Articles | Volume 19, issue 3
https://doi.org/10.5194/os-19-685-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-685-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal and El Niño–Southern Oscillation-related ocean variability in the Panama Bight
Rafael R. Torres
Departamento de
Física y Geociencias, Grupo de Investigación en Geociencias GEO4, Universidad del Norte, km 5 vía Puerto
Colombia, Barranquilla, Colombia
Estefanía Giraldo
Centro de Investigaciones Oceanográficas e Hidrográficas del Pacífico, Dirección General Marítima de Colombia (CCCP-DIMAR), Vía El Morro, Capitanía de Puerto San Andrés de Tumaco, Nariño, Colombia
Cristian Muñoz
Centro de Investigaciones Oceanográficas e Hidrográficas del Pacífico, Dirección General Marítima de Colombia (CCCP-DIMAR), Vía El Morro, Capitanía de Puerto San Andrés de Tumaco, Nariño, Colombia
Ana Caicedo
Centro de Investigaciones Oceanográficas e Hidrográficas del Pacífico, Dirección General Marítima de Colombia (CCCP-DIMAR), Vía El Morro, Capitanía de Puerto San Andrés de Tumaco, Nariño, Colombia
Ismael Hernández-Carrasco
Department of Global Change and Oceanography, Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB),
07190 Esporles, Mallorca, Spain
Alejandro Orfila
CORRESPONDING AUTHOR
Department of Global Change and Oceanography, Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB),
07190 Esporles, Mallorca, Spain
Related authors
No articles found.
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Gotzon Basterretxea, Joan S. Font-Muñoz, Ismael Hernández-Carrasco, and Sergio A. Sañudo-Wilhelmy
Ocean Sci., 19, 973–990, https://doi.org/10.5194/os-19-973-2023, https://doi.org/10.5194/os-19-973-2023, 2023
Short summary
Short summary
We examine global ocean color data and modeling outputs of nutrients using SOM analysis to identify characteristic spatial and temporal patterns of HNLC regions and their association with different climate modes. HNLC regions in polar and subpolar areas have experienced an increase in phytoplankton biomass over the last decades, particularly in the Southern Ocean. Our study finds that chlorophyll variations in HNLC regions respond to major climate variability signals.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
Verónica Morales-Márquez, Alejandro Orfila, Gonzalo Simarro, and Marta Marcos
Ocean Sci., 16, 1385–1398, https://doi.org/10.5194/os-16-1385-2020, https://doi.org/10.5194/os-16-1385-2020, 2020
Short summary
Short summary
This is a study of long-term changes in extreme waves and in the synoptic patterns related to them on European coasts. The interannual variability of extreme waves in the North Atlantic Ocean is controlled by the atmospheric patterns of the North Atlantic Oscillation and Scandinavian indices. In the Mediterranean Sea, it is governed by the East Atlantic and East Atlantic/Western Russia modes acting strongly during their negative phases.
Verónica Morales-Márquez, Alejandro Orfila, Gonzalo Simarro, Lluís Gómez-Pujol, Amaya Álvarez-Ellacuría, Daniel Conti, Álvaro Galán, Andrés F. Osorio, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 18, 3211–3223, https://doi.org/10.5194/nhess-18-3211-2018, https://doi.org/10.5194/nhess-18-3211-2018, 2018
Short summary
Short summary
This work analyzes the response of a beach under a series of storms using a numerical model, in situ measurements and video imaging.
Time recovery after storms is a key issue for local beach managers, who are pressed by tourism stakeholders to nourish the beach
after energetic processes in order to reach the quality standards required by beach users.
Ismael Hernández-Carrasco, Lohitzune Solabarrieta, Anna Rubio, Ganix Esnaola, Emma Reyes, and Alejandro Orfila
Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, https://doi.org/10.5194/os-14-827-2018, 2018
Short summary
Short summary
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed. Its performance is compared with other methods focusing on the propagation of errors introduced in the reconstruction of the velocity fields through the trajectories, Lagrangian flow structures and residence times. We find that even when a large number of measurements in the HFR velocity field is missing, the Lagrangian techniques still give an accurate description of oceanic transport properties.
