mossa, Diego Tartarini, Francesco Trotta, Georg Umgiesser, and Luca Zaggia
Nat. Hazards Earth Syst. Sci., 16, 2623–2639, https://doi.org/10.5194/nhess-16-2623-2016, https://doi.org/10.5194/nhess-16-2623-2016, 2016
Short summary
Short summary
A multiscale sampling experiment was carried out in the Gulf of Taranto (eastern Mediterranean) providing the first synoptic evidence of the large-scale circulation structure and associated mesoscale variability. The circulation is shown to be dominated by an anticyclonic gyre and upwelling areas at the gyre periphery.
Maria Gabriella Gaeta, Achilleas G. Samaras, Ivan Federico, Renata Archetti, Francesco Maicu, and Giuliano Lorenzetti
Nat. Hazards Earth Syst. Sci., 16, 2071–2083, https://doi.org/10.5194/nhess-16-2071-2016, https://doi.org/10.5194/nhess-16-2071-2016, 2016
Short summary
Short summary
The present work describes an operational strategy for the development of a multiscale modeling system, based on a multiple–nesting approach and open–source numerical models. The strategy was applied and validated for the Gulf of Taranto in southern Italy, scaling large–scale oceanographic model results to high–resolution coupled-wave 3-D hydrodynamics simulations for the area of Mar Grande in Taranto. The spatial and temporal high-resolution simulations were performed using the open source.
Lorenzo Mentaschi, Michalis Vousdoukas, Evangelos Voukouvalas, Ludovica Sartini, Luc Feyen, Giovanni Besio, and Lorenzo Alfieri
Hydrol. Earth Syst. Sci., 20, 3527–3547, https://doi.org/10.5194/hess-20-3527-2016, https://doi.org/10.5194/hess-20-3527-2016, 2016
Short summary
Short summary
The climate is subject to variations which must be considered
studying the intensity and frequency of extreme events.
We introduce in this paper a new methodology
for the study of variable extremes, which consists in detecting
the pattern of variability of a time series, and applying these patterns
to the analysis of the extreme events.
This technique comes with advantages with respect to the previous ones
in terms of accuracy, simplicity, and robustness.
Michalis I. Vousdoukas, Evangelos Voukouvalas, Lorenzo Mentaschi, Francesco Dottori, Alessio Giardino, Dimitrios Bouziotas, Alessandra Bianchi, Peter Salamon, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 16, 1841–1853, https://doi.org/10.5194/nhess-16-1841-2016, https://doi.org/10.5194/nhess-16-1841-2016, 2016
Short summary
Short summary
Coastal flooding has severe socioeconomic impacts that are projected to increase under the changing climate. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining the contribution of waves, improved inundation modeling and an open, physics-based framework which can be constantly upgraded whenever new and more accurate data become available.
O. Q. Gutiérrez, F. Filipponi, A. Taramelli, E. Valentini, P. Camus, and F. J. Méndez
Ocean Sci., 12, 39–49, https://doi.org/10.5194/os-12-39-2016, https://doi.org/10.5194/os-12-39-2016, 2016
Short summary
Short summary
High-resolution wave hindcast has been performed for the N Adriatic Sea using a hybrid methodology, combining a regional wave hindcast database, wind reanalysis, satellite SAR wind fields and data mining techniques. Comparison with in situ instrumental data indicates the good quality of the downscaled waves; moreover, a good correlation was found on the downscaled waves forced with different wind fields. Results demonstrate how SAR wind fields can be successfully up-taken in wave downscaling.
Related subject area
Approach: Numerical Models | Properties and processes: Sea level, tides, tsunamis and surges
The characteristics of tides and their effects on the general circulation of the Mediterranean Sea
Effects of sea level rise and tidal flat growth on tidal dynamics and geometry of the Elbe estuary
Technical note: Extending sea level time series for the analysis of extremes with statistical methods and neighbouring station data
Uncertainties and discrepancies in the representation of recent storm surges in a non-tidal semi-enclosed basin: a hindcast ensemble for the Baltic Sea
Observations and modeling of tidally generated high-frequency velocity fluctuations downstream of a channel constriction
Bethany McDonagh, Emanuela Clementi, Anna Chiara Goglio, and Nadia Pinardi
Ocean Sci., 20, 1051–1066, https://doi.org/10.5194/os-20-1051-2024, https://doi.org/10.5194/os-20-1051-2024, 2024
Short summary
Short summary
Tides in the Mediterranean Sea are typically of low amplitude, but twin experiments with and without tides demonstrate that tides affect the circulation directly at scales away from those of the tides. Analysis of the energy changes due to tides shows that they enhance existing oscillations, and internal tides interact with other internal waves. Tides also increase the mixed layer depth and enhance deep water formation in key regions. Internal tides are widespread in the Mediterranean Sea.
