Articles | Volume 19, issue 1
https://doi.org/10.5194/os-19-77-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-77-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Turbulent kinetic energy dissipation rate and associated fluxes in the western tropical Atlantic estimated from ocean glider observations
Centre for Ocean and Atmospheric Sciences, School of Environmental Science, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
Gillian M. Damerell
Centre for Ocean and Atmospheric Sciences, School of Environmental Science, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
Philip J. Leadbitter
Centre for Ocean and Atmospheric Sciences, School of Environmental Science, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
Karen J. Heywood
Centre for Ocean and Atmospheric Sciences, School of Environmental Science, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
Rob A. Hall
Centre for Ocean and Atmospheric Sciences, School of Environmental Science, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
Related authors
Peter M. F. Sheehan, Benjamin G. M. Webber, Alejandra Sanchez-Franks, and Bastien Y. Queste
EGUsphere, https://doi.org/10.5194/egusphere-2024-3681, https://doi.org/10.5194/egusphere-2024-3681, 2024
Short summary
Short summary
Using measurements and computer models, we identify a large flux of oxygen within the Southwest Monsoon Current, which flows north into the Bay of Bengal between June and September each year. Oxygen levels in the Bay are very low, but not quite low enough for key nutrient cycles to be as dramatically altered as in other low-oxygen regions. We suggest that the flux we identify contributes to keeping oxygen levels in the Bay above the threshold below which dramatic changes would occur.
Peter M. F. Sheehan, Barbara Berx, Alejandro Gallego, Rob A. Hall, Karen J. Heywood, Sarah L. Hughes, and Bastien Y. Queste
Ocean Sci., 14, 225–236, https://doi.org/10.5194/os-14-225-2018, https://doi.org/10.5194/os-14-225-2018, 2018
Short summary
Short summary
We calculate tidal velocities using observations of ocean currents collected by an underwater glider. We use these velocities to investigate the location of sharp boundaries between water masses in shallow seas. Narrow currents along these boundaries are important transport pathways around shallow seas for pollutants and organisms. Tides are an important control on boundary location in summer, but seawater salt concentration can also influence boundary location, especially in winter.
Meredith G. Meyer, Esther Portela, Walker O. Smith Jr., and Karen J. Heywood
EGUsphere, https://doi.org/10.5194/egusphere-2024-3830, https://doi.org/10.5194/egusphere-2024-3830, 2024
Short summary
Short summary
During the annual phytoplankton bloom, rates of primary production and carbon export in the Ross Sea, Antarctica are uncoupled from each other and from oxygen and carbon stocks. These biogeochemical rates support the high productivity, low export classification of the region and suggest that environmental factors influence these stocks and rates differently and make projections under future climate change scenarios difficult.
Peter M. F. Sheehan, Benjamin G. M. Webber, Alejandra Sanchez-Franks, and Bastien Y. Queste
EGUsphere, https://doi.org/10.5194/egusphere-2024-3681, https://doi.org/10.5194/egusphere-2024-3681, 2024
Short summary
Short summary
Using measurements and computer models, we identify a large flux of oxygen within the Southwest Monsoon Current, which flows north into the Bay of Bengal between June and September each year. Oxygen levels in the Bay are very low, but not quite low enough for key nutrient cycles to be as dramatically altered as in other low-oxygen regions. We suggest that the flux we identify contributes to keeping oxygen levels in the Bay above the threshold below which dramatic changes would occur.
Ria Oelerich, Karen J. Heywood, Gillian M. Damerell, Marcel du Plessis, Louise C. Biddle, and Sebastiaan Swart
Ocean Sci., 19, 1465–1482, https://doi.org/10.5194/os-19-1465-2023, https://doi.org/10.5194/os-19-1465-2023, 2023
Short summary
Short summary
At the southern boundary of the Antarctic Circumpolar Current, relatively warm waters encounter the colder waters surrounding Antarctica. Observations from underwater vehicles and altimetry show that medium-sized cold-core eddies influence the southern boundary's barrier properties by strengthening the slopes of constant density lines across it and amplifying its associated jet. As a result, the ability of exchanging properties, such as heat, across the southern boundary is reduced.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023, https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Short summary
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane and affects ocean tides. In this work we use a climate model to examine the effect of this cycle on the ocean, surface, and atmosphere. The timing of anomalies is consistent with the so-called slowdown in global warming and has implications for when global temperatures will exceed 1.5 ℃ above pre-industrial levels. Regional anomalies have implications for seasonal climate areas such as Europe.