Marcos García Sotillo, Emilio Garcia-Ladona, Alejandro Orfila, Pablo Rodríguez-Rubio, José Cristobal Maraver, Daniel Conti, Elena Padorno, José Antonio Jiménez, Este Capó, Fernando Pérez, Juan Manuel Sayol, Francisco Javier de los Santos, Arancha Amo, Ana Rietz, Charles Troupin, Joaquín Tintore, and Enrique Álvarez-Fanjul
Earth Syst. Sci. Data, 8, 141–149, https://doi.org/10.5194/essd-8-141-2016, https://doi.org/10.5194/essd-8-141-2016, 2016
Short summary
Short summary
An intensive drifter deployment was carried out in the Strait of Gibraltar: 35 satellite tracked drifters were released, coordinating to this aim 4 boats, covering an area of about 680 NM2 in 6 hours. This MEDESS-GIB Experiment is the most important exercise in the Mediterranean in terms of number of drifters released. The MEDESS-GIB dataset provides a complete Lagrangian view of the surface inflow of Atlantic waters through the Strait of Gibraltar and its later evolution along the Alboran Sea.
I. Hernández-Carrasco, J. Sudre, V. Garçon, H. Yahia, C. Garbe, A. Paulmier, B. Dewitte, S. Illig, I. Dadou, M. González-Dávila, and J. M. Santana-Casiano
Biogeosciences, 12, 5229–5245, https://doi.org/10.5194/bg-12-5229-2015, https://doi.org/10.5194/bg-12-5229-2015, 2015
Short summary
Short summary
We have reconstructed maps of air-sea CO2 fluxes at high resolution (4 km) in the offshore Benguela region using sea surface temperature and ocean colour data and CarbonTracker CO2 fluxes data at low resolution (110 km).
The inferred representation of pCO2 improves the description provided by CarbonTracker, enhancing small-scale variability.
We find that the resolution, as well as the inferred pCO2 data itself, is closer to in situ measurements of pCO2.
I. Hernández-Carrasco, C. López, A. Orfila, and E. Hernández-García
Nonlin. Processes Geophys., 20, 921–933, https://doi.org/10.5194/npg-20-921-2013, https://doi.org/10.5194/npg-20-921-2013, 2013
Cited articles
Arbic, B. K., Scott, R. B., Chelton, D. B., Richman, J. G., and Shriver, J.
F.: Effects of stencil width on surface ocean geostrophic velocity and
vorticity estimation from gridded satellite altimeter data, J. Geophys. Res.-Oceans, 117, C03029, https://doi.org/10.1029/2011JC007367, 2012.
Cabarcos, E., Flores, J.-A., and Sierro, F. J.: High-resolution productivity
record and reconstruction of ENSO dynamics during the Holocene in the
Eastern Equatorial Pacific using coccolithophores, The Holocene, 24,
176–187, https://doi.org/10.1177/0959683613516818, 2014.
Chaigneau, A., Abarca del Rio, R., and Colas, F.: Lagrangian study of the
Panama Bight and surrounding regions, J. Geophys. Res.-Oceans, 111, C09013 https://doi.org/10.1029/2006JC003530, 2006.
Chelton, D. B., Freilich, M. H., and Esbensen, S. K.: Satellite Observations
of the Wind Jets off the Pacific Coast of Central America. Part I: Case
Studies and Statistical Characteristics, Mon. Weather Rev., 128,
1993–2018, https://doi.org/10.1175/1520-0493(2000)128<1993:SOOTWJ>2.0.CO;2, 2000.
Corredor-Acosta, A., Cortés-Chong, N., Acosta, A., Pizarro-Koch, M.,
Vargas, A., Medellín-Mora, J., Saldías, G. S., Echeverry-Guerra,
V., Gutiérrez-Fuentes, J., and Betancur-Turizo, S.: Spatio-Temporal
Variability of Chlorophyll a and Environmental Variables in the Panama
Bight, Remote Sens., 12, 2150, https://doi.org/10.3390/rs12132150, 2020.
Devis-Morales, A.: Ciclo anual de temperatura, salinidad y circulación
en la cuenca pacífica colombiana con énfasis en su región
costera y respuesta de la cuenca a eventos El Niño/La Niña
recientes, Universidad de Concepción. Facultad de Ciencias Naturales y
Oceanográficas, Departamento de Oceanografía, PhD thesis,
http://repositorio.udec.cl/jspui/handle/11594/777 (last access: 16 May 2023), 2009.
Devis-Morales, A., Schneider, W., Montoya-Sánchez, R. A., and
Rodríguez-Rubio, E.: Monsoon-like winds reverse oceanic circulation in
the Panama Bight, Geophys. Res. Lett., 35, L20607,
https://doi.org/10.1029/2008GL035172, 2008.
Dimar: Compilación Oceanográfica de la Cuenca Pacífica
Colombiana II, Dirección General Marítima, Bogotá, https://doi.org/10.26640/5412668, 2020.