Tara F. Mahavadi, Rita Seiffert, Jessica Kelln, and Peter Fröhle
Ocean Sci., 20, 369–388, https://doi.org/10.5194/os-20-369-2024, https://doi.org/10.5194/os-20-369-2024, 2024
Short summary
Short summary
To analyse the influence of potential future mean sea level rise (SLR) and tidal flat elevation scenarios on the tidal dynamics in the Elbe estuary, we used a highly resolved hydrodynamic numerical model. The results show increasing tidal range in the Elbe estuary due to SLR alone. In combination with different tidal flat growth scenarios, they reveal strongly varying changes in tidal range. We discuss how changes in estuarine geometry can provide an explanation for the changes in tidal range.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Ocean Sci., 20, 21–30, https://doi.org/10.5194/os-20-21-2024, https://doi.org/10.5194/os-20-21-2024, 2024
Short summary
Short summary
Coastal floods occur due to extreme sea levels (ESLs) which are difficult to predict because of their rarity. Long records of accurate sea levels at the local scale increase ESL predictability. Here, we apply a machine learning technique to extend sea level observation data in the past based on a neighbouring tide gauge. We compared the results with a linear model. We conclude that both models give reasonable results with a better accuracy towards the extremes for the machine learning model.
Marvin Lorenz and Ulf Gräwe
Ocean Sci., 19, 1753–1771, https://doi.org/10.5194/os-19-1753-2023, https://doi.org/10.5194/os-19-1753-2023, 2023
Short summary
Short summary
We study the variability of extreme sea levels in a 13 member hindcast ensemble for the Baltic Sea. The ensemble mean shows good agreement with observations regarding return levels and trends. However, we find great variability and uncertainty within the ensemble. We argue that the variability of storms in the atmospheric data directly translates into the variability of the return levels. These results highlight the need for large regional ensembles to minimise uncertainties.
Håvard Espenes, Pål Erik Isachsen, and Ole Anders Nøst
Ocean Sci., 19, 1633–1648, https://doi.org/10.5194/os-19-1633-2023, https://doi.org/10.5194/os-19-1633-2023, 2023
Short summary
Short summary
We show that tidally generated eddies generated near the constriction of a channel can drive a strong and fluctuating flow field far downstream of the channel constriction itself. The velocity signal has been observed in other studies, but this is the first study linking it to a physical process. Eddies such as those we found are generated because of complex coastal geometry, suggesting that, for example, land-reclamation projects in channels may enhance current shear over a large area.
Cited articles
Alessandri, J., Pinardi, N., Federico, I., and Valentini, A.: Storm Surge Ensemble Prediction System for Lagoons and Transitional Environments, Am. Meteorol. Soc., 38, 1791–1806, https://doi.org/10.1175/WAF-D-23-0040.1, 2023.
Bajo, M., Medugorac, I., Umgiesser, G., and Orlić, M.: Storm surge and seiche modelling in the Adriatic Sea and the impact of data assimilation. Q. J. Roy. Meteorol. Soc., 145, 2070–2084, https://doi.org/10.1002/qj.3544, 2019.
Bellafiore, D. and Umgiesser, G.: Hydrodynamic coastal processes in the north Adriatic investigated with a 3D finite element model, Ocean Dynam., 60, 225–273, https://doi.org/10.1007/s10236-009-0254-x, 2010.
Benetazzo, A., Davison, S., Barbariol, F., Mercogliano, P., Favaretto, C., and Sclavo, M.: Correction of ERA5 Wind for Regional Climate Projections of Sea Waves. Water (Switzerland), 14, 1590, https://doi.org/10.3390/w14101590, 2022.
Bosa, S., Petti, M., and Pascolo, S.: Improvement in the sediment management of a lagoon harbor: The case of Marano Lagunare, Italy, Water, 13, 3074, https://doi.org/10.3390/w13213074, 2021.