Callum Rollo, Karen J. Heywood, and Rob A. Hall
Geosci. Instrum. Method. Data Syst., 11, 359–373, https://doi.org/10.5194/gi-11-359-2022, https://doi.org/10.5194/gi-11-359-2022, 2022
Short summary
Short summary
Using an underwater buoyancy-powered autonomous glider, we collected profiles of temperature and salinity from the ocean north-east of Barbados. Most of the temperature and salinity profiles contained staircase-like structures of alternating constant values and large gradients. We wrote an algorithm to identify these staircases. We hypothesise that these staircases are prevented from forming where background gradients in temperature and salinity are too great.
Michael P. Hemming, Jan Kaiser, Jacqueline Boutin, Liliane Merlivat, Karen J. Heywood, Dorothee C. E. Bakker, Gareth A. Lee, Marcos Cobas García, David Antoine, and Kiminori Shitashima
Ocean Sci., 18, 1245–1262, https://doi.org/10.5194/os-18-1245-2022, https://doi.org/10.5194/os-18-1245-2022, 2022
Short summary
Short summary
An underwater glider mission was carried out in spring 2016 near a mooring in the northwestern Mediterranean Sea. The glider deployment served as a test of a prototype ion-sensitive field-effect transistor pH sensor. Mean net community production rates were estimated from glider and buoy measurements of dissolved oxygen and inorganic carbon concentrations before and during the spring bloom. Incorporating advection is important for accurate mass budgets. Unexpected metabolic quotients were found.
Yixi Zheng, David P. Stevens, Karen J. Heywood, Benjamin G. M. Webber, and Bastien Y. Queste
The Cryosphere, 16, 3005–3019, https://doi.org/10.5194/tc-16-3005-2022, https://doi.org/10.5194/tc-16-3005-2022, 2022
Short summary
Short summary
New observations reveal the Thwaites gyre in a habitually ice-covered region in the Amundsen Sea for the first time. This gyre rotates anticlockwise, despite the wind here favouring clockwise gyres like the Pine Island Bay gyre – the only other ocean gyre reported in the Amundsen Sea. We use an ocean model to suggest that sea ice alters the wind stress felt by the ocean and hence determines the gyre direction and strength. These processes may also be applied to other gyres in polar oceans.
Yanxin Wang, Karen J. Heywood, David P. Stevens, and Gillian M. Damerell
Ocean Sci., 18, 839–855, https://doi.org/10.5194/os-18-839-2022, https://doi.org/10.5194/os-18-839-2022, 2022
Short summary
Short summary
It is important that climate models give accurate projections of future extremes in summer and winter sea surface temperature because these affect many features of the global climate system. Our results demonstrate that some models would give large errors if used for future projections of these features, and models with more detailed representation of vertical structure in the ocean tend to have a better representation of sea surface temperature, particularly in summer.
Samuel Tiéfolo Diabaté, Didier Swingedouw, Joël Jean-Marie Hirschi, Aurélie Duchez, Philip J. Leadbitter, Ivan D. Haigh, and Gerard D. McCarthy
Ocean Sci., 17, 1449–1471, https://doi.org/10.5194/os-17-1449-2021, https://doi.org/10.5194/os-17-1449-2021, 2021
Short summary
Short summary
The Gulf Stream and the Kuroshio are major currents of the North Atlantic and North Pacific, respectively. They transport warm water northward and are key components of the Earth climate system. For this study, we looked at how they affect the sea level of the coasts of Japan, the USA and Canada. We found that the inshore sea level
co-varies with the north-to-south shifts of the Gulf Stream and Kuroshio. In the paper, we discuss the physical mechanisms that could explain the agreement.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Jack Giddings, Karen J. Heywood, Adrian J. Matthews, Manoj M. Joshi, Benjamin G. M. Webber, Alejandra Sanchez-Franks, Brian A. King, and Puthenveettil N. Vinayachandran
Ocean Sci., 17, 871–890, https://doi.org/10.5194/os-17-871-2021, https://doi.org/10.5194/os-17-871-2021, 2021
Short summary
Short summary
Little is known about the impact of chlorophyll on SST in the Bay of Bengal (BoB). Solar irradiance measured by an ocean glider and three Argo floats is used to determine the effect of chlorophyll on BoB SST during the 2016 summer monsoon. The Southwest Monsoon Current has high chlorophyll concentrations (∼0.5 mg m−3) and shallow solar penetration depths (∼14 m). Ocean mixed layer model simulations show that SST increases by 0.35°C per month, with the potential to influence monsoon rainfall.
