Articles | Volume 19, issue 6
https://doi.org/10.5194/os-19-1633-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1633-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observations and modeling of tidally generated high-frequency velocity fluctuations downstream of a channel constriction
Håvard Espenes
CORRESPONDING AUTHOR
Department of Geosciences, University of Oslo, Oslo, Norway
Akvaplan-niva, Fram Centre, Tromsø, Norway
Pål Erik Isachsen
Department of Geosciences, University of Oslo, Oslo, Norway
Norwegian Meteorological Institute, Oslo, Norway
Ole Anders Nøst
Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
Oceanbox.io, Trondheim, Norway
Related authors
Knut Ola Dølven, Håvard Espenes, Alfred Hanssen, Muhammed Fatih Sert, Magnus Drivdal, Achim Randelhoff, and Bénédicte Ferré
EGUsphere, https://doi.org/10.5194/egusphere-2025-998, https://doi.org/10.5194/egusphere-2025-998, 2025
Short summary
Short summary
We have modelled how gas seeping from the seafloor spreads in the ocean and how much reaches the atmosphere. We estimate how much free gas dissolves in water, atmospheric release and 3-D concentration using data from a hydrodynamic model and gas loss modules. We applied the framework to a methane (CH4) seep site offshore Norway showing that atmospheric CH4 release is spread over a large area. However, with our assumptions, most of the CH4 (>90 %) is converted to CO2 by microbes.
Knut Ola Dølven, Håvard Espenes, Alfred Hanssen, Muhammed Fatih Sert, Magnus Drivdal, Achim Randelhoff, and Bénédicte Ferré
EGUsphere, https://doi.org/10.5194/egusphere-2025-998, https://doi.org/10.5194/egusphere-2025-998, 2025
Short summary
Short summary
We have modelled how gas seeping from the seafloor spreads in the ocean and how much reaches the atmosphere. We estimate how much free gas dissolves in water, atmospheric release and 3-D concentration using data from a hydrodynamic model and gas loss modules. We applied the framework to a methane (CH4) seep site offshore Norway showing that atmospheric CH4 release is spread over a large area. However, with our assumptions, most of the CH4 (>90 %) is converted to CO2 by microbes.
Mateusz Matuszak, Johannes Röhrs, Pål Erik Isachsen, and Martina Idžanović
Ocean Sci., 21, 401–418, https://doi.org/10.5194/os-21-401-2025, https://doi.org/10.5194/os-21-401-2025, 2025
Short summary
Short summary
Lagrangian coherent structures (LCSs) describe material transport in ocean flow by describing transport and accumulation regions. We discuss the implications of model flow field uncertainty for finite-time Lyapunov exponents (FTLEs), which under certain conditions approximate LCSs. FTLEs add value to forecasting when they are certain and long-lived. Averaging FTLEs reveals where they are more certain and long-lived, often influenced by bottom topography.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Eli Børve, Pål Erik Isachsen, and Ole Anders Nøst
Ocean Sci., 17, 1753–1773, https://doi.org/10.5194/os-17-1753-2021, https://doi.org/10.5194/os-17-1753-2021, 2021
Short summary
Short summary
Non-linear tidal dynamics can produce prominent time-mean transport in coastal regions where strong tidal currents interact with topography. We investigate tidal-induced transport using a tidally driven ocean model for Lofoten–Vesterålen in northern Norway and find that both tidal pumping and tidal rectification can play an important role for time-mean transport in the region. The study emphasizes the importance of non-linear tidal dynamics for time-mean transport in complex coastal regions.
Johannes S. Dugstad, Pål Erik Isachsen, and Ilker Fer
Ocean Sci., 17, 651–674, https://doi.org/10.5194/os-17-651-2021, https://doi.org/10.5194/os-17-651-2021, 2021
Short summary
Short summary
We quantify the mesoscale eddy field in the Lofoten Basin using Lagrangian model trajectories and aim to estimate the relative importance of eddies compared to the ambient flow in transporting warm Atlantic Water to the Lofoten Basin as well as modifying it. Water properties are largely changed in eddies compared to the ambient flow. However, only a relatively small fraction of eddies is detected in the basin. The ambient flow therefore dominates the heat transport to the Lofoten Basin.