Burchard, H. and Petersen, O.: Models of turbulence in the marine environment-a comparative study of two-equation turbulence models, J. Mar. Syst., 21, 29–53, 1999.
Campos, R. M., Gramcianinov, C. B., de Camargo, R., and da Silva Dias, P. L.: Assessment and Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data, Remote Sens., 14, 4918, https://doi.org/10.3390/rs14194918, 2022.
Chaumillon, E., Bertin, X., Fortunato, A. B., Bajo, M., Schneider, J. L., Dezileau, L., Walsh, J. P., Michelot, A., Chauveau, E., Créach, A., Hénaff, A., Sauzeau, T., Waeles, B., Gervais, B., Jan, G., Baumann, J., Breilh, J. F., and Pedreros, R.: Storm-induced marine flooding: Lessons from a multidisciplinary approach, Earth-Sci. Rev., 165, 151–184, https://doi.org/10.1016/j.earscirev.2016.12.005, 2017.
Chen, C., Liu, H., and Beardsley, R. C.: An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries, Ocean. Technol., 20, 159–186, 2003.
Chepurin, G. A., Carton, J. A., and Leuliette, E.: Sea level in ocean reanalyses and tide gauges, J. Geophys. Res.-Oceans, 119, 147–155, https://doi.org/10.102/2013JC009365, 2014.
Crocker, R., Maksymczuk, J., Mittermaier, M., Tonani, M., and Pequignet, C.: An approach to the verification of high-resolution ocean models using spatial methods, Ocean Sci., 16, 831–845, https://doi.org/10.5194/os-16-831-2020, 2020.
Danilov, S.: Ocean modeling on unstructured meshes, Ocean Modell., 69, 195–210, https://doi.org/10.1016/j.ocemod.2013.05.005, 2020.
De Vries, H., Breton, M., De Mulder, T., Krestenitis, Y., Ozer, J., Proctor, R., Ruddick, K., Salomon, J. C., and Voorrips, A.: A comparison of 2D storm surge models applied to three shallow European seas, Environ. Softw., 10, 23–42, 1995.
Deltares: Delft: Delft3D-FLOW User Manual, 1–727, https://content.oss.deltares.nl/delft3d4/ (last access: 18 November 2024), 2024.
Ebert, E. E. and Mcbride, J. L.: Verification of precipitation in weather systems: determination of systematic errors, J. Hydrol., 239, 179–202, 2000.
Escudier, R., Clementi, E., Cipollone, A., Pistoia, J., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Aydogdu, A., Delrosso, D., Omar, M., Masina, S., Coppini, G., and Pinardi, N.: A High Resolution Reanalysis for the Mediterranean Sea, Front. Earth Sci., 9, 702285, https://doi.org/10.3389/feart.2021.702285, 2021.
Fagherazzi, S., Palermo, C., Rulli, M. C., Carniello, L., and Defina, A.: Wind waves in shallow microtidal basins and the dynamic equilibrium of tidal flats, J. Geophys. Res.-Earth Surf., 112, F02024, https://doi.org/10.1029/2006JF000572, 2007.
Federico, I., Pinardi, N., Coppini, G., Oddo, P., Lecci, R., and Mossa, M.: Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas, Nat. Hazards Earth Syst. Sci., 17, 45–59, https://doi.org/10.5194/nhess-17-45-2017, 2017.
Fernández-Montblanc, T., Vousdoukas, M. I., Mentaschi, L., and Ciavola, P.: A Pan-European high resolution storm surge hindcast. Environ. Int., 135, 105367, https://doi.org/10.1016/j.envint.2019.105367, 2020.
Ferrarin, C., Davolio, S., Bellafiore, D., Ghezzo, M., Maicu, F., Mc Kiver, W., Drofa, O., Umgiesser, G., Bajo, M., De Pascalis, F., Malguzzi, P., Zaggia, L., Lorenzetti, G., and Manfe, G.: Cross-scale operational oceanography in the Adriatic Sea, J. Operat. Oceanogr., 12, 86–103, https://doi.org/10.1080/1755876X.2019.1576275, 2019.
Ferrarin, C., Valentini, A., Vodopivec, M., Klaric, D., Massaro, G., Bajo, M., De Pascalis, F., Fadini, A., Ghezzo, M., Menegon, S., Bressan, L., Unguendoli, S., Fettich, A., Jerman, J., Ličer, M., Fustar, L., Papa, A., and Carraro, E.: Integrated sea storm management strategy: the 29 October 2018 event in the Adriatic Sea, Nat. Hazards Earth Syst. Sci., 20, 73–93, https://doi.org/10.5194/nhess-20-73-2020, 2020.