Fiedler, P. C. and Lavín, M. F.: Introduction: A review of eastern
tropical Pacific oceanography, Prog. Oceanogr., 69, 94–100,
https://doi.org/10.1016/j.pocean.2006.03.006, 2006.
Fiedler, P. C. and Talley, L. D.: Hydrography of the eastern tropical
Pacific: A review, Prog. Oceanogr., 69, 143–180,
https://doi.org/10.1016/j.pocean.2006.03.008, 2006.
Grados, C., Chaigneau, A., Echevin, V., and Dominguez, N.: Upper ocean
hydrology of the Northern Humboldt Current System at seasonal, interannual
and interdecadal scales, Prog. Oceanogr., 165, 123–144,
https://doi.org/10.1016/j.pocean.2018.05.005, 2018.
Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y.: High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Sci., 8, 845–857, https://doi.org/10.5194/os-8-845-2012, 2012.
Hanley, D. E., Bourassa, M. A., O'Brien, J. J., Smith, S. R., and Spade, E.
R.: A Quantitative Evaluation of ENSO Indices, J. Climate, 16, 1249–1258,
https://doi.org/10.1175/1520-0442(2003)16<1249:AQEOEI>2.0.CO;2, 2003.
Hastenrath, S. and Lamb, P. J.: Climate dynamics of atmosphere and ocean in
the equatorial zone: a synthesis, Int. J. Climatol., 24, 1601–1612,
https://doi.org/10.1002/joc.1086, 2004.
Hernández-Carrasco, I. and Orfila, A.: The Role of an Intense Front on
the Connectivity of the Western Mediterranean Sea: The Cartagena-Tenes
Front, J. Geophys. Res.-Oceans, 123, 4398–4422,
https://doi.org/10.1029/2017JC013613, 2018.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Karnauskas, K. B., Seager, R., Kaplan, A., Kushnir, Y., and Cane, M. A.:
Observed Strengthening of the Zonal Sea Surface Temperature Gradient across
the Equatorial Pacific Ocean, J. Climate, 22, 4316–4321,
https://doi.org/10.1175/2009JCLI2936.1, 2009.
Kessler, W. S.: The circulation of the eastern tropical Pacific: A review,
Prog. Oceanogr., 69, 181–217, https://doi.org/10.1016/j.pocean.2006.03.009,
2006.
Kohonen, T.: Self-organized formation of topologically correct feature maps,
Biol. Cybern., 43, 59–69, https://doi.org/10.1007/BF00337288, 1982.
Lagerloef, G. S. E., Mitchum, G. T., Lukas, R. B., and Niiler, P. P.:
Tropical Pacific near-surface currents estimated from altimeter, wind, and
drifter data, J. Geophys. Res.-Oceans, 104, 23313–23326,
https://doi.org/10.1029/1999JC900197, 1999.
Liu, Y., Weisberg, R. H., and Mooers, C. N. K.: Performance evaluation of
the self-organizing map for feature extraction, J. Geophys. Res.-Oceans,
111, C05018, https://doi.org/10.1029/2005JC003117, 2006.
López-Alzate, M. E., Sayol, J. M., Hernández-Carrasco, I., Osorio, A. F., Mason, E., and Orfila, A.: Mesoscale eddy variability in the Caribbean Sea, Ocean Dynam., 72, 679–693, https://doi.org/10.1007/s10236-022-01525-9, 2022.
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the
Gibbs Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127, 28 pp., 2011.
Morales-Márquez, V., Hernández-Carrasco, I., Simarro, G., Rossi, V.,
and Orfila, A.: Regionalizing the Impacts of Wind- and Wave-Induced Currents
on Surface Ocean Dynamics: A Long-Term Variability Analysis in the
Mediterranean Sea, J. Geophys. Res.-Oceans, 126, e2020JC017104,
https://doi.org/10.1029/2020JC017104, 2021.
Mulet, S., Rio, M.-H., Etienne, H., Artana, C., Cancet, M., Dibarboure, G., Feng, H., Husson, R., Picot, N., Provost, C., and Strub, P. T.: The new CNES-CLS18 global mean dynamic topography, Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, 2021.
Orfila, A., Urbano-Latorre, C. P., Sayol, J. M., Gonzalez-Montes, S.,
Caceres-Euse, A., Hernández-Carrasco, I., and Muñoz, Á. G.: On
the Impact of the Caribbean Counter Current in the Guajira Upwelling System,
Front. Mar. Sci., 8, 626823, https://doi.org/10.3389/fmars.2021.626823, 2021.
Poveda, G. and Mesa, O. J.: On the existence of Lloró (the rainiest
locality on Earth): Enhanced ocean-land-atmosphere interaction by a
low-level jet, Geophys. Res. Lett., 27, 1675–1678,
https://doi.org/10.1029/1999GL006091, 2000.