Jack Giddings, Adrian J. Matthews, Nicholas P. Klingaman, Karen J. Heywood, Manoj Joshi, and Benjamin G. M. Webber
Weather Clim. Dynam., 1, 635–655, https://doi.org/10.5194/wcd-1-635-2020, https://doi.org/10.5194/wcd-1-635-2020, 2020
Short summary
Short summary
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying chlorophyll in the Bay of Bengal was imposed in a general circulation model coupled to an ocean mixed layer model. The SST increases by 0.5 °C in response to chlorophyll forcing and shallow mixed layer depths in coastal regions during the inter-monsoon. Precipitation increases significantly to 3 mm d-1 across Myanmar during June and over northeast India and Bangladesh during October, decreasing model bias.
Rob A. Hall, Barbara Berx, and Gillian M. Damerell
Ocean Sci., 15, 1439–1453, https://doi.org/10.5194/os-15-1439-2019, https://doi.org/10.5194/os-15-1439-2019, 2019
Short summary
Short summary
Internal tides are subsurface waves generated by tidal flows over ocean ridges. When they break they create turbulence that drives an upward flux of nutrients from the deep ocean to the nutrient-poor photic zone. Measuring internal tides is problematic because oceanographic moorings are often
fished-outby commercial trawlers. We show that autonomous ocean gliders and acoustic Doppler current profilers can be used together to accurately measure the amount of energy carried by internal tides.
Reiner Onken, Heinz-Volker Fiekas, Laurent Beguery, Ines Borrione, Andreas Funk, Michael Hemming, Jaime Hernandez-Lasheras, Karen J. Heywood, Jan Kaiser, Michaela Knoll, Baptiste Mourre, Paolo Oddo, Pierre-Marie Poulain, Bastien Y. Queste, Aniello Russo, Kiminori Shitashima, Martin Siderius, and Elizabeth Thorp Küsel
Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, https://doi.org/10.5194/os-14-321-2018, 2018
Short summary
Short summary
In June 2014, high-resolution oceanographic data were collected in the
western Mediterranean Sea by two research vessels, 11 gliders, moored
instruments, drifters, and one profiling float. The objective
of this article is to provide an overview of the data set which
is utilised by various ongoing studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads
for gliders.
Peter M. F. Sheehan, Barbara Berx, Alejandro Gallego, Rob A. Hall, Karen J. Heywood, Sarah L. Hughes, and Bastien Y. Queste
Ocean Sci., 14, 225–236, https://doi.org/10.5194/os-14-225-2018, https://doi.org/10.5194/os-14-225-2018, 2018
Short summary
Short summary
We calculate tidal velocities using observations of ocean currents collected by an underwater glider. We use these velocities to investigate the location of sharp boundaries between water masses in shallow seas. Narrow currents along these boundaries are important transport pathways around shallow seas for pollutants and organisms. Tides are an important control on boundary location in summer, but seawater salt concentration can also influence boundary location, especially in winter.
Michael P. Hemming, Jan Kaiser, Karen J. Heywood, Dorothee C.E. Bakker, Jacqueline Boutin, Kiminori Shitashima, Gareth Lee, Oliver Legge, and Reiner Onken
Ocean Sci., 13, 427–442, https://doi.org/10.5194/os-13-427-2017, https://doi.org/10.5194/os-13-427-2017, 2017
Short summary
Short summary
Underwater gliders are useful platforms for monitoring the world oceans at a high resolution. An experimental pH sensor was attached to an underwater glider in the Mediterranean Sea, which is an important carbon sink region. Comparing measurements from the glider with those obtained from a ship indicated that there were issues with the experimental pH sensor. Correcting for these issues enabled us to look at pH variability in the area related to biomass abundance and physical water properties.