Ferrarin, C., Lionello, P., Orlić, M., Raicich, F., and Salvadori, G.: Venice as a paradigm of coastal flooding under multiple compound drivers. Sci. Rep., 12, 5754, https://doi.org/10.1038/s41598-022-09652-5, 2022.
Giesen, R., Clementi, E., Bajo, M., Federico, I., Stoffelen, A., and Santoleri, R.: The November 2019 record high water level in Venice, Italy. In: Copernicus Marine Service Ocean State Report, Issue 5, J. Operat. Oceanogr., 14:sup1, s156–s162, https://doi.org/10.1080/1755876X.2021.1946240, 2021.
Gilleland, E., Ahijevych, D., Brown, B. G., Casati, B., and Ebert, E. E.: Intercomparison of spatial forecast verification methods, Weather Forecast., 24, 1416–1430, https://doi.org/10.1175/2009WAF2222269.1, 2009.
Gumuscu, I., Islek, F., Yuksel, Y., and Sahin, C.: Spatiotemporal long-term wind and storm characteristics over the eastern Mediterranean Sea, Reg. Stud. Mar. Sci., 63, 102996, https://doi.org/10.1016/j.rsma.2023.102996, 2023.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hervouet, J.-M. and Bates, P.: The TELEMAC modelling system Special issue, Hydrol. Process., 14, 2207–2208, https://doi.org/10.1002/1099-1085(200009)14:13<2207::aid-hyp22>3.0.co;2-b, 2000.
Hetzel, Y., Janekovic, I., and Pattiaratchi, C.: Assessing the ability of storm surge models to simulate coastal trapped waves around Australia, in: Australasian Coasts & Ports 2017: Working with Nature, Engineers Australia, PIANC Australia and Institute of Professional Engineers New Zealand, https://doi.org/10.3316/informit.929951406285439, 2017.
Lionello, P., Galati, M. B., and Elvini, E.: Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral, Phys. Chem. Earth, 40–41, 86–92, https://doi.org/10.1016/j.pce.2010.04.001, 2010.
Lionello, P., Cavaleri, L., Nissen, K. M., Pino, C., Raicich, F., and Ulbrich, U.: Severe marine storms in the Northern Adriatic: Characteristics and trends, Phys. Chem. Earth, 40–41, 93–105, https://doi.org/10.1016/j.pce.2010.10.002, 2012.
Lionello, P., Barriopedro, D., Ferrarin, C., Nicholls, R. J., Orlić, M., Raicich, F., Reale, M., Umgiesser, G., Vousdoukas, M., and Zanchettin, D.: Extreme floods of Venice: characteristics, dynamics, past and future evolution (review article), Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, 2021.
Lovato, T., Androsov, A., Romanenkov, D., and Rubino, A.: The tidal and wind induced hydrodynamics of the composite system Adriatic Sea/Lagoon of Venice, Conti. Shelf Res., 30, 692–706, https://doi.org/10.1016/j.csr.2010.01.005, 2010.
Luettich, R. A., Westerink, J. J., and Scheffner, N. W.: ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1, Theory and methodology of ADCIRC-2DD1 and ADCIRC-3DL, 1–143, https://apps.dtic.mil/sti/tr/pdf/ADA261608.pdf (last access: 18 November 2024), 1992.
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021.
Maicu, F., Alessandri, J., Pinardi, N., Verri, G., Umgiesser, G., Lovo, S., Turolla, S., Paccagnella, T., and Valentini, A.: Downscaling with an unstructured coastal-ocean model to the Goro Lagoon and the Po River Delta branches, Front. Mar. Sci., 8, 647781, https://doi.org/10.3389/fmars.2021.647781, 2021.
Međugorac, I., Orlić, M., Janeković, I., Pasaric, Z., and Pasaric, M.: Adriatic storm surges and related cross-basin sea-level slope, J. Mar. Syst., 181, 79–90, https://doi.org/10.1016/j.jmarsys.2018.02.005, 2018.
Mentaschi, L., Besio, G., Cassola, F., and Mazzino, A.: Problems in RMSE-based wave model validations, Ocean Modell., 72, 53–58, https://doi.org/10.1016/j.ocemod.2013.08.003, 2013.