Poveda, G., Waylen, P. R., and Pulwarty, R. S.: Annual and inter-annual
variability of the present climate in northern South America and southern
Mesoamerica, Palaeogeogr. Palaeocl., 234, 3–27,
https://doi.org/10.1016/j.palaeo.2005.10.031, 2006.
Rodríguez-Rubio, E., Schneider, W., and Río, R. A. del: On the
seasonal circulation within the Panama Bight derived from satellite
observations of wind, altimetry and sea surface temperature, Geophys. Res.
Lett., 30, 1410, https://doi.org/10.1029/2002GL016794, 2003.
Rodríguez-Rubio, E., Ortiz-Galvis, J. R., and Rueda-Bayona, J. G.:
Aspectos oceanográficos, in: Santuario de Fauna y Flora Malpelo:
descubrimiento en marcha, Dirección General Marítima,
https://doi.org/10.26640/43.2007, 2007.
Rueda-Bayona, J. G., Rodríguez-Rubio, E., and Ortiz-Galvis, J. R.:
Caracterización espacio temporal del campo de vientos superficiales del
Pacífico colombiano y el Golfo de Panamá a partir de sensores
remotos y datos in situ, Bol. Científico CCCP, 49–68, 2007.
Sayol, J.-M., Vásquez, L. M., Valencia, J. L., Linero-Cueto, J. R.,
García-García, D., Vigo, I., and Orfila, A.: Extension and
application of an observation-based local climate index aimed to anticipate
the impact of El Niño–Southern Oscillation events on Colombia, Int. J.
Climatol., 42, 5403–5429, https://doi.org/10.1002/joc.7540, 2022.
Stevenson, M.: Circulation in the Panama Bight, J. Geophys. Res., 75, 659–672, https://doi.org/10.1029/JC075i003p00659,
1970.
Trenberth, K. E.: The Definition of El Niño, B. Am. Meteorol. Soc.,
78, 2771–2778, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2, 1997.
Tsuchiya, M. and Talley, L. D.: A Pacific hydrographic section at
88∘ W: Water-property distribution, J. Geophys. Res.-Oceans, 103,
12899–12918, https://doi.org/10.1029/97JC03415, 1998.
Villegas, N., Malikov, I., and Farneti, R.: Sea surface temperature in
continental and insular coastal Colombian waters: observations of the recent
past and near-term numerical projections, Lat. Am. J. Aquat. Res., 49,
307–328, https://doi.org/10.3856/vol49-issue2-fulltext-2481, 2021.
Wooster, W. S.: Oceanographic observations in the Panama Bight, “Askoy”
Expedition, 1941, B. Am. Mus. Nat. Hist., 118, 113–152, 1959.
Wyrtki, K.: Oceanography of the Eastern Equatorial Pacific Ocean, in:
Oceanography and Marine Biology: An Annual Review, Vol. 4, Allen and Unwin
Ltd, London, 33–68, 1966.
Xue, P., Malanotte-Rizzoli, P., Wei, J., and Eltahir, E. A. B.: Coupled
Ocean-Atmosphere Modeling Over the Maritime Continent: A Review, J. Geophys.
Res.-Oceans, 125, e2019JC014978, https://doi.org/10.1029/2019JC014978, 2020.
Zhang, R.-H., Zheng, F., Pei, Y., Zheng, Q., and Wang, Z.: Modulation of El
Nino-Southern Oscillation by Freshwater Flux and Salinity Variability in the
Tropical Pacific, Adv. Atmos. Sci., 29, 647–660,
https://doi.org/10.1007/s00376-012-1235-4, 2012.
Zheng, Y., Lin, J.-L., and Shinoda, T.: The equatorial Pacific cold tongue
simulated by IPCC AR4 coupled GCMs: Upper ocean heat budget and feedback
analysis, J. Geophys. Res.-Oceans, 117, C05024,
https://doi.org/10.1029/2011JC007746, 2012.
Short summary
A reverse seasonal ocean circulation in the Panama Bight has been assessed using 27 years of absolute dynamical topography. The mean circulation in the eastern tropical Pacific (east of 100° W) is analyzed from the mean dynamic topography (MDT) and a self-organizing-map analysis. Small differences are observed west of ~82° W. In the Panama Bight, MDT shows the cyclonic circulation when the Panama surface wind jet dominates the region. We assess ENSO effects on seasonal circulation.
A reverse seasonal ocean circulation in the Panama Bight has been assessed using 27 years of...