Imke Grefe, Sophie Fielding, Karen J. Heywood, and Jan Kaiser
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-73, https://doi.org/10.5194/bg-2017-73, 2017
Revised manuscript not accepted
Bastien Y. Queste, Liam Fernand, Timothy D. Jickells, Karen J. Heywood, and Andrew J. Hind
Biogeosciences, 13, 1209–1222, https://doi.org/10.5194/bg-13-1209-2016, https://doi.org/10.5194/bg-13-1209-2016, 2016
Short summary
Short summary
In stratified shelf seas, physical and biological conditions can lead to seasonal oxygen depletion when consumption exceeds supply. An ocean glider obtained a high-resolution 3-day data set of biochemical and physical properties in the central North Sea. The data revealed very high oxygen consumption rates, far exceeding previously reported rates. A consumption–supply oxygen budget indicates a localized or short-lived resuspension event causing rapid remineralization of benthic organic matter.
C. Heuzé, J. K. Ridley, D. Calvert, D. P. Stevens, and K. J. Heywood
Geosci. Model Dev., 8, 3119–3130, https://doi.org/10.5194/gmd-8-3119-2015, https://doi.org/10.5194/gmd-8-3119-2015, 2015
Short summary
Short summary
Most ocean models, including NEMO, have unrealistic Southern Ocean deep convection. That is, through extensive areas of the Southern Ocean, they exhibit convection from the surface of the ocean to the sea floor. We find this convection to be an issue as it impacts the whole ocean circulation, notably strengthening the Antarctic Circumpolar Current. Using sensitivity experiments, we show that counter-intuitively the vertical mixing needs to be enhanced to reduce this spurious convection.
Cited articles
Creed, E., Ross, W., Lueck, R., Stern, P., Douglas, W., Wolk, F., and Hall,
R. A.: Integration of an RSI microstructure sensing package into a
Seaglider, Oceans 2015 – MTS/IEEE Washington, https://doi.org/10.23919/OCEANS.2015.7404477, 2015. a
Dillon, T. M.: Vertical overturns: A comparison of Thorpe and Ozmidov
scales, J. Geophys. Res., 87, 9601–9631, 1982. a
Fer, I., Nandi, P., Holbrook, W. S., Schmitt, R. W., and Páramo, P.: Seismic imaging of a thermohaline staircase in the western tropical North Atlantic, Ocean Sci., 6, 621–631, https://doi.org/10.5194/os-6-621-2010, 2010a. a
Fernández-Castro, B., Mouriño-Carballido, B., Benítez-Barrios,
V. M., Chouciño, P., Fraile-Nuez, E., Graña, R., Piedeleu, M., and
Rodríguez-Santana, A.: Micostructure turbulence and diffusivity
parameterisation in the tropical and subtropical Atlantic, Pacific and
Indian Oceans during the Malaspina 2010 expedition, Deep-Sea Res. Pt.
I, 94, 15–30, 2014. a
Frajka-Williams, E., Eriksen, C. C., Rhines, P. B., and Harcourt, R. R.:
Determining vertical water velocities from Seaglider, J.
Atmos. Ocean. Tech., 28, 1641–1656, 2011. a
Frajka-Williams, E., Brearley, J. A., Nash, J. D., and Whalen, C. B.: New
technological frontiers in ocean mixing, in: Ocean mixing: drivers,
mechanisms and impacts, edited by: Meredith, M. P. and Naveira Garabato,
A. C., Elsevier Science, Amsterdam, the Netherlands, https://doi.org/10.1016/B978-0-12-821512-8.00021-9, 2021. a, b
Garau, B., Ruiz, S., Zhang, W. G., Pascual, A., Heslop, E., Kerfoot, J., and
Tintoré, J.: Thermal lag correction on Slocum CTD glider data,
J. Atmos. Ocean. Tech., 28, 1065–1071, 2011. a
George, J. V., Vinayachandran, P. N., and Nayak, A. A.: Enhanced
double-diffusive salt flux from the high-salinity core of Arabian
Sea-origin waters to the Bay of Bengal, J. Phys.