Mentaschi, L., Besio, G., Cassola, F., and Mazzino, A.: Performance evaluation of Wavewatch III in the Mediterranean Sea, Ocean Modell., 90, 82–94, https://doi.org/10.1016/j.ocemod.2015.04.003, 2015.
Mentaschi, L., Vousdoukas, M., Montblanc, T. F., Kakoulaki, G., Voukouvalas, E., Besio, G., and Salamon, P.: Assessment of global wave models on regular and unstructured grids using the Unresolved Obstacles Source Term, Ocean Dynam., 70, 1475–1483, https://doi.org/10.1007/s10236-020-01410-3, 2020.
Mentaschi, L., Vousdoukas, M. I., García-Sánchez, G., Fernández-Montblanc, T., Roland, A., Voukouvalas, E., Federico, I., Abdolali, A., Zhang, Y. J., and Feyen, L.: A global unstructured, coupled, high-resolution hindcast of waves and storm surge, Front. Mar. Sci., 10, 1233679, https://doi.org/10.3389/fmars.2023.1233679, 2023.
Merrifield, M. A., Genz, A. S., Kontoes, C. P., and Marra, J. J.: Annual maximum water levels from tide gauges: Contributing factors and geographic patterns, J. Geophys. Res.-Oceans, 118, 2535–2546, https://doi.org/10.1002/jgrc.20173, 2013.
Micaletto, G., Barletta, I., Mocavero, S., Federico, I., Epicoco, I., Verri, G., Coppini, G., Schiano, P., Aloisio, G., and Pinardi, N.: Parallel implementation of the SHYFEM (System of HydrodYnamic Finite Element Modules) model, Geosci. Model Dev., 15, 6025–6046, https://doi.org/10.5194/gmd-15-6025-2022, 2022.
Mittermaier, M. P.: A strategy for verifying near-convection-resolving model forecasts at observing sites, Weather Forecast., 29, 185–204, https://doi.org/10.1175/WAF-D-12-00075.1, 2014.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., and Ward, P. J.: A global reanalysis of storm surges and extreme sea levels, Nat. Commun., 7, 11969, https://doi.org/10.1038/ncomms11969, 2016.
Muñoz, D. F., Yin, D., Bakhtyar, R., Moftakhari, H., Xue, Z., Mandli, K., and Ferreira, C.: Inter-Model Comparison of Delft3D-FM and 2D HEC-RAS for Total Water Level Prediction in Coastal to Inland Transition Zones, J. Am. Water Resour. Assoc., 58, 34–49, https://doi.org/10.1111/1752-1688.12952, 2022.
Park, K., Federico, I., Di Lorenzo, E., Ezer, T., Cobb, K. M., Pinardi, N., and Coppini, G.: The contribution of hurricane remote ocean forcing to storm surge along the Southeastern U.S. coast, Coast. Eng., 173, 104098, https://doi.org/10.1016/j.coastaleng.2022.104098, 2022.
Orlić, M., Kuzmić, M., and Pasarić, Z.: Response of the Adriatic Sea to the bora and sirocco forcing, Conti. Shelf Res., 14, 91–116, 1994.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical harmonic analysis including error estimates in MATLAB using T_TIDE, Comput. Geosci., 28, 929–937, 2022.
Petti, M., Pascolo, S., Bosa, S., Bezzi, A., and Fontolan, G.: Tidal flats morphodynamics: A new conceptual model to predict their evolution over a medium-long period, Water (Switzerland), 11, 1176, https://doi.org/10.3390/w11061176, 2019.
Pineau-Guillou, L., Ardhuin, F., Bouin, M. N., Redelsperger, J. L., Chapron, B., Bidlot, J. R., and Quilfen, Y.: Strong winds in a coupled wave–atmosphere model during a North Atlantic storm event: evaluation against observations, Q. J. Roy. Meteorol. Soc., 144, 317–332, https://doi.org/10.1002/qj.3205, 2018.
Pirazzoli, P. A. and Tomasin, A.: Recent evolution of surge-related events in the Northern Adriatic Sea, J. Coastal Res., 18, 537–554, 2022.
Pringle, W. J., Wirasaet, D., Roberts, K. J., and Westerink, J. J.: Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance, Geosci. Model Dev., 14, 1125–1145, https://doi.org/10.5194/gmd-14-1125-2021, 2021.