Cited articles
Afanasyev, Y.: Formation of vortex dipoles, Physics of fluids, 18, 037103, https://doi.org/10.1063/1.2182006, 2006. a, b, c
Albagnac, J., Moulin, F. Y., Eiff, O., Lacaze, L., and Brancher, P.: A three-dimensional experimental investigation of the structure of the spanwise vortex generated by a shallow vortex dipole, Environ. Fluid Mech., 14, 957–970, 2014. a
Blakely, C. P., Ling, G., Pringle, W. J., Contreras, M. T., Wirasaet, D., Westerink, J. J., Moghimi, S., Seroka, G., Shi, L., Myers, E., et al.: Dissipation and bathymetric sensitivities in an unstructured mesh global tidal model, J. Geophys. Res.-Oceans, 127, e2021JC018178, https://doi.org/10.1029/2021JC018178, 2022. a
Børve, E., Isachsen, P. E., and Nøst, O. A.: Rectified tidal transport in Lofoten–Vesterålen, northern Norway, Ocean Sci., 17, 1753–1773, https://doi.org/10.5194/os-17-1753-2021, 2021. a, b
Chen, C., Beardsley, R. C., Cowles, G., Qi, J., Lai, Z., Gao, G., et al.: An unstructured grid, finite-volume coastal ocean model: FVCOM user manual, SMAST/UMASSD, 6–8, 2006. a
Codiga, D. L.: Unified tidal analysis and prediction using the UTide Matlab functions, https://doi.org/10.13140/RG.2.1.3761.2008, 2011. a, b
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, 2002. a
Farmer, D. M. and Freeland, H. J.: The physical oceanography of fjords, Prog. Oceanogr., 12, 147–219, 1983. a
Feng, D., Hodges, B. R., Socolofsky, S. A., and Thyng, K. M.: Tidal eddies at a narrow channel inlet in operational oil spill models, Mar. Pollut. Bull., 140, 374–387, 2019. a
Fujiwara, T., Nakata, H., and Nakatsuji, K.: Tidal-jet and vortex-pair driving of the residual circulation in a tidal estuary, Cont. Shelf Res., 14, 1025–1038, 1994. a
Gjevik, B., Nøst, E., and Straume, T.: Model simulations of the tides in the Barents Sea, J. Geophys. Res.-Oceans, 99, 3337–3350, 1994. a
Google: http://maps.google.co.uk, 2021. a
Inall, M., Cottier, F., Griffiths, C., and Rippeth, T.: Sill dynamics and energy transformation in a jet fjord, Ocean Dynam., 54, 307–314, 2004. a
Kartverket: Bathymetric data, https://kartkatalog.geonorge.no/metadata/dybdedata-terrengmodeller-50-meters-grid/67a3a191-49cc-45bc-baf0-eaaf7c513549 (last access: 26 January 2022), 2022. a
Kerr, P., Martyr, R., Donahue, A., Hope, M., Westerink, J., Luettich Jr, R., Kennedy, A., Dietrich, J., Dawson, C., and Westerink, H.: US IOOS coastal and ocean modeling testbed: Evaluation of tide, wave, and hurricane surge response sensitivities to mesh resolution and friction in the Gulf of Mexico, J. Geophys. Res.-Oceans, 118, 4633–4661, 2013. a
Kobayashi, M. H., Pereira, J. M., and Pereira, J. C.: A conservative finite-volume second-order-accurate projection method on hybrid unstructured grids, J. Comput. Phys., 150, 40–75, 1999. a
Lee, J., Lee, J., Yun, S.-L., and Kim, S.-K.: Three-Dimensional Unstructured Grid Finite-Volume Model for Coastal and Estuarine Circulation and Its Application, Water, 12, 2752, https://doi.org/10.3390/w12102752, 2020. a
Lyu, H. and Zhu, J.: Impact of the bottom drag coefficient on saltwater intrusion in the extremely shallow estuary, J. Hydrol., 557, 838–850, 2018. a
Mayo, T., Butler, T., Dawson, C., and Hoteit, I.: Data assimilation within the Advanced Circulation (ADCIRC) modeling framework for the estimation of Manning’s friction coefficient, Ocean Model., 76, 43–58, 2014. a
Nicolau del Roure, F., Socolofsky, S. A., and Chang, K.-A.: Structure and evolution of tidal starting jet vortices at idealized barotropic inlets, J. Geophys. Res.-Oceans, 114, C5, https://doi.org/10.1029/2008JC004997, 2009. a, b
Old, C. and Vennell, R.: Acoustic Doppler current profiler measurements of the velocity field of an ebb tidal jet, J. Geophys. Res.-Oceans, 106, 7037–7049, 2001. a
Persson, P.-O. and Strang, G.: A simple mesh generator in MATLAB, SIAM review, 46, 329–345, 2004. a
Sælen, O. H.: The Hydrography of Some Fjords in Northern Norway: Balsfjord, Ulfsfjord, Grøtsund, Vengsøfjord and Malangen, Tromsø museum, URL https://www.nb.no/items/URN:NBN:no-nb_digibok_2008042204082 (last access: 28 November 2023), 1950. a
Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., 91, 99–164, 1963. a
Stigebrandt, A.: Some aspects of tidal interaction with fjord constrictions, Estuar. Coast. Mar. Sci., 11, 151–166, 1980. a
Stommel, H. and Farmer, H. G.: On the nature of estuarine circulation, Part I (chapters 3 and 4), Tech. Rep., Woods hole oceanographic institution, https://doi.org/10.1575/1912/2032, 1952. a
uk-fvcom branch: https://github.com/UK-FVCOM-Usergroup/uk-fvcom, last access: 9 February 2023. a
van Heijst, G.: Shallow flows: 2D or not 2D?, Environ. Fluid Mech., 14, 945–956, 2014. a
Wells, M. G. and van Heijst, G.-J. F.: A model of tidal flushing of an estuary by dipole formation, Dynam. Atmos. Oceans, 37, 223–244, 2003. a
Whilden, K. A., Socolofsky, S. A., Chang, K.-A., and Irish, J. L.: Using surface drifter observations to measure tidal vortices and relative diffusion at Aransas Pass, Texas, Environ. Fluid Mech., 14, 1147–1172, 2014. a
Short summary
We show that tidally generated eddies generated near the constriction of a channel can drive a strong and fluctuating flow field far downstream of the channel constriction itself. The velocity signal has been observed in other studies, but this is the first study linking it to a physical process. Eddies such as those we found are generated because of complex coastal geometry, suggesting that, for example, land-reclamation projects in channels may enhance current shear over a large area.
We show that tidally generated eddies generated near the constriction of a channel can drive a...