Oceanogr., 51, 505–518, 2021. a
Kelley, D. E., Fernando, H. J. S., Gargett, A. E., Tanny, J., and Özsoy,
E.: The diffusive regime of double-diffusive convection, Prog.
Oceanogr., 56, 461–481, 2003. a
Lueck, R. G., Wolk, F., and Yamazaki, H.: Oceanic velocity microstructure
measurements in the 20th century, J. Oceanogr., 58, 153–174,
2002. a
Mater, B. D., Venayagamoorthy, S. K., St Laurent, L., and Moum, J. N.: Biases
in Thorpe-scale estimates of turbulence dissipation. Part 1: assessments
from large-scale overturns in oceanographic data, J. Phys.
Oceanogr., 45, 2497–2521, 2015. a
Naveira Garabato, A. C., Polzin, K. L., Ferrari, R., Zika, J. D., and Forryan,
A.: A microscale view of mixing and overturning across the Antarctic
Circumpolar Current, J. Phys. Oceanogr., 46, 233–254,
2016. a
Osborn, T. R.: Estimates of the local rate of vertical diffusion from
dissipation measurements, J. Phys. Oceanogr., 10, 83–89,
1980. a
Ozmidov, R. V.: On the turbulent exchange in a stably stratified ocean,
Atmos. Ocean. Phys., 8, 853–860, 1965. a
Radko, T.: What determines the thickness of layers in a thermohaline
staircase?, J. Fluid Mech., 523, 79–98, 2005. a
Rainville, L., Gobat, J. L., Lee, C. M., and Shilling, G. B.: Multi-month
dissipation estimates using microstructure from autonomous underwater
gliders. Multi-month dissipation estimates using microstructure from
autonomous underwater gliders, Oceanography, 30, 49–50, 2017. a
Rollo, C.: Physical and biogeochemical data from three Seagliders on a
combination transect and virtual mooring deployment, NE of Barbados
January–February 2020, British Oceanographic Data Centre, National
Oceanography Centre, NERC [data set], https://doi.org/10.5285/c596cdd7-c709-461a-e053-6c86abc0c127,
2021. a
Rollo, C., Heywood, K. J., and Hall, R. A.: Glider observations of thermohaline staircases in the tropical North Atlantic using an automated classifier, Geosci. Instrum. Method. Data Syst., 11, 359–373, https://doi.org/10.5194/gi-11-359-2022, 2022. a, b, c, d
Rollo, C., Siddle, E., Lee, G. A., Cobas-Garcia, M., Sheehan, P. M. F.,
Leadbitter, P. J., Damerell, G. M., Hall, R. A., and Heywood, K. J.:
Estimates of turbulent kinetic energy dissipation rate in the western
tropical Atlantic, northeast of Barbados (January and February 2020)
calculated from Seaglider temperature microstructure observations using
Batchelor spectrum and Thorpe scale methods (R/V Meteor cruise
M161), British Oceanographic Data Centre, National Oceanography Centre,
NERC [data set], https://doi.org/10.5285/f173b9c1-bb50-0b75-e053-6c86abc02a4a, 2023. a
Scheifele, B., Waterman, S., Merckelbach, L., and Carpenter, J. R.: Measuring
the dissipation rate of turbulence kinetic energy in strongly stratified,
low-energy environments: a case study from the Arctic Ocean, J.
Geophys. Res.-Oceans, 123, 5459–5480, https://doi.org/10.1029/2017JC013731, 2018 (code available at: https://github.com/bscheife/turbulence_temperature, last access: 17 January 2023). a, b, c, d, e, f, g, h, i, j
Schmitt, R. W.: Mixing in a thermohaline staircase, in: Small-scale turbulence
and mixing in the ocean, Proceedings of the 19th International Liège
Colloquium on ocean hydrodynamics, edited by: Nihoul, J. C. J. and Jamart,
B. M., 435–452, Elsevier, Amsterdam, the Netherlands, https://doi.org/10.1016/S0422-9894(08)70563-4, 1988. a
Scott, R. M., Brearley, J. A., Naveira Garabato, A. C., Venables, H. J., and
Meredith, M. P.: Rates and mechanisms of turbulent mixing in a coastal
embayment of the West Antarctic Peninsula, J. Geophys.