Raicich, F.: The sea level time series of Trieste, Molo Sartorio, Italy (1869–2021), Earth Syst. Sci. Data, 15, 1749–1763, https://doi.org/10.5194/essd-15-1749-2023, 2023.
Reimann, L., Vafeidis, A. T., Brown, S., Hinkel, J., and Tol, R.: Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise, Nat. Commun., 9, 4161, https://doi.org/10.1038/s41467-018-06645-9, 2018.
Roberts, K. J., Pringle, W. J., and Westerink, J. J.: OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling, Geosci. Model Dev., 12, 1847–1868, https://doi.org/10.5194/gmd-12-1847-2019, 2019.
Roberts, N. M. and Lean, H. W.: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events, Mon. Weather Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1, 2008.
Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y. T., Chuang, H. Y., Juang, H. M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., HigginS, W., Zou, C., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP climate forecast system reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Saillour, T., Cozzuto, G., Ligorio, F., Lupoi, G., and Bourban, S. E.: Modeling the world oceans with TELEMAC, in: 2020 TELEMAC-MASCARET User Conference, 86–91, https://henry.baw.de/items/a87bc7bc-fc6b-4574-b775-6179721d5d3e (last access: 19 November 2024), 2021.
Skok, G. and Roberts, N.: Analysis of Fractions Skill Score properties for random precipitation fields and ECMWF forecasts, Q. J. Roy. Meteorol. Soc., 142, 2599–2610, https://doi.org/10.1002/qj.2849, 2016.
Staneva, J., Wahle, K., Koch, W., Behrens, A., Fenoglio-Marc, L., and Stanev, E. V.: Coastal flooding: impact of waves on storm surge during extremes – a case study for the German Bight, Nat. Hazards Earth Syst. Sci., 16, 2373–2389, https://doi.org/10.5194/nhess-16-2373-2016, 2016.
Tiggeloven, T., Couasnon, A., van Straaten, C., Muis, S., and Ward, P. J.: Exploring deep learning capabilities for surge predictions in coastal areas, Sci. Rep., 11, 17224, https://doi.org/10.1038/s41598-021-96674-0, 2021.
Toomey, T., Amores, A., Marcos, M., and Orfila, A.: Coastal sea levels and wind-waves in the Mediterranean Sea since 1950 from a high-resolution ocean reanalysis, Front. Mar. Sci., 9, 991504, https://doi.org/10.3389/fmars.2022.991504, 2022.
Trotta, F., Fenu, E., Pinardi, N., Bruciaferri, D., Giacomelli, L., Federico, I., and Coppini, G.: A structured and unstructured grid relocatable ocean platform for forecasting (SURF), Deep-Sea Res. II, 133, 54–75, https://doi.org/10.1016/j.dsr2.2016.05.004, 2016.
Umgiesser, G., Canu, D. M., Cucco, A., and Solidoro, C.: A finite element model for the Venice lagoon: Development, set up, calibration and validation, J. Marine Syst., 123–145, https://doi.org/10.1016/j.jmarsys.2004.05.009, 2004.
Umgiesser, G., Bajo, M., Ferrarin, C., Cucco, A., Lionello, P., Zanchettin, D., Papa, A., Tosoni, A., Ferla, M., Coraci, E., Morucci, S., Crosato, F., Bonometto, A., Valentini, A., Orlić, M., Haigh, I. D., Nielsen, J. W., Bertin, X., Fortunato, A. B., Pérez Gómez, B., Alvarez Fanjul, E., Paradis, D., Jourdan, D., Pasquet, A., Mourre, B., Tintoré, J., and Nicholls, R. J.: The prediction of floods in Venice: methods, models and uncertainty (review article), Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, 2021.
Vannucchi, V., Taddei, S., Capecchi, V., Bendoni, M., and Brandini, C.: Dynamical downscaling of era5 data on the north-western mediterranean sea: From atmosphere to high-resolution coastal wave climate, J. Mar. Sci. Eng., 9, 1–29, https://doi.org/10.3390/jmse9020208, 2021.