Res.-Oceans, 126, e2020JC016861, https://doi.org/10.1029/2020JC016861, 2021. a, b
Sheen, K. L., Brearley, J. A., Naveira Garabato, A. C., Smeed, D. A., Waterman,
S., Ledwell, J. R., Meredith, M. P., St Laurent, L., Thurnherr, A. M., Toole,
J. M., and Watson, A. J.: Rates and mechanisms of turbulent dissipation and
mixing in the Southern Ocean: results from the Diapycnal and
Isopycnal Mixing Experiment in the Southern Ocean (DIMES),
J. Geophys. Res.-Oceans, 118, 2774–2792, 2013. a
Smyth, W. D., Moum, J. N., and Caldwell, D. R.: The efficiency of mixing in
turbulent patches: inferences from direct simulations and microstructure
observations, J. Phys. Oceanogr., 31, 1969–1992, 2001. a
St Laurent, L. and Schmitt, R. W.: The contribution of salt fingers to vertical
mixing in the North Atlantic Tracer Release Experiment, J.
Phys. Oceanogr., 29, 1404–1424, 1999. a
Stevens, B., Bony, S., Farrell, D., Ament, F., Blyth, A., Fairall, C., Karstensen, J., Quinn, P. K., Speich, S., Acquistapace, C., Aemisegger, F., Albright, A. L., Bellenger, H., Bodenschatz, E., Caesar, K.-A., Chewitt-Lucas, R., de Boer, G., Delanoë, J., Denby, L., Ewald, F., Fildier, B., Forde, M., George, G., Gross, S., Hagen, M., Hausold, A., Heywood, K. J., Hirsch, L., Jacob, M., Jansen, F., Kinne, S., Klocke, D., Kölling, T., Konow, H., Lothon, M., Mohr, W., Naumann, A. K., Nuijens, L., Olivier, L., Pincus, R., Pöhlker, M., Reverdin, G., Roberts, G., Schnitt, S., Schulz, H., Siebesma, A. P., Stephan, C. C., Sullivan, P., Touzé-Peiffer, L., Vial, J., Vogel, R., Zuidema, P., Alexander, N., Alves, L., Arixi, S., Asmath, H., Bagheri, G., Baier, K., Bailey, A., Baranowski, D., Baron, A., Barrau, S., Barrett, P. A., Batier, F., Behrendt, A., Bendinger, A., Beucher, F., Bigorre, S., Blades, E., Blossey, P., Bock, O., Böing, S., Bosser, P., Bourras, D., Bouruet-Aubertot, P., Bower, K., Branellec, P., Branger, H., Brennek, M., Brewer, A., Brilouet, P.-E., Brügmann, B., Buehler, S. A., Burke, E., Burton, R., Calmer, R., Canonici, J.-C., Carton, X., Cato Jr., G., Charles, J. A., Chazette, P., Chen, Y., Chilinski, M. T., Choularton, T., Chuang, P., Clarke, S., Coe, H., Cornet, C., Coutris, P., Couvreux, F., Crewell, S., Cronin, T., Cui, Z., Cuypers, Y., Daley, A., Damerell, G. M., Dauhut, T., Deneke, H., Desbios, J.-P., Dörner, S., Donner, S., Douet, V., Drushka, K., Dütsch, M., Ehrlich, A., Emanuel, K., Emmanouilidis, A., Etienne, J.-C., Etienne-Leblanc, S., Faure, G., Feingold, G., Ferrero, L., Fix, A., Flamant, C., Flatau, P. J., Foltz, G. R., Forster, L., Furtuna, I., Gadian, A., Galewsky, J., Gallagher, M., Gallimore, P., Gaston, C., Gentemann, C., Geyskens, N., Giez, A., Gollop, J., Gouirand, I., Gourbeyre, C., de Graaf, D., de Groot, G. E., Grosz, R., Güttler, J., Gutleben, M., Hall, K., Harris, G., Helfer, K. C., Henze, D., Herbert, C., Holanda, B., Ibanez-Landeta, A., Intrieri, J., Iyer, S., Julien, F., Kalesse, H., Kazil, J., Kellman, A., Kidane, A. T., Kirchner, U., Klingebiel, M., Körner, M., Kremper, L. A., Kretzschmar, J., Krüger, O., Kumala, W., Kurz, A., L'Hégaret, P., Labaste, M., Lachlan-Cope, T., Laing, A., Landschützer, P., Lang, T., Lange, D., Lange, I., Laplace, C., Lavik, G., Laxenaire, R., Le Bihan, C., Leandro, M., Lefevre, N., Lena, M., Lenschow, D., Li, Q., Lloyd, G., Los, S., Losi, N., Lovell, O., Luneau, C., Makuch, P., Malinowski, S., Manta, G., Marinou, E., Marsden, N., Masson, S., Maury, N., Mayer, B., Mayers-Als, M., Mazel, C., McGeary, W., McWilliams, J. C., Mech, M., Mehlmann, M., Meroni, A. N., Mieslinger, T., Minikin, A., Minnett, P., Möller, G., Morfa Avalos, Y., Muller, C., Musat, I., Napoli, A., Neuberger, A., Noisel, C., Noone, D., Nordsiek, F., Nowak, J. L., Oswald, L., Parker, D. J., Peck, C., Person, R., Philippi, M., Plueddemann, A., Pöhlker, C., Pörtge, V., Pöschl, U., Pologne, L., Posyniak, M., Prange, M., Quiñones Meléndez, E., Radtke, J., Ramage, K., Reimann, J., Renault, L., Reus, K., Reyes, A., Ribbe, J., Ringel, M., Ritschel, M., Rocha, C. B., Rochetin, N., Röttenbacher, J., Rollo, C., Royer, H., Sadoulet, P., Saffin, L., Sandiford, S., Sandu, I., Schäfer, M., Schemann, V., Schirmacher, I., Schlenczek, O., Schmidt, J., Schröder, M., Schwarzenboeck, A., Sealy, A., Senff, C. J., Serikov, I., Shohan, S., Siddle, E., Smirnov, A., Späth, F., Spooner, B., Stolla, M. K., Szkółka, W., de Szoeke, S. P., Tarot, S., Tetoni, E., Thompson, E., Thomson, J., Tomassini, L., Totems, J., Ubele, A. A., Villiger, L., von Arx, J., Wagner, T., Walther, A., Webber, B., Wendisch, M., Whitehall, S., Wiltshire, A., Wing, A. A., Wirth, M., Wiskandt, J., Wolf, K., Worbes, L., Wright, E., Wulfmeyer, V., Young, S., Zhang, C., Zhang, D., Ziemen, F., Zinner, T., and Zöger, M.: EUREC4A, Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, 2021.
a
Taylor, J. R. and Veronis, G.: Experiments on double-diffusive sugar-salt
fingers at high stability ratio, J. Fluid Mech., 321, 315–333,
1996. a
Thorpe, S. A.: On the shape and breaking of finite amplitude internal gravity
waves in a shear flow, J. Fluid Mech., 85, 7–31, 1978. a
Thorpe, S. A.: Measuring overturns with gliders, J. Marine Res.,
70, 93–117, 2012. a
van der Boog, C. G., Dijkstra, H. A., Pietrzak, J. D., and Katsman, C. A.:
Double-diffusive mixing makes small contribution to the global ocean
circulation, Nature Communications Earth & Environment, 2, 46, https://doi.org/10.1038/s43247-021-00113-x, 2021. a, b, c, d
Whalen, C. B.: Best practices for comparing ocean turbulence measurements
across spatiotemporal scales, J. Atmos. Ocean. Tech.,
38, 837–841, 2021. a
Whalen, C. B., Talley, L. D., and MacKinnon, J. A.: Spatial and temporal
variability of global ocean mixing inferred from Argo profiles, Geophys.
Res. Lett., 39, L18612, https://doi.org/10.1029/2012GL053196, 2012. a
Short summary
We calculate the rate of turbulent kinetic energy dissipation, i.e. the mixing driven by small-scale ocean turbulence, in the western tropical Atlantic Ocean via two methods. We find good agreement between the results of both. A region of elevated mixing is found between 200 and 500 m, and we calculate the associated heat and salt fluxes. We find that double-diffusive mixing in salt fingers, a common feature of the tropical oceans, drives larger heat and salt fluxes than the turbulent mixing.
We calculate the rate of turbulent kinetic energy dissipation, i.e. the mixing driven by...