Vousdoukas, M. I., Clarke, J., Ranasinghe, R., Reimann, L., Khalaf, N., Duong, T. M., Ouweneel, B., Sabour, S., Iles, C. E., Trisos, C. H., Feyen, L., Mentaschi, L., and Simpson, N. P.: African heritage sites threatened as sea-level rise accelerates, Nat. Clim. Change, 12, 256–262, https://doi.org/10.1038/s41558-022-01280-1, 2022.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., and Feyen, L.: Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard, Nat. Commun., 9, 2360, https://doi.org/10.1038/s41467-018-04692-w, 2018.
Wang, X., Verlaan, M., Veenstra, J., and Lin, H. X.: Data-assimilation-based parameter estimation of bathymetry and bottom friction coefficient to improve coastal accuracy in a global tide model, Ocean Sci., 18, 881–904, https://doi.org/10.5194/os-18-881-2022, 2022.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.: A new digital bathymetric model of the world's oceans, Earth Space Sci., 2, 331–345, https://doi.org/10.1002/2015EA000107, 2015.
Weisberg, R. H. and Zheng, L.: Hurricane storm surge simulations comparing three-dimensional with two-dimensional formulations based on an Ivan-like storm over the Tampa Bay, Florida region, J. Geophys. Res.-Oceans, 113, C12001, https://doi.org/10.1029/2008JC005115, 2008.
World Meteorological Organization (WMO): Guide to storm surge forecasting, WMO, 120 pp., https://community.wmo.int/en/bookstore/guide-storm-surge-forecasting (last access: 19 November 2024), 2011.
Ye, F., Zhang, Y., Yu, H., Sun, W., Moghimi, S., Myers, E., Nunez, K., Zhang, R., Wang, H., Roland, A., Martins, K., Bertin, X., Du, J., and Liu, Z.: Simulating storm surge and compound flooding events with a creek-to-ocean model: Importance of baroclinic effects, Ocean Modell., 145, 101526, https://doi.org/10.1016/j.ocemod.2019.101526, 2020.
Yu, C. S., Decouttere, C., and Berlamont, J.: Storm surge simulations in the Adriatic Sea, in: CENAS, Coastline Evolution of the Upper Adriatic Sea due to Sea Level Rise and Natural and Anthropogenic Land Subsidence, edited by: Gambolati, G., 207–232 pp., https://doi.org/10.1007/978-94-011-5147-4_10, 1998.
Zaggia, L., Lorenzetti, G., Manfé, G., Scarpa, G. M., Molinaroli, E., Parnell, K. E., Rapaglia, J. P., Gionta, M., and Soomere, T.: Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis, PLoS ONE, 12, e0187210, https://doi.org/10.1371/journal.pone.0187210, 2017.
Zampato, L., Umgiesser, G., and Zecchetto, S.: Storm surge in the Adriatic Sea: observational and numerical diagnosis of an extreme event, Adv. Geosci., 7, 371–378, 2006.
Zampato, L., Umgiesser, G., and Zecchetto, S.: Sea level forecasting in Venice through high resolution meteorological fields. Estuarine, Coastal Shelf Sci., 75, 223–235, https://doi.org/10.1016/j.ecss.2007.02.024, 2007.
Zhang, Y. and Baptista, A. M.: SELFE: A semi-implicit Eulerian–Lagrangian finite-element model for cross-scale ocean circulation, Ocean Modell., 21, 71–96, https://doi.org/10.1016/j.ocemod.2007.11.005, 2008.
Zhang, Y., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale modeling with SCHISM, Ocean Model., 102, 64–81, https://doi.org/10.1016/j.ocemod.2016.05.002, 2016.
Zhang, Y. J., Fernandez-Montblanc, T., Pringle, W., Yu, H.-C., Cui, L., and Moghimi, S.: Global seamless tidal simulation using a 3D unstructured-grid model (SCHISM v5.10.0), Geosci. Model Dev., 16, 2565–2581, https://doi.org/10.5194/gmd-16-2565-2023, 2023.
Zingerle, C. and Nurmi, P.: Monitoring and verifying cloud forecasts originating from operational numerical models, Meteorol. Appl., 15, 325–330, https://doi.org/10.1002/met.73, 2008.
Short summary
Here we show the development of high-resolution simulations of storm surge in the northern Adriatic Sea employing different atmospheric forcing data and physical configurations. Traditional metrics favor a simulation forced by a coarser database and employing a less sophisticated setup. Closer examination allows us to identify a baroclinic model forced by a high-resolution dataset as being better able to capture the variability and peak values of the storm surge.
Here we show the development of high-resolution simulations of storm surge in the